Strong Gravity Frontier of Axion Searches

Yifan Chen Center of Gravity, Niels Bohr Institute \rightarrow Tsung-Dao Lee Institute, Shanghai Jiao Tong University yifan.chen@nanograv.org

10 May 2025, Qingdao Axion Dark Matter: Theory and Phenomenology

THE CENTER OF GRAVITY

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

>

Ultralight Dark Matter

Landscapes of dark matter candidates:

- **QCD Axion** \rightarrow neutron EDM \sim 0. μ eV \rightarrow relic abundance.
- Extra dimensions axions and dark photons...
- Wave-like property with high occupation number.
- Astro and terrestrial probes.

Superradiant Gravitational Atoms

• **Gravitational atom** between BH and boson cloud: BL coordinate: $\Psi^{GA}(x^{\mu}) = e^{-i\omega t} e^{im\phi} S_{\ell m}(\theta) R_{\ell m}(r)$. Fine-structure constant: $\alpha \equiv G_N M_{BH} \mu$; Bohr radius: r_g / α^2 ; BH horizon $\rightarrow \omega \simeq \mu + i\Gamma$.

э.

Superradiance [Penrose, Zeldovichi, Starobinsky, Damour et al, Brito et al review]: boson cloud exponentially extracting BH rotation energy when

 $\begin{array}{rcl} \mbox{Compton wavelength } \lambda_c &\simeq & \mbox{gravitational radius } r_g. \\ \mu \sim 10^{-12} \, \mbox{eV} &\leftrightarrow & M_{\rm BH} \sim 10 \, M_{\odot}. \end{array}$

• $\Psi_{\text{max}}^{\text{GA}} \equiv \Psi_0$ approaches M_{pl} when $M_{\text{cloud}} \leq 10\% M_{\text{BH}}$:

$$\frac{M_{\rm cloud}}{M_{\rm BH}} \approx \begin{cases} 0.5\% \, \left(\frac{\Psi_0}{10^{16}\,{\rm GeV}}\right)^2 \, \left(\frac{0.4}{\alpha}\right)^4 \, \, {\rm for \ scalar}, & {\rm Local \ dark \ matter \ field:} \\ 0.8\% \, \left(\frac{\Psi_0}{10^{17}\,{\rm GeV}}\right)^2 \, \left(\frac{0.4}{\alpha}\right)^4 \, \, {\rm for \ vector}. & \Psi_0^\odot \approx 2\,{\rm GeV} \, \left(\frac{10^{-12}\,{\rm eV}}{\mu}\right) \end{cases}$$

Black holes are powerful concentrators for ultralight bosons.

Strong Field Frontier with Saturating Cloud

• Up to GUT-scale $\sim 10^{16}$ GeV field values from superradiance or accretion.

- Strong field frontier: similar to preheating and strong field QED.
 - \bullet Axion cloud \rightarrow photon production

[Spieksma et al PRD 23].

- Boson cloud \rightarrow fermion production and acceleration [YC et al JCAP 25].
- Production rate significantly higher than perturbative decays.

イロト イポト イヨト イヨト

ъ

EHT and Future VLBI Arrays for Fundamental Physics

Event Horizon Telescope: best-ever angular resolution from VLBI. $\theta_{\rm res} \sim \lambda/d$ and $d \to R_E$.

Future: ngEHT and space-VLBI BHEX.

Photon orbits [KGEO]

Photon ring: bound orbits. Precision test of GR and BH. Synchrotronic linear polarization reveals magnetic field structures.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

EHT and Future VLBI Arrays for Fundamental Physics

Event Horizon Telescope: best-ever angular resolution from VLBI. **Future:** ngEHT and space-VLBI BHEX.

Photon ring: bound orbits.

Synchrotronic linear polarization.

Stokes Q. U

EVPA $\chi \equiv$

[EHT 21]

arg(Q+i U)/2

EHT and Future VLBI Arrays for Fundamental Physics

Event Horizon Telescope: best-ever angular resolution from VLBI. **Future:** ngEHT and space-VLBI BHEX.

Photon ring: bound orbits.

- Astrometry for boson clouds.
 - [YC, Xue, Brito, Cardoso, PRL 23]
- Ringdown tomography.

[Zhong, Cardoso, YC, PRL 25]

Forward ray tracing.

[Zhou, Zhong, YC, Cardoso, PRD 25]

Stokes Q, U **EVPA** $\chi \equiv$ $\arg(Q + i \ U)/2$ [EHT 21]

Synchrotronic linear polarization reveals magnetic field structures.

 Axion cloud birefringence. [YC, Li, Liu, Lu, Mizuno, Shu, Xue, Yuan, Zhao, Zhou,

PRL 20, Nature Astron. 22, JCAP 22]

Axion dark matter.

