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Ø Testing the nature of gravity is one of the key topics in the modern 
physics and astronomy.

Ø The direct detection of gravitational waves (GWs) by LIGO opened a new 
window to look into this important question.

Introduction
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Ø It is well-known that there are four fundamental forces in nature, such as 
electromagnetic, strong, weak and gravitational interactions;

Ø Also, parity conservation is violated by the weak interaction;

Motivation
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Ø Question: Does gravity respect parity conservation?

Ø In GR, parity reversal is a good symmetry;

Ø However, in many modified gravity theories, parity can be violated;

Ø GWs provide us a new tools to explore this fundamental symmetry in 
gravity. 

Motivation

GW Birefringence



where we have transformed �(t) = �ga(t)/2 in Eq. (25) of [4] according to the corresponding

rescaling of the Chern-Simons and Maxwell terms in the Lagrangian. Thus, the associated

polarization plane rotation angle is given by

↵ = (�SR ��SL)/2 = (g/2) (a(to,xo)� a(te,xe)) , (15)

which is in agreement with the result in Eq. (13).

III. CHERN-SIMONS GRAVITY CASE

In this section, we shall follow the convention in Ref. [5] by parametrizing the Lagrangian

of the gravitational Chern-Simons gravity as follows

S =

Z
d4x

p
�g

h
R +

↵

4
� R̃⌧

�µ⌫R
� µ⌫
⌧

i
, (16)

where  ⌘ (16⇡G)�1 with G the Newton constant while ↵ denotes the CS coupling with one

length dimension.

The quantity ⇤R⌧
�µ⌫R

� µ⌫
⌧ is the so-called Pontryagin denisty where the dual Riemann

tensor is defined by ⇤R� µ⌫
⌧ ⌘ ✏µ⌫⇢�R�

⌧⇢�/2, where ✏µ⌫⇢� = ✏̃µ⌫⇢�/
p
�g is the 4-dimensional

Levi-Civita tensor with the anti-symmetric symbol as ✏̃0123 = �✏̃0123 = 1 1. By di↵er-

entiating the CS gravity action with respect to the tensor perturbation hij defined by

ds2 = a(⌘)2[�d⌘2 + (�ij + hij)], the GW equations of motion can be obtained as follows [7]2

⇤hj
i = � ↵

a2
✏pjk


� 1

a2
(�00 � 2H�0)@ph

0
ki + �0@p⇤hki

�
, (17)

where ⇤ ⌘ (�@2
⌘ � 2H@⌘ + @2

i )/a
2 is the four-dimensional d’Alembertian operator in the

FRW metric. Also, we have simplified our formulae by using the usual transverse-traceless

gauge conditions

�ijhij = 0 , @ihij = 0 . (18)

In fact, we can even write down the following more general linearized GW equations

⇤hj
i =

↵


✏pjk@↵


1

a2
(@p�@⌘@↵ � @⌘�@p@↵)

�
hki . (19)

1 Here we follow the convention of the anti-symmetric tensor defined in Ref. [5], which is di↵erent from that

in Ref. [6]. This is why there is a sign di↵erence in the CS terms between my following derivation from

that in Xiong’s note.
2 I believe that Eq. (6) in [7] gives the correct formula. In contrast, Eq. (177) in [5] contained a wrong sign

for the CS term, and Eq. (A4) in Ref. [8] used a right sign of the CS term but with a wrong normalization.

4
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Ø One typical parity-violating gravity is the Chern-Simons Gravity

Benchmark Model: Chern- Simons Modified Gravity

Jackiw & Pi (2003); Alexander & Yunes (2009)

Chern-Simons Coupling Pontryagin density

Parity-odd

Ø 𝛟 is an axion field, which can play a role of dark matter or dark energy;

Ø Due to the CS coupling, the axion background in the Universe behaves 
as the birefringence material for GW propagation.
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Ø Linearly Polarized GWs: plus (+) and cross (⨉) polarizations 

Two GW Polarization Bases

A GW moves along 
z-direction
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Ø Circularly Polarized GWs: Left-handed (L) and Right-handed (R) 

Two GW Polarization Bases

Right-handed

Credit: M. Isi(2022)
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Ø Background: FRW metric + spatially homogeneous scalar field

GW Birefringence in CS Gravity: Earlier Studies

Ø CS gravity can generate GW birefringence in the axion background: the 
left- and right-handed circular polarizations propagate differently

Ø Modified GW Equations of Motion

Parity Violation

Ø Dispersion relation: 

by taking into account both the FRW background and the spatial variation of the scalar

field. You can check the correctness of this equation by restricting the scalar field to be

only time dependent, which would be reduced into Eq. (17). When written in terms of the

circularly polarization states, the equation of motion above can be re-organized into

⇤hR,L = � i�R,L↵
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
� 1
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0
R,L + �0⇤@zhR,L

�
. (20)

where we have defined �R,L = ±1 to signify the parity violation in the GW birefringence.

When transforming into the Fourier space, we can obtain the following dispersion relation

[1� �R,L(↵/a
2)�0k](!2 + 2iH! � k2) = i�R,L↵(�

00 � 2H�0)!k/(a2) , (21)

which can be simplified into
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by using the massless scalar equation �00 = �2H�0. Moreover, we can further solve ! as
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�
. (23)

To proceed, we need to solve the equation of motion of the massless scalar �: �00+2H�0 = 0.

