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Evidences of dark matter

D. Clowe, et al., ApJL 604, 596 (2004)
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New 𝑈 1 : Dark photon (DP)
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The extra 𝑈 1 symmetry gives rise to DP– a well motivated dark matter candidate
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Photon Dark photon Kinetic mixing

A. Caputo, et al., Phys. Rev. D 104, 095029 (2021)

The DP-induced electric field

𝐸X = 𝜒 Τ2𝜌DM 𝜖0 cos𝑚X𝑡
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Efforts to search for DP

Many groups around the world are trying to search for dark photons, and have set constraints on the kinetic 

mixing at various possible DP masses.
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Setup
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JPA: Noise 

temperature 

= 300 mK (SQL)

Superconducting 

cavity: 

𝑄L = 600,000
𝑓c = 6.52014 GHz

First completely superconducting DP haloscope in China.



Verification
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The detection ability of our system was verified by injecting a pure-tone microwave of -43 dBm which is 

equivalent to a dark photon signal with 𝜒 = 6 × 10−15.
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Constraints
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R. Kang, et al., Phys. Rev. D 109, 095037 (2024)

After 6-hour integration, we set the most stringent constraints in a 100 kHz range around 6.520140 GHz.



Constraints
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D. He, et al., Phys. Rev. D 110, L021101 (2024)

After 6-hour integration, we set the most stringent constraints in a 100 kHz range around 6.520140 GHz.
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Z. Tang, et al., Phys. Rev. Lett 133, 021005 (2024)

H. Chang, et al., Phys. Rev. Lett 129, 111802 (2022)



Challenge – scalable searching
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A scalable searching scheme would greatly boost the searching for DP,  but impractical for existing haloscopes 

due to their large volume.

× 𝑁 𝑁 small 

detection units
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Superconducting qubit (SQ)
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Transmon: a type of SQ with high sensitivity of electric field and remarkable scalability
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IBM scalable transmon architecture Transmon Josephson junction

D. Castelvecchi, Nature. 624, 238 (2023)
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Dispersive coupling (single-SQ)
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𝐻int = ℏ
𝐺2

Δ
ො𝜎z ො𝑎

† ො𝑎

Coupling strength 𝐺

Detuning Δ = 𝜔q − 𝜔c

𝜔
𝐻cavity
eff = ℏ 𝜔c +

𝐺2

Δ
ො𝜎z ො𝑎† ො𝑎

Change of ො𝜎z of the qubit will be transduced into a frequency bias of the readout cavity. 

Qubit Cavity

Dark photon Photon



Dispersive coupling (multi-SQ)
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ො𝜎z
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Coupling strength 𝐺

Detuning Δ = 𝜔q − 𝜔c

𝜔
𝐻cavity
eff

= ℏ 𝜔c + σk
𝐺2

Δ
ො𝜎z
k ො𝑎† ො𝑎

Change of ො𝜎z of any qubit will be transduced into a frequency bias of the readout cavity. 

Qubits Cavity

Dark photon Photon



Heterodyne detection
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DP signal
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Noise analysis
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Noise sources

1. Readout noise: 𝑃𝑟 𝜔 = ℏ𝜔𝑐
1

𝑒 Τℏ𝜔c 𝑘𝐵𝑇−1
+

1

2
+𝑁r Δ𝜔X

2. Projection noise: Δ𝜎𝑧 𝜔 = 𝑝↑𝑝↓ 𝐿 𝜔, 0, 𝑇2
∗ Δ𝜔X ≈ 0.25 × 0.75 𝐿 𝜔, 0, 𝑇2

∗ Δ𝜔X

3. Black body radiation: 𝑢 𝜔, 𝑇 𝑑𝜔 = ℏ𝜔
𝜔2Δ𝜔X

𝜋2𝑐3
×

1

𝑒 Τℏ𝜔 𝑘𝐵𝑇−1

4. Vacuum fluctuation: 𝑢 𝜔, 𝑇 𝑑𝜔 = ℏ𝜔
𝜔2Δ𝜔X

𝜋2𝑐3
×

1

2



Experimental setup
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Item Q1 Q2 Q3

Τ𝜔q 2𝜋 3781 MHz 3831 MHz 3982 MHz

𝑇2
∗ 2.0 μs 1.1 μs 1.7 μs

𝑇1 2.3 μs 3.7 μs 5.5 μs

Coupling 𝐺 55 MHz 68 MHz 49 MHz



Verification
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𝜔q + 19 kHz



Constraints

9-hour constraints

17×9-hour constraints

21
R. Kang, et al., arXiv: 2503.18315 (2025)



Expected constraints
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Parameter Value

𝑛q 1000

𝐶 0.1 pF

𝑑 300 μm

𝑇1, 𝑇2
∗ 50 𝜇s, 100 𝜇s

𝐺 100 MHz

𝑄cavity 2 × 104

𝑇phy 10 mK

The red regions refer to the parameter space expected to be excluded with 1000 qubits. Each 

qubit covers a band of 0.25 MHz and is 5 MHz away from its neighbors. The integration 

time is assumed to be 20 day.

R. Kang, et al., arXiv: 2503.18315 (2025)



Expected constraints
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A. Kringhoj, et al., Phys. Rev. Lett. 15, 054001 (2021)

Magnetic-field-compatible qubit Expected constraints on axion-photon coupling (100 day)
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Summary
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◼Performed China’s first DP searching based on all-superconducting haloscope

◼Proposed the scalable dark matter searching scheme based on superconducting qubits

◼Experimentally demonstrated the scheme using a three qubit sample and set the most 

strigent constraints on dark photons in the mass range of 15.632~15.638 μeV, 15.838~15.844 

μeV, 16.464~16.468 μeV
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