[Yuan, Xia, YC et al, JCAP 21]

[Fundamental Physics Opportunities with Future Ground-Based mm/sub-mm_VLBI Arrays, Living Rev.Rel. 25]

Fine-structure Constant Variation from Axion

$$\frac{g_s^2}{32\pi^2}\frac{\phi}{f_\phi}G_{\mu\nu}\widetilde{G}^{\mu\nu}\rightarrow \frac{C_\gamma}{4}\frac{\phi^2}{f_\phi^2}F_{\mu\nu}F^{\mu\nu}.$$

- Axion can induce deviation of $\alpha_{\rm EM}$ at loop levels.
- $|C_{\gamma}| \sim 10^{-5}$ for QCD axions, and free for ALPs.
- Galactic-center spectroscopy for S-stars:

[Bai, Cardoso, YC, Do, Hees, Xiao, Xue to appear]

- Benefit from $\phi \sim f_{\phi}$ field value.
- Future spectroscopy can probe QCD axions.

Ultralight Bosons Around Inspiraling Binaries

- **Co-rotating** gravitational **molecules**: rapid **circularization**.
- Distinct ionization emissions compared to extreme-mass-ratio binaries.
- Difference with signatures of stars or particle dark matter? [YC, Xue, NANOGrav Collaboration 2411.05906].

Summary

 Black holes are powerful concentrators for ultralight bosons with up to GUT-scale Ψ₀;
 > 10¹⁰⁻²⁰ denser than dark matter on Earth.

- Parametric particle production and acceleration.
- Black hole observations:
 - EHT imaging.
 - KECK/GRAVITY spectroscopy.
 - **PTA** supermassive binary GW.
 - Photon geodesics deflection.
 - Linear polarization rotation.
 - Spectral oscillation.
 - Galaxy tomography.

Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Appendix

<□ > < @ > < E > < E > E のQ @

Black Holes as

Fermion Factories

<□ > < @ > < E > < E > E のQ @

Fermion Production from Boson Background

• Ultralight bosons coupled to fermions: $g_S \phi \bar{\psi} \psi$ and $g_V A'_{\mu} \bar{\psi} \gamma^{\mu} \psi$.

Fermion propagation under non-uniform boson background:

$$\frac{\mathrm{d}\boldsymbol{p}_{\psi}^{\alpha}}{\mathrm{d}t} = \begin{cases} -\nabla^{\alpha} m_{\mathrm{eff}}^{2} / (2p_{\psi}^{0}) \leftarrow \text{scalar force [Uzan et al 20];} \\ \pm g_{V}(\vec{E}_{A'} + \vec{v}_{\psi} \times \vec{B}_{A'}). \end{cases}$$

Fermion Fluxes from Boson Cloud

Fermion acceleration under non-uniform boson clumps [YC et al JCAP 2308.00741].

Application to boosted dark matter or ν:

Vector: TeV-fluxes expected to surpass diffusive atmospheric ν .

- Multi-messenger observation:
 - GW and EM searches for BHs.
- ν and dark matter detectors.

Photon Ring Astrometry for Gravitational Atoms

Superradiant clouds generate local oscillatory metric perturbations $g_{\mu\nu} \simeq g_{\mu\nu}^{\rm K} + \epsilon h_{\mu\nu}$ that deflect geodesics $x^{\mu} \simeq x_{(0)}^{\mu} + \epsilon x_{(1)}^{\mu}$:

[YC, Xue, Brito, Cardoso, PRL. **130** (2023) no.11, 111401]

- Axion/scalar cloud mainly causes time delay [Khmelnitsky, Rubakov 13].
- Polarized vector or tensor cloud contribute to both time delay and spatial deflection.
- Photon ring autocorrelations [Hadar et al 20] probe M_{cloud}/M_{BH} to 10⁻³ for vector and 10⁻⁷ for tensor.

Axion Cloud Induced Birefringence

- Axion-induced Birefringence: rotation of linear polarization: $\mathbf{g}_{a\gamma}\mathbf{a}\mathbf{F}_{\mu\nu}\tilde{\mathbf{F}}^{\mu\nu}/2 \rightarrow \Delta\chi = g_{a\gamma}[a(t_{obs}, \mathbf{x}_{obs}) - a(t_{emit}, \mathbf{x}_{emit})].$
- Extended sources, plasma and curved space-time effects?

Covariant radiative transfer [IPOLE simulation]

[Strominger 19]

Stringent Constraints on Axion-Photon Coupling

Next-generation EHT is expected to significantly increase sensitivity.

[YC, Li, Liu, Lu, Mizuno, Shu, Xue, Yuan, Zhao, Zhou, PRL **124** (2020) no.6, 061102, Nature Astron. **6** (2022) no.5, 592-598, JCAP **09** (2022), 073]

Gravitational Atom-induced Geodesics Deflections

Backward ray-tracing:

Two phases of evolution:

- Perturbative generation of oscillatory deviations;
- Photon ring instability leads to exponential growth of the oscillatory deviations between two sequential crossing the equatorial plane.