In fact, one can easily solve it with the general solution as a2�0 = const. By using �0 = �̇/a,

we can express this solution as a�̇ = const. Therefore, the additional GW phase contribution

induced by the gravitational CS coupling is given by
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, (24)

where we have used the identity �0 = a�̇ for any time, and in the last equality we have applied

the small redshift limit [8] where H0 is the constant and z ⇡ H0dc with dc the conformal

distance between the source and the Solar system. Hence, the CS gravity coupling induces

the following amplitude birefringence

hobs
R,L(f) = hGR

R,L(f)⇥ exp

✓
⌥A ⇥ dc

Gpc
⇥ f

100Hz

◆
(25)

where

A ⌘ 4⇡↵�̇0H0/ , (26)
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GW Birefringence in CS Gravity: Earlier Studies

Ø Dispersion relation: 

Ø Amplitude Birefringence:

Ø We can constrain 𝜿A by modifying the GW waveform template with this 
birefringence factor and comparing with the observed GW events.

l GWTC-3 data: T.C.K.Ng, et al. (2023)

M. Lagos, et al. (2024)
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GW Birefringence inside the Milky Way

Ø In the real world, the ALP should have spatial dependence, no matter if it 
is dark matter or dark energy candidate. 

Fuzzy DM Symmetron

Screening to evade 
fifth force constraint 

Solve small-scale 
structure problems 
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Fuzzy Dark Matter: GW Birefringence inside the Milky Way

Ø GW birefringence in an FDM profile with spatial variations in CS gravity

Ø Since we are mostly interested in effects around the galactic scale, we 
can ignore the cosmological expansion, so that we take the flat metric.

Ø Further assume GW wavelength are much smaller than the variation of 
the FDM background profile,                   , we can apply the Eikonal
Approximation to perform our calculation. 

by taking a0 = 1.

Also, we will consider the axion filed within the galactic scale, so that the cosmic ex-

pansion can be ignored, and we can take the background metric to be flat with ⌘µ⌫ =

diag(�1, 1, 1, 1). The associated equation of motion

⇤hj
i = (↵/)✏pjk@↵ (@p�@t@↵ � @t�@p@↵)hki . (27)

can be derived by fixing the scale factor a = 1 and replace the conformal time ⌘ with the

physical one t. Therefore, the right- and left-polarized GWs moves according to

⇤hR,L ⌥ i(↵/)@↵ [@z�@↵@t � @t�@↵@z]hR,L = 0 . (28)

where and in the following equations the upper (lower) sign refers to the right(left)-handed

polarization. To derive the above equations, we have assumed that the GWs are propagated

along the z-axes, and have used the transverse-traceless gauge conditions

�ijhij = 0 , @ihij = 0 . (29)

to simplify our formulae. Here the left- and right-handed polarized GW states can be

expressed in terms of widely-used linearly plus (+) and cross (⇥) polarized basis [9]

hR,L = (1/
p
2)(h+ ⌥ ih⇥) . (30)

We have also assumed that the axion field profile only has the spatial variation in the z

direction. Thus, the GW propagation is actually reduced to a one-dimensional problem.

Under this simplifications, the GW solutions takes the form hR,L = h0
R,Le

iS, where h0
R,L are

slowly-varying GW amplitudes for both right- and left-handed polarizations while the phase

S dominates the GW evolution in the spacetime. Therefore, according to the usual rules of

eikonal approximation, we have

! = �@tS , k = @zS (31)

so that the dispersion relations for both polarizations are

D± = (!2 � k2)
h
1⌥ ↵


(!@z�+ k@t�)

i
⌥ i↵



⇥
(!2 + k2)@t@z�+ !k(@2

z�+ @2
t �)

⇤
= 0 ,(32)

which means that the frequency and wavenumber of a GW would, in general, be complex.

Since the imaginary part is one order of smaller than the real-part correction in the approx-

imation @t,z ⌧ !, k, we can solve this dispersion relation order by order.

6
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Eikonal Approximation

Ø Dispersion relations:

Ø GW waveform:                            , where the dominant evolution comes 
from the phase S, while h0R,L is slowly varying.

Real part Imaginary part⨠

Ø Real part: dispersion                 Velocity birefringence 

Ø Imaginary part: dissipation               Amplitude birefringence 
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expressed in terms of widely-used linearly plus (+) and cross (⇥) polarized basis [9]

hR,L = (1/
p
2)(h+ ⌥ ih⇥) . (30)

We have also assumed that the axion field profile only has the spatial variation in the z

direction. Thus, the GW propagation is actually reduced to a one-dimensional problem.

Under this simplifications, the GW solutions takes the form hR,L = h0
R,Le

iS, where h0
R,L are

slowly-varying GW amplitudes for both right- and left-handed polarizations while the phase

S dominates the GW evolution in the spacetime. Therefore, according to the usual rules of

eikonal approximation, we have

! = �@tS , k = @zS (31)

so that the dispersion relations for both polarizations are

D± = (!2 � k2)
h
1⌥ ↵


(!@z�+ k@t�)

i
⌥ i↵



⇥
(!2 + k2)@t@z�+ !k(@2

z�+ @2
t �)

⇤
= 0 ,(32)

which means that the frequency and wavenumber of a GW would, in general, be complex.

Since the imaginary part is one order of smaller than the real-part correction in the approx-

imation @t,z ⌧ !, k, we can solve this dispersion relation order by order.

6
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Eikonal Approximation: Dispersion

Ø Leading-order dispersion relation:

Ø w=k is always the solution, which means that both polarizations of GWs 
move in the speed of light even there is an axion background.

Ø We can check this by examining the GW paths: 

The frequency and wavenumber of GW keep the same, and 
GWs still travel along a straight line for both polarizations.

Let us firstly focus on the real part of the dispersion relations,

D± = (!2 � k2) [1⌥ (↵/)(!@z�+ k@t�)] = 0 . (33)

which determines the GW propagation velocities and directions in the axion � background.

