ALP— from Baryogenesis to Direct Detections

晁伟(北京师范大学)

Baryogenesis induced by the axion-like particles

*****Majorogenesis (Axiogenesis)

***Axion-inflation Baryogenesis**

(2)New attempts to the detection of axion-like particle

*Phonon signal for ALP that has to axion-diphoton coupling

*Phonon signal for ALP that couples to photon and dark-photon

WEI CHAO

Outline

Quality problem and a chance to the ALP

 $\theta_{eff} \neq 0 \rightarrow CPV \ minimum$

Majoron & neutrino mass via type-l seesaw

Type-I seesaw + spontaneous breaking $U(1)_L$ symmetry

$$H = \begin{pmatrix} \phi^+ \\ \frac{v_{\phi} + \phi + i\chi}{\sqrt{2}} \end{pmatrix} \qquad \Phi = \frac{v_s + \tilde{s} + i\tilde{a}}{\sqrt{2}}$$

Yukawa Interaction

$$-Y_{\rm N}\overline{\mathcal{\ell}_L}\widetilde{HN}_R\to M_D$$

$$m\overline{N_R^C}N_R + h \cdot c \, .$$

Key term:

WEI CHAO

 \tilde{a} : Majoron

 $= Y_N v / \sqrt{2}$

Quantum Gravity effect!

Majoron interactions and Majoron mass

Field-dependent phase transformation

 $\ell_L \to e^{-\frac{ia}{2f}} \ell_L \qquad S \to e^{+\frac{ia}{f}} S$

 $E_R \to e^{-\frac{ia}{2f}} E_R \qquad H \to H$

 $N_R \rightarrow e^{-\frac{ia}{2f}} N_R$

 $\mathscr{L} \to \mathscr{L} - \frac{\alpha}{2f} \partial_{\mu} \left(\overline{\ell}_{L} \gamma^{\mu} \ell_{L} + \overline{E}_{R} \gamma^{\mu} E_{R} \right)$ $=\mathscr{L}-\frac{a}{2f}\partial_{\mu}J_{\mu}^{L}$ $=\mathscr{L} + \frac{a}{2f} \frac{N_f}{32\pi^2} \left(g^2 W^a_{\mu\nu} \widetilde{W}^{\mu\nu,a} - g'^2 B_{\mu\nu} \widetilde{B}^{\mu\nu} \right)$

 $\frac{1}{2}e^{-i\theta}\overline{N_R^C}mN_R^{}+h.c.$

Majoron interactions and Majoron mass

 $\frac{1}{2}e^{-i\theta}\overline{N_R^C}mN_R^{} + h.c. \longrightarrow$

Mass insertion of righthanded neutrino masses:

Before symmetry breaking: M = m

 $M = f_a Y_M / \sqrt{2 + m}$ After symmetry breaking:

$$V_a \sim -\frac{1}{16\pi^2} \sum_{n=1}^4 a_n \cos n\theta.$$

a_1	a_2	a_3	6
$mM^3\left(1+\log\frac{M^2}{M_{pl}^2}\right)$	$2m^2M^2\lograc{M^2}{M_{pl}^2}$	m^3M	n

Majoron mass and