Astrometrical Photon Ring Autocorrelations

A photon pair executing different half orbits number *N*:

► Intensity fluctuation correlation: $\langle \Delta I(t, \varphi) \Delta I(t + T, \varphi + \Phi) \rangle$, peaks at $T \approx N \tau_0$ and $\Phi \approx N \delta_0$ [Hadar, Johnson, Lupsasca, Wong 20].

Observables: $\Delta \Phi^N = \Phi_0^N \cos(\omega t + \delta)$ for N = 1 and 2.

▶ Probe M_{cloud}/M_{BH} to 10^{-3} for vector and 10^{-7} for tensor.

Photon Ring Autocorrelations as Astrometry

Photon ring autocorrelation exclusion criteria: ΔΦ^N > ℓ_φ ≈ 4.3° or ngEHT's smearing kernel for φ: 10°.

- A tensor with linear coupling to stress tensors is more sensitive than a vector with quadratic couplings.
- N = 2 correlation peak can probe large unexplored parameter space of cloud mass.

Sources with shorter correlation time, e.g., hotspots or pulsars can significantly increase the sensitivity.

Superradiance for Boson with Negligible Interaction

For bosons with negligible interaction, superradiance stops after BH spins down and M_{cloud} takes up to 10%M_{BH}.

- High spin excludes boson mass in SR range with reasonable τ_{BH}. [Arvanitaki, Brito, Davoudiasl, Denton, Stott, Unal, Saha et al]
- ► GW from boson annihilation and transition slowly decreases M_{cloud}.

(日)、

[Yoshino, Brito, Isi, Siemonsen, Sun, Palomba, Zhu, Tsukada, Yuan, LVK et al]

Weakly Saturating Axion Cloud

• Strong self-interaction region $a^{\text{GA}} \simeq f_a$ happens when $f_a < 10^{16}$ GeV:

$$V(a) = m_a^2 f_a^2 \left(1 - \cos \frac{a}{f_a} \right) = \frac{m_a^2 a^2}{2} - \frac{m_a^2 a^4}{24f_a^2} + \dots;$$

A quasi-equilibruim phase where superradiance and non-linear interaction induced emission balance each other with a^{GA}_{max} ≃ O(1) f_a.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

[Yoshino, Kodama 12 15, Baryakht et al 20]

Event Horizon Telescope: an Earth-sized Telescope

- For single telescope with diameter D, the angular resolution for photon of wavelength λ is around ^λ/_D;
- VLBI: for multiple radio telescopes, the effective D becomes the maximum separation between the telescopes.

on the moon from the Earth. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

As good as being able to see

Supermassive Black Hole (SMBH) M87* [EHT 19 21]

Event Horizon Telescope: best-ever spatial resolution from VLBI.

Total intensity *I*

Linear polarization Q, UEVPA $\chi \equiv \arg(Q + i \ U)/2$

- First-time: shadow and the ring;
- Ring size determines $6.5 \times 10^9 M_{\odot}$;
- Polarization map reveals magnetic field structure.
- Four days' observations show slight difference.

From other observations:

- Nearly extreme Kerr black hole: $a_J > 0.8$;
- Almost face-on disk with a 17° inclination angle;

Axion Cloud and Birefringence

• Axion cloud saturates
$$f_a$$
 due to self-interactions:
 $a^{GA}(x^{\mu}) \simeq R_{11}(\mathbf{x}) \cos [m_a t - \phi] \sin \theta;$
 $a^{GA}_{max} \simeq \mathcal{O}(1) f_a;$
 $\omega \simeq m_a.$
• $g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \rightarrow \text{achromatic birefringence to EVPA } \chi \equiv \arg(Q + i \ U)/2:$
Local frame : $\frac{d(Q + i \ U)}{ds} = j_Q + i \ j_U + i \left(\rho_V^{FR} - 2g_{a\gamma} \frac{da^{GA}}{ds}\right) (Q + i \ U).$
Intensity weighted
 $\Delta \langle \chi(\varphi) \rangle$
each photon:
 $\Delta \chi \approx g_{a\gamma} \times a^{GA}(\chi^{\mu}_{emit})$

φ

• $\Delta \langle \chi(\varphi) \rangle$: propagating wave along φ on the sky plane BL coordinate: $a^{GA} \propto \cos[m_a t - \phi] \rightarrow \Delta \langle \chi(\varphi) \rangle \propto \mathcal{A}(\varphi) \cos[m_a t + \varphi + \delta(\varphi)].$

Axion Birefringence for RIAF around M87* (IPOLE simulation)

 $\Delta \langle \chi(\varphi) \rangle = \mathcal{A}(\varphi) \cos[\mathbf{m}_{a}t + \varphi + \delta(\varphi)].$

Scan axion mass: $\alpha \equiv r_g m_a \in [0.10, 0.44]$ with period [5, 20] days.