Also, this also can be viewed as the approximation by neglecting the terms with second

order derivatives of the axion field configuration, which is assumed to be much smaller than

the typical GW frequency, i.e., @t,z� ⌧ !, k. In this approximation, it is clear that w2 = k2

is always the solutions to the GW dispersion relation in Eq. (33). Note that it seems that

there is another solution to Eq. (33) ! = [�k@t� ⌥ /↵]/(@z�). But if we further consider

the realistic situation that GWs propagate in the vacuum with the conventional dispersion

!2 = k2, then it is reasonable that the same relation should hold in the axion background

by continuity. We can further check this by calculating the GW paths under the influence

of a nontrivial axion field profile

dxi

dt
= �@D±/@ki

@D±/@!
=

2k [1⌥ (↵/)(!@z�+ k@t�)]± (↵/)(!2 � k2)@t�

2! [1⌥ (↵/)(!@z�+ k@t�)]⌥ (↵/)(!2 � k2)@z�
�iz ⇡ �iz ,

dki
dt

=
@D±/@xi

@D±/@!
=

⌥(↵/)(!2 � k2)(!@z@i�+ k@i@t�)

2! [1⌥ (↵/)(!@z�+ k@t�)]⌥ (↵/)(!2 � k2)@z�
= 0 ,

d!

dt
= � @D±/@t

@D±/@!
=

±(↵/)(!2 � k2)(!@z@t�+ k@2
t �)

2! [1⌥ (↵/)(!@z�+ k@t�)]⌥ (↵/)(!2 � k2)@z�
= 0 , (34)

where we have used ! = k in all of these equations. Moreover, the last relation in Eq. (34)

is valid up to O(@z,t�@t,z�). Thus, we have

d2xi/dt2 = 0 , (35)

which means that the GWs would propagate with the speed of light and follow the straight

line in the flat spacetime, no matter if there is an axion background. Furthermore, it is

implied from the last two equations that the frequency and wavenumber of a GW package

would not change in its movement.

However, if we take into account the dissipation e↵ects in the GW propagation, i.e., the

imaginary part of Eq. (32), the above results would be changed accordingly and generate

the amplitude birefringence phenomenon. Concretely, the path for a GW package would
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Eikonal Approximation: Dissipation

Ø Dissipation effects:

Ø Here w and k can take complex values

by taking a0 = 1.

Also, we will consider the axion filed within the galactic scale, so that the cosmic ex-

pansion can be ignored, and we can take the background metric to be flat with ⌘µ⌫ =

diag(�1, 1, 1, 1). The associated equation of motion

⇤hj
i = (↵/)✏pjk@↵ (@p�@t@↵ � @t�@p@↵)hki . (27)

can be derived by fixing the scale factor a = 1 and replace the conformal time ⌘ with the

physical one t. Therefore, the right- and left-polarized GWs moves according to

⇤hR,L ⌥ i(↵/)@↵ [@z�@↵@t � @t�@↵@z]hR,L = 0 . (28)

where and in the following equations the upper (lower) sign refers to the right(left)-handed

polarization. To derive the above equations, we have assumed that the GWs are propagated

along the z-axes, and have used the transverse-traceless gauge conditions

�ijhij = 0 , @ihij = 0 . (29)

to simplify our formulae. Here the left- and right-handed polarized GW states can be

expressed in terms of widely-used linearly plus (+) and cross (⇥) polarized basis [9]

hR,L = (1/
p
2)(h+ ⌥ ih⇥) . (30)

We have also assumed that the axion field profile only has the spatial variation in the z

direction. Thus, the GW propagation is actually reduced to a one-dimensional problem.

Under this simplifications, the GW solutions takes the form hR,L = h0
R,Le

iS, where h0
R,L are

slowly-varying GW amplitudes for both right- and left-handed polarizations while the phase

S dominates the GW evolution in the spacetime. Therefore, according to the usual rules of

eikonal approximation, we have

! = �@tS , k = @zS (31)

so that the dispersion relations for both polarizations are

D± = (!2 � k2)
h
1⌥ ↵


(!@z�+ k@t�)

i
⌥ i↵



⇥
(!2 + k2)@t@z�+ !k(@2

z�+ @2
t �)

⇤
= 0 ,(32)

which means that the frequency and wavenumber of a GW would, in general, be complex.

Since the imaginary part is one order of smaller than the real-part correction in the approx-

imation @t,z ⌧ !, k, we can solve this dispersion relation order by order.
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follow the equations of motion

dxi

dt
= �@D±/@ki

@D±/@!
=

k�iz {1⌥ (↵/)(!@z�+ k@t�)± i(↵/2)[2@t@z�+ (!/k)(@2
z�+ @2

t �)]}
! {1⌥ (↵/)(!@z�+ k@t�)⌥ i(↵/2)[2@t@z�+ (k/!)(@2

z�+ @2
t �)]}

⇡ {1± i(↵/)[2@t@z�+ (@2
t �+ @2

z�)]}�iz ,
dki
dt

=
@D±/@xi

@D±/@!
=

⌥i(↵/) [(!2 + k2)@t@z@i�+ !k@i(@z�+ @2
t �)]

2! {1⌥ (↵/)(!@z�+ k@t�)⌥ i(↵/2)[2@t@z�+ (k/!)(@2
z�+ @2

t �)]}
⇡ ⌥i(↵!/2)

⇥
2@t@z@i�+ @2

t @i�+ @2
z@i�

⇤
,

d!

dt
= � @D±/@t

@D±/@!
=

±i(↵/) [(!2 + k2)@2
t @z�+ !k(@3

t �+ @t@2
z�)]

2! {1⌥ (↵/)(!@z�+ k@t�)⌥ i(↵/2)[2@t@z�+ (k/!)(@2
z�+ @2

t �)]}
⇡ ±i(↵!/2)

⇥
2@2

t @z�+ @t@
2
z�+ @3

t �
⇤
, (36)

where we have set ! = k in our derivation so that the terms proportional to the factor (!2�

k2) can be dropped. We also only retain leading-order terms in the eikonal approximation.

For the GW propagation, the wave package position xi(t) is the function of time t, so that

we can define the total derivative of the scalar field passing by GWs

�̇ ⌘ d�

dt
= @t�+ @i�

dxi

dt
⇡ @t�+ @z� , (37)

where in the last approximation we have only kept the leading-order contribution to the

velocity dxi/dt = �iz in the eikonal limit, and neglected terms like @t,z�@z� are eliminated.

Thus, we can directly integrate over time t for the GW wavenumber and frequency as follows

�ki = ⌥i↵!@i�̇/(2) , �! = ±i↵!@t�̇/(2) . (38)

where !0 is the GW frequency in the vacuum. The wavefunction phase S varies as

�S = �
Z to

te

dt�! +

Z xo

xe

dxi�ki = ⌥i↵!(�̇o � �̇e)/(2) , (39)

where the subscripts o and e represents the GW (imaginary) phase observed and emitted,

respectively. Hence, the GW waveform would modify according to

hR,L = h0
R,L exp(i�S) = h0

R,L exp
⇣
±↵!(�̇o � �̇e)/(2)

⌘
, (40)

which shows the magnitude birefringence.

IV. APPLICATIONS

In this section, we hope to detect the birefringence e↵ects with the ongoing and forthcom-

ing GW experiments. In our formalism, the scalar field is very light so that its wavelength

8
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Eikonal Approximation: Dissipation

Ø Define

Ø Integration of above equations gives:

Ø The phase of the GW varies:

Ø GW amplitude birefringence:

follow the equations of motion
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d!

dt
= � @D±/@t

@D±/@!
=

±i(↵/) [(!2 + k2)@2
t @z�+ !k(@3
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Fuzzy Dark Matter: GW Birefringence inside the Milky Way

Z.-X. Xiong & DH: 2406.13394

A. Khmelnitsky & V. Rubakov (2014)

Ø Locally, the fuzzy DM profile is given by

Ø Due to 𝜕&𝝓⨠ 𝜕(𝝓 for m𝝓 ~10-22 eV

Ø The magnitude birefringence can be given by 

Time Modulation!

B. Fuzzy DM Case

As an axion DM case, we consider the fuzzy DM with its mass of m� ⇠ O(10�22 eV).

In this case, the corresponding wavelength is of O(1 kpc). Recent precise numerical simu-

lations [10–12] have shown that the cluster of such a light fuzzy DM particle could form a

core of flat density profile around the center of a Milky-Way-like galaxy, and suppress the

formation of small structures, which could help to solve many cosmological problems at the

small scales [13]. However, outside of the core, the fuzzy DM density would transit into the

conventional Navarro-Frenk-White (NFW) profile [14]

⇢NFW(r) =
⇢0

r
rs

⇣
1 + r

rs

⌘2 . (51)

where rs and ⇢0 are two characteristic parameters. Thus, it was pointed out in Ref. [15] that

the axion field profile can be estimated by

�(t,x) =

p
2⇢NFW

m�
cos (m�t+ ↵(x)) . (52)

which was shown to be able to reproduce the NFW density distribution in the Milky Way.

Here m denotes the axion mass, while ↵(x) is a position-dependent random phase. Note

that the dark matter density outside the Milky Way can be estimated as ⇠ 0.25⇢crit with

⇢crit the critical density of the Universe, which is many orders lower than that inside, so

that the contribution �̇e from GW production sites should be extremely small and can be

ignored. Moreover, for an axion with mass m ⇠ 10�22 eV, it is generally expected that

the time variation of the axion profile dominates over the spatial one, since @t�/@r� ⇠

m/R� ⇠ O(105) with R� ⇡ 8 kpc is the distance of the solar system from the galaxy center.

Therefore, we can estimate �̇o as follows

�̇o ⇡ @t� =
p
2⇢� sin (m�t+ ↵0) (53)

where ⇢� and ↵0 is the fuzzy DM density and phase at the position of solar system, respec-

tively. Finally, by putting Eq. (53) into the general formula of Eq. (40), we can obtain the

magnitude birefringence caused by the FDM halo

hobs
R,L(f) = hGR

R,L(f)⇥ exp

✓
±0

A ⇥ f

100Hz

◆
(54)

where hGR
R,L(f) denotes the right- and left-handed GW components

0
A ⌘ ⇡(↵/)

p
2⇢� sin(m�t+ ↵0) . (55)

11
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Ø FDM Field in Cosmology: 

Fuzzy Dark Matter: Extra-Galactic GW Birefringence

where hk, ri represents the angle between the incident GW and the radial direction of the

Solar system in the Milky Way. The spatial variation of the Solar system r is given by

@r�(R�) = � 1

m�R�

r
⇢�
2

✓
1 + 3R�/rs
1 +R�/rs

◆
cos(m�t+ ↵0) , (57)

where R� = 8 kpc is the distance between the Solar system and the Milky Way center, while

⇢� = 0.4 GeV/cm3 is the local dark matter density.

Beside the magnitude birefringence induced by the FDM in the Milky Way, there is

an additional contribution from the extra-galactic FDM field. One might worry that this

contribution dominates over the one induced by MW and a↵ects the detectability of the

above magnitude birefringence signal. In order to explore this important issue, we can

approximate the FDM field over the cosmological scale as the following homogeneous and

isotropic background

�(t) = �0 (1/a)
3/2 cos(m�t+ ↵c) , (58)

which can satisfy the cosmological principle. In this cosmological FDM profile, �0 and ↵c

are the FDM oscillation amplitude and phase at the present time, respectively. For the

FDM, the current oscillation amplitude is given by �0 =
p
2⇢DM/m� with ⇢DM the DM

density in the Universe measured by Planck. From the general argument around Eq. (21),

the dispersion relations for left- and right-handed polarizations are given by

! ⇡ k � iH!/k + i�R,L
↵

2a2
!(�00 � 2H�0) , (59)

where we have used the leading-order relation ! = k to simplify the expression. For

the FDM, the axion mass is of O(10�22 eV), which indicates that the wavelength of

particle is many orders smaller than the cosmological horizon size. Thus, we expect

that the time derivative of the field is dominated by the oscillating factor, i.e., �0 '

�m��0(1/a)1/2 sin(m�t + ↵c) and �00 ' �a2m2
��(t). Due to m� � H, the additional

contribution to the GW phase induced by the gravitational CS coupling is given by

�S = �
Z

�!d⌘ = �i�R,L

⇣↵!
2

⌘Z
d⌘

(�00 � 2H�0)

a2

⇡ i�R,L

✓
↵m2

�!�0

2

◆Z ✓
1

a

◆5/2

cos(m�t+ ↵c)dt . (60)

Since m� � H, the above integration is dominated by the cosine function and we can

approximate the scale factor by its present value a0 = 1, which leads to the following result

�S ⇡ i�R,L

⇣↵m�!

2

⌘
�0 sin(m�t+ ↵c) = i�R,L

⇣↵!
2

⌘p
2⇢DM sin(m�t+ ↵c) . (61)
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where hk, ri represents the angle between the incident GW and the radial direction of the

Solar system in the Milky Way. The spatial variation of the Solar system r is given by
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◆
cos(m�t+ ↵0) , (57)

where R� = 8 kpc is the distance between the Solar system and the Milky Way center, while

⇢� = 0.4 GeV/cm3 is the local dark matter density.

Beside the magnitude birefringence induced by the FDM in the Milky Way, there is

an additional contribution from the extra-galactic FDM field. One might worry that this

contribution dominates over the one induced by MW and a↵ects the detectability of the

above magnitude birefringence signal. In order to explore this important issue, we can

approximate the FDM field over the cosmological scale as the following homogeneous and

isotropic background

�(t) = �0 (1/a)
3/2 cos(m�t+ ↵c) , (58)

which can satisfy the cosmological principle. In this cosmological FDM profile, �0 and ↵c

are the FDM oscillation amplitude and phase at the present time, respectively. For the

FDM, the current oscillation amplitude is given by �0 =
p
2⇢DM/m� with ⇢DM the DM

density in the Universe measured by Planck. From the general argument around Eq. (21),

the dispersion relations for left- and right-handed polarizations are given by

! ⇡ k � iH!/k + i�R,L
↵

2a2
!(�00 � 2H�0) , (59)

where we have used the leading-order relation ! = k to simplify the expression. For

the FDM, the axion mass is of O(10�22 eV), which indicates that the wavelength of

particle is many orders smaller than the cosmological horizon size. Thus, we expect

that the time derivative of the field is dominated by the oscillating factor, i.e., �0 '

�m��0(1/a)1/2 sin(m�t + ↵c) and �00 ' �a2m2
��(t). Due to m� � H, the additional

contribution to the GW phase induced by the gravitational CS coupling is given by

�S = �
Z

�!d⌘ = �i�R,L

⇣↵!
2

⌘Z
d⌘

(�00 � 2H�0)

a2

⇡ i�R,L

✓
↵m2

�!�0

2

◆Z ✓
1

a

◆5/2

cos(m�t+ ↵c)dt . (60)

Since m� � H, the above integration is dominated by the cosine function and we can

approximate the scale factor by its present value a0 = 1, which leads to the following result

�S ⇡ i�R,L

⇣↵m�!

2

⌘
�0 sin(m�t+ ↵c) = i�R,L

⇣↵!
2

⌘p
2⇢DM sin(m�t+ ↵c) . (61)
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Ø The field amplitude and phase should change at different spatial points, 
with the typical scale as the inverse of de Broglie wavelength m𝝓v. For 
v≪1, such variations can be ignored compared with m𝝓.

4

where R� ' 8 kpc and ↵0 denote the radial galactic dis-
tance and the local field phase at the Solar system, re-
spectively. The factor coshk, ri comes from the projec-
tion of the radial derivative of the FDM field @r� onto
the GW propagating orientation k with

@r� = �
p
⇢�/2

m�R�

✓
1 + 3R�/rs
1 +R�/rs

◆
cos(m�t+ ↵0) .(20)

However, for a FDM with m� ⇠ 10�22 eV, it is generally
expected that the time variation of the field profile dom-
inates over the birefringence due to @t�/@r� ⇠ m�R� ⇠
O(105). Therefore, the opacity parameter can be ex-
pressed as

A ' (⇡↵/)
p
2⇢� sin(m�t+ ↵0) . (21)

Compared with the conventional signals studied in the
literature, our predicted magnitude birefringence induced
by the FDM shows several novel features. Firstly, it is
obvious from Eq. (17) that, due to its local nature, the
birefringence factor is only a function of the GW fre-
quency, without any dependence on the GW event dis-
tance, which is distinguished from the earlier results in
[26, 35, 39, 41, 43]. More significantly, our proposed bire-
fringence in Eq. (21) exhibits a remarkable time variation
with the period directly reflecting the FDMmass. For ex-
ample, if the mass is taken to be 10�22 eV, the oscillation
period corresponds to 1.3 year, which can be viewed as a
smoking gun of this FDM-generated GW birefringence.

IV. EXTRA-GALACTIC CONTRIBUTION TO
GRAVITATIONAL WAVE BIREFRINGENCE

Beside the amplitude birefringence induced by the
FDM in the MW, there is an additional contribution from
the extra-galactic FDM field. One might worry that this
contribution might a↵ect or even govern the birefringence
signal since it might be enhanced by the GW travel over
an astrophysical distance. In order to investigate this im-
portant issue, we shall study the GW movement in the
following cosmological FDM background [74, 75]

�(t) = �0 (a0/a)
3/2 cos(m�t+ ↵c) , (22)

where �0 =
p
2⇢DM/m�, ↵c and a0 are the FDM field

amplitude, phase and present-day scale factor, respec-
tively. Note that the field amplitude and phase should
change at di↵erent spacetime point, with the typical scale
being the inverse of the de Broglie wavelength m�v. For
a small FDM velocity v ⌧ 1, such variations can be ig-
nored compared with the dominant oscillation frequency
m�. Hence, we shall use the homogeneous FDM profile
in Eq. (22) to perform the following calculation. Also,
we will set a0 = 1 for simplicity. The associated GW
equation can be deduced from Eq. (2) as follows

⇤hR,L = ± i↵

a2


1

a2
(�00 � 2H�0)@zh

0
R,L � �0⇤@zhR,L

�
,

(23)

which leads to the following dispersion relations for both
circularly polarized modes

! ⌘ k +�!ex ⇡ k � iH!/k ± i↵!

2a2
(�00 � 2H�0) ,(24)

up to the leading order in the eikonal approximation.
For the FDM scalar with m� ⇠ 10�22 eV, the mass

scale is much larger than the cosmological expansion rate
characterized by H. Thus, we expect that the time in-
tegration in the birefringence factor ei�S = e�i

R
d⌘�!ex

should be dominated by the rapidly oscillating term in
�00. As a result, the phase correction generated by the
extra-galactic FDM background is given by

�S ⇡ ±i
⇣↵!
2

⌘p
2⇢DM sin(m�t+ ↵c) , (25)

in which we have taken the small redshift limit with all
scale factors being a ⇡ 1. Hence, the FDM outside of the
MW would give the following amplitude birefringence

hex
R,L(f) = h0

R,L(f) exp

✓
± ex

A

1 Gpc
⇥ f

100 Hz

◆
, (26)

where ex
A ⌘ ↵⇡

p
2⇢DM sin(m�t + ↵c)/. In comparison

with Eqs. (17) and (21), it is obvious that the birefrin-
gence e↵ect is overwhelmed by the galactic FDM compo-
nent due to its enhanced DM density in the MW, which
is evident by |A/ex

A | ⇠
p

⇢�/⇢DM ⇠ O(103).

V. CONCLUSIONS AND DISCUSSIONS

The FDM is a promising DM candidate which can
possibly solve many problems faced in the sub-galactic
scale. If such a FDM can be identified as an axion-
like particle with an additional gravitational CS coupling,
GWs are expected to show the parity-violating birefrin-
gence phenomena when propagating in the nontrivial
FDM background. Especially, provided the complicated
granular structures displayed in recent simulations, we
are led to considering the GW propagation in a general
spacetime-dependent FDM field profile. By using the fa-
mous eikonal approximation, we find that GWs do not
exhibit any velocity birefringence in the CS gravity, no
matter if there is a FDM background field. However,
the inclusion of the imaginary part in the GW disper-
sion relations gives rise to the amplitude birefringence,
i.e., one circular polarization is enhanced whereas the
other suppressed. Due to the local nature of this galac-
tic birefringence, the obtained e↵ect only depends on the
GW frequency without any reliance on the GW event dis-
tance. More remarkably, such amplitude modifications of
the left- and right-handed polarizations oscillate in time
with the period controlled by the FDM scalar mass. Also,
we have considered the extra-galactic FDM-induced con-
tribution to the GW birefringence, which can be safely
neglected since it is suppressed by the corresponding cos-
mological DM density.

Ø GW propagation:  

Ø GW birefringence:

4

where R� ' 8 kpc and ↵0 denote the radial galactic dis-
tance and the local field phase at the Solar system, re-
spectively. The factor coshk, ri comes from the projec-
tion of the radial derivative of the FDM field @r� onto
the GW propagating orientation k with

@r� = �
p
⇢�/2

m�R�

✓
1 + 3R�/rs
1 +R�/rs

◆
cos(m�t+ ↵0) .(20)

However, for a FDM with m� ⇠ 10�22 eV, it is generally
expected that the time variation of the field profile dom-
inates over the birefringence due to @t�/@r� ⇠ m�R� ⇠
O(105). Therefore, the opacity parameter can be ex-
pressed as

A ' (⇡↵/)
p
2⇢� sin(m�t+ ↵0) . (21)

Compared with the conventional signals studied in the
literature, our predicted magnitude birefringence induced
by the FDM shows several novel features. Firstly, it is
obvious from Eq. (17) that, due to its local nature, the
birefringence factor is only a function of the GW fre-
quency, without any dependence on the GW event dis-
tance, which is distinguished from the earlier results in
[26, 35, 39, 41, 43]. More significantly, our proposed bire-
fringence in Eq. (21) exhibits a remarkable time variation
with the period directly reflecting the FDMmass. For ex-
ample, if the mass is taken to be 10�22 eV, the oscillation
period corresponds to 1.3 year, which can be viewed as a
smoking gun of this FDM-generated GW birefringence.

IV. EXTRA-GALACTIC CONTRIBUTION TO
GRAVITATIONAL WAVE BIREFRINGENCE

Beside the amplitude birefringence induced by the
FDM in the MW, there is an additional contribution from
the extra-galactic FDM field. One might worry that this
contribution might a↵ect or even govern the birefringence
signal since it might be enhanced by the GW travel over
an astrophysical distance. In order to investigate this im-
portant issue, we shall study the GW movement in the
following cosmological FDM background [74, 75]

�(t) = �0 (a0/a)
3/2 cos(m�t+ ↵c) , (22)

where �0 =
p
2⇢DM/m�, ↵c and a0 are the FDM field

amplitude, phase and present-day scale factor, respec-
tively. Note that the field amplitude and phase should
change at di↵erent spacetime point, with the typical scale
being the inverse of the de Broglie wavelength m�v. For
a small FDM velocity v ⌧ 1, such variations can be ig-
nored compared with the dominant oscillation frequency
m�. Hence, we shall use the homogeneous FDM profile
in Eq. (22) to perform the following calculation. Also,
we will set a0 = 1 for simplicity. The associated GW
equation can be deduced from Eq. (2) as follows

⇤hR,L = ± i↵

a2
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a2
(�00 � 2H�0)@zh

0
R,L � �0⇤@zhR,L

�
,

(23)

which leads to the following dispersion relations for both
circularly polarized modes

! ⌘ k +�!ex ⇡ k � iH!/k ± i↵!

2a2
(�00 � 2H�0) ,(24)

up to the leading order in the eikonal approximation.
For the FDM scalar with m� ⇠ 10�22 eV, the mass

scale is much larger than the cosmological expansion rate
characterized by H. Thus, we expect that the time in-
tegration in the birefringence factor ei�S = e�i

R
d⌘�!ex

should be dominated by the rapidly oscillating term in
�00. As a result, the phase correction generated by the
extra-galactic FDM background is given by

�S ⇡ ±i
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2⇢DM sin(m�t+ ↵c) , (25)

in which we have taken the small redshift limit with all
scale factors being a ⇡ 1. Hence, the FDM outside of the
MW would give the following amplitude birefringence
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◆
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where ex
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2⇢DM sin(m�t + ↵c)/. In comparison

with Eqs. (17) and (21), it is obvious that the birefrin-
gence e↵ect is overwhelmed by the galactic FDM compo-
nent due to its enhanced DM density in the MW, which
is evident by |A/ex

A | ⇠
p

⇢�/⇢DM ⇠ O(103).

V. CONCLUSIONS AND DISCUSSIONS

The FDM is a promising DM candidate which can
possibly solve many problems faced in the sub-galactic
scale. If such a FDM can be identified as an axion-
like particle with an additional gravitational CS coupling,
GWs are expected to show the parity-violating birefrin-
gence phenomena when propagating in the nontrivial
FDM background. Especially, provided the complicated
granular structures displayed in recent simulations, we
are led to considering the GW propagation in a general
spacetime-dependent FDM field profile. By using the fa-
mous eikonal approximation, we find that GWs do not
exhibit any velocity birefringence in the CS gravity, no
matter if there is a FDM background field. However,
the inclusion of the imaginary part in the GW disper-
sion relations gives rise to the amplitude birefringence,
i.e., one circular polarization is enhanced whereas the
other suppressed. Due to the local nature of this galac-
tic birefringence, the obtained e↵ect only depends on the
GW frequency without any reliance on the GW event dis-
tance. More remarkably, such amplitude modifications of
the left- and right-handed polarizations oscillate in time
with the period controlled by the FDM scalar mass. Also,
we have considered the extra-galactic FDM-induced con-
tribution to the GW birefringence, which can be safely
neglected since it is suppressed by the corresponding cos-
mological DM density.

Since m� � H, the above integration is dominated by the cosine function and we can

approximate the scale factor by its present value a0 = 1, which leads to the following result

�S ⇡ i�R,L

⇣↵m�!

2

⌘
�0 sin(m�t+ ↵c) = i�R,L

⇣↵!
2

⌘p
2⇢DM sin(m�t+ ↵c) . (62)

Hence, the amplitude birefringence induced by the extra-galactic DM distribution is given

by

hR,L(f) = hGR
R,L(f) exp

✓
�R,L

ex
A

f

100 Hz

◆
, (63)

where

ex
A ⌘ ↵⇡

p
2⇢DM sin(m�t+ ↵c)/ . (64)

In comparison with Eq. (54), it is obvious that the birefringence e↵ect is dominated by the

galactic FDM component due to its enhanced DM density in the Milky Way. The ratio

between the galactic and extra-galactic contributions is A/ex
A ⇠

p
⇢�/⇢DM ⇠ O(103).

Finally, we also expect to make use of the LISA-Taiji network to detect this oscillating

amplitude birefringence signature [16] by measuring the energy density of the stochastic

GW background, which should be constant in origin. Such a signal could be detected by

the future third-generation ground-based detectors and space-based interferometers.

V. GENERALIZED PARAMETRIZED POST-EINSTEIN FRAMEWORK

In this section, we will explore the GW birefringence from a more general viewpoint. We

will introduce the generalized parametrized post-Einstein framework, which works in the

dispersion relation level. The only requirement is that the dispersion relation should be

parity violating, while the combined parity and time reversal symmetry is preserved. Note

that we shall work in the coordinate frame that the gravitational waves always propagate

along the z-direction, which is easy to distinguish the right- and left-handed polarizations. In

this frame, only the sign before the parity violating terms should be changed �R ! �L, while

the wavenumber and frequency are unchanged. In other words, the quantities appearing in

the GW dispersion relation under the parity transformation P go like

P : �R $ �L , k ! k , ! ! ! . (65)
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Introduction to Symmetron

Ø Symmetron can be a dark energy candidate, which can avoid the strong 
fifth force constraints in the solar system by screening the light scalar field.

K.Hinterbichler & J. Khoury, et al. (2010,2011)

Ø Symmetron Scalar 𝜎 + Z2 Symmetry:  

Ø To guarantee the Weak Equivalence Principle, the matter fields 𝜓 should 
couple universally to the Jordan-frame metric 

Ø Due to the Z2 symmetry, the 
coupling function A(𝜎) is

The symmetron-matter 
coupling ∝ VEV of 𝜎

𝜎

𝜓

𝜓

𝜓

𝜓

𝜎0 𝜎0
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Ø Symmetron Effective Potential

Introduction to Symmetron

Low density à 𝜎0≠0 à
scalar force is effective

High density à 𝜎0=0 à
suppressed scalar force

K. Hinterbichler & J. Khoury, et al. (2010,2011)
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Symmetron: GW Birefringence inside the Milky Way

Z2 Symmetry

Ø Different from original CS gravity, this new term explicitly breaks parity

Ø Directly apply the results in the conventional CS gravity by 𝜙à 𝜎2. 

Ø Amplitude Birefringence by eikonal approximation

where
𝜎g

𝜎∞

Screening Suppress GWB!
𝜕(𝜎01 ≈ 𝜕(𝜎34& ≈ 0
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Symmetron: Extra-Galactic GW Birefringence 

Ø Cosmological Symmetron Profile: adiabatic solution to its effective potential

Ø Amplitude Birefringence:
l GWTC-3 data: T.C.K.Ng, et al. (2023)
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Ø Observation of GW birefringence is a remarkable way to test parity 
violation in gravity;

Ø We have studied the GW birefringence over a nontrivial spatial 
distribution of the fuzzy DM and symmetron in the Milky Way ;

Ø It is found that both GW circular polarizations moves with the speed of 
light in both models, while their relative amplitudes would be changed, 
generating the amplitude  birefringence!

Ø For the fuzzy DM, its galactic distribution produces the dominant effect, 
which shows a remarkable time modulation. 

Ø In the symmetron model,  we introduce a new Z2-symmetric CS-like 
interaction, which generates the GWB. It is interesting to note that the 
galactic contribution is suppressed due to its screening mechanism.

Conclusions
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Ø Up to O3 run, the LVK Collaboration observed 90 GW events.

Introduction
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Ø Subdominant Spatial Dependence: 𝜕(𝝓 ≪ 𝜕&𝝓 for m𝝓 ~10-22 eV

Directional Dependence of GW Birefringence in the MW

core of flat density profile around the center of a Milky-Way-like galaxy, and suppress the

formation of small structures, which could help to solve many cosmological problems at the

small scales [13]. However, outside of the core, the fuzzy DM density would transit into the

conventional Navarro-Frenk-White (NFW) profile [14]

⇢NFW(r) =
⇢0

r
rs

⇣
1 + r

rs

⌘2 . (51)

where rs and ⇢0 are two characteristic parameters. Thus, it was pointed out in Ref. [15] that

the axion field profile can be estimated by

�(t,x) =

p
2⇢NFW

m�
cos (m�t+ ↵(x)) . (52)

which was shown to be able to reproduce the NFW density distribution in the Milky Way.

Here m denotes the axion mass, while ↵(x) is a position-dependent random phase. Note

that the dark matter density outside the Milky Way can be estimated as ⇠ 0.25⇢crit with

⇢crit the critical density of the Universe, which is many orders lower than that inside, so

that the contribution �̇e from GW production sites should be extremely small and can be

ignored. Moreover, for an axion with mass m ⇠ 10�22 eV, it is generally expected that

the time variation of the axion profile dominates over the spatial one, since @t�/@r� ⇠

m/R� ⇠ O(105) with R� ⇡ 8 kpc is the distance of the solar system from the galaxy center.

Therefore, we can estimate �̇o as follows

�̇o ⇡ @t� =
p

2⇢� sin (m�t+ ↵0) (53)

where ⇢� and ↵0 is the fuzzy DM density and phase at the position of solar system, respec-

tively. Finally, by putting Eq. (53) into the general formula of Eq. (40), we can obtain the

magnitude birefringence caused by the FDM halo

hobs
R,L(f) = hGR

R,L(f)⇥ exp

✓
±0

A ⇥ f

100Hz

◆
(54)

where hGR
R,L(f) denotes the right- and left-handed GW components

0
A ⌘ ⇡(↵/)

p
2⇢� sin(m�t+ ↵0) . (55)

In additional to the above dominant birefringence from @t�, @z� would give rise to a sub-

dominant contribution to 0
A

0
A = ⇡(↵/)@r�(R�) coshk, ri . (56)

11
where hk, ri represents the angle between the incident GW and the radial direction of the

Solar system in the Milky Way. The spatial variation of the Solar system r is given by

@r�(R�) = � 1

m�R�

r
⇢�
2

✓
1 + 3R�/rs
1 +R�/rs

◆
cos(m�t+ ↵0) , (57)

where R� = 8 kpc is the distance between the Solar system and the Milky Way center, while

⇢� = 0.4 GeV/cm3 is the local dark matter density.

Beside the magnitude birefringence induced by the FDM in the Milky Way, there is

an additional contribution from the extra-galactic FDM field. One might worry that this

contribution dominates over the one induced by MW and a↵ects the detectability of the

above magnitude birefringence signal. In order to explore this important issue, we can

approximate the FDM field over the cosmological scale as the following homogeneous and

isotropic background

�(t) = �0 (1/a)
3/2 cos(m�t+ ↵c) , (58)

which can satisfy the cosmological principle. In this cosmological FDM profile, �0 and ↵c

are the FDM oscillation amplitude and phase at the present time, respectively. For the

FDM, the current oscillation amplitude is given by �0 =
p
2⇢DM/m� with ⇢DM the DM

density in the Universe measured by Planck. From the general argument around Eq. (21),

the dispersion relations for left- and right-handed polarizations are given by
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↵
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!(�00 � 2H�0) , (59)

where we have used the leading-order relation ! = k to simplify the expression. For

the FDM, the axion mass is of O(10�22 eV), which indicates that the wavelength of

particle is many orders smaller than the cosmological horizon size. Thus, we expect

that the time derivative of the field is dominated by the oscillating factor, i.e., �0 '

�m��0(1/a)1/2 sin(m�t + ↵c) and �00 ' �a2m2
��(t). Due to m� � H, the additional

contribution to the GW phase induced by the gravitational CS coupling is given by
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where hk, ri represents the angle between the incident GW and the radial direction of the

Solar system in the Milky Way. The spatial variation of the Solar system r is given by
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where R� = 8 kpc is the distance between the Solar system and the Milky Way center, while

⇢� = 0.4 GeV/cm3 is the local dark matter density.
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⇠ O(10�5) . (58)
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approximate the FDM field over the cosmological scale as the following homogeneous and
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p
2⇢DM/m� with ⇢DM the DM
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where we have used the leading-order relation ! = k to simplify the expression. For

the FDM, the axion mass is of O(10�22 eV), which indicates that the wavelength of

particle is many orders smaller than the cosmological horizon size. Thus, we expect

that the time derivative of the field is dominated by the oscillating factor, i.e., �0 '

�m��0(1/a)1/2 sin(m�t + ↵c) and �00 ' �a2m2
��(t). Due to m� � H, the additional

contribution to the GW phase induced by the gravitational CS coupling is given by
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