- $\delta(\varphi) \approx -5 \alpha \sin 17^{\circ} \cos \varphi$: phase delay at different φ .
- Asymmetry of $\mathcal{A}(\varphi) = \mathcal{O}(1)g_{a\gamma}f_a$: washout from lensed photon with $\delta_{12} = \omega\delta t - \delta\phi!$

Axion Birefringence for RIAF around M87* (IPOLE simulation)

 $\Delta \langle \chi(\varphi) \rangle = \mathcal{A}(\varphi) \cos[\mathbf{m}_{a}t + \varphi + \delta(\varphi)].$

Scan axion mass: $\alpha \equiv r_g m_a \in [0.10, 0.44]$ with period [5, 20] days.

- $\delta(\varphi) \approx -5 \alpha \sin 17^{\circ} \cos \varphi$: phase delay at different φ .
- Asymmetry of A(φ) = O(1)g_{aγ}f_a: washout from lensed photon with δ₁₂ = ωδt − δφ!

Lensed Photon Washout

The ratio between linear polarization from lensed photon and direct emissions vary from RIAF models, giving different washout effects.

• Universal birefringence signals for direct emission only:

Prospect for next-generation EHT

Next-generation EHT is expected to significantly increase sensitivity.

Recent updates:

- Constraints from EVPAs on the whole image.
- Closure traces for EVPA variations with specific patterns [Broderick et al].

Prospect for next-generation EHT

• Correlation between $\Delta \chi$ at different radius and frequency.

At 86 GHz, lensed photon is suppressed due to higher optical thickness.

- Longer and sequential observations.
- Better resolution of EVPA.
- Better understanding of accretion flow and jet. Intrinsic variations of EVPA from GRMHD simulation?

Prospect for next-generation EHT

• Correlation between $\Delta \chi$ at **different radius** and frequency.

At 86 GHz, lensed photon is suppressed due to higher optical thickness.

イロト 不得 トイヨト イヨト

3

Longer and sequential observations.

- Better resolution of EVPA.
- Better understanding of accretion flow and jet. Intrinsic variations of EVPA from GRMHD simulation?

Birefringence from Soliton Core Dark Matter

• Ultralight axion dark matter forms soliton core in the galaxy center. Quantum pressure balences gravitational interactions $a \sim 10^{10}$ GeV.

- Linearly polarized photon from pulsar. [Liu et al 19 Caputo et al 19]
- Polarized radiation from Sgr A*.[Yuan, Xia, YC, Yuan et al 20]
- Coherent signals at each pixel increase the sensitivity.

Axion QED: Achromatic Birefringence [Carroll, Field, Jackiw 90]

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}g_{a\gamma}aF_{\mu
u}\widetilde{F}^{\mu
u}+rac{1}{2}\partial^{\mu}a\partial_{\mu}a-V(a),$$

Chiral dispersions for photons propragating under axion background:

$$\begin{split} [\partial_t^2 - \nabla^2] A_{L,R} &= \mp 2 g_{a\gamma} n^{\mu} \partial_{\mu} a \, k \, A_{L,R}, \qquad \omega_{L,R} \sim k \mp g_{a\gamma} n^{\mu} \partial_{\mu} a. \\ n^{\mu}: \text{ unit directional vector} \end{split}$$

Rotation of electric vector position angle of linear polarization:

$$\begin{array}{lll} \Delta\chi & = & g_{a\gamma} \int_{\rm emit}^{\rm obs} n^{\mu} \partial_{\mu} a \ dl \\ & = & g_{a\gamma} [a(t_{\rm obs}, {\bf x}_{\rm obs}) - a(t_{\rm emit}, {\bf x}_{\rm emit})]. \end{array}$$

▶ Topological effect for each photon: only $a(x_{emit}^{\mu})$ and $a(x_{obs}^{\mu})$ dependent.

Accretion Flow around M87*

- ► EHT polarimetric measurements prefer Magnetically Arrested Disk with vertical *B* around M87^{*}.
- Analytic model: sub-Kep radiatively inefficient accretion flow:

• Dimensionless thickness parameter H = 0.05 and 0.3 as benchmark.

EHT Polarization Data Characterization

Four days' polarization map with slight difference on sequential days:

Uncertainty of the azimuthal bin EVPA from polsolve:

ranging from $\pm 3^{\circ}$ to $\pm 15^{\circ}$ for the bins used.

Landscape of SMBH and Accretion Flow (IPOLE simulation)

Horizon scale SMBH landscape with nnngEHT (space, L2):

Universal birefringence signals for direct emission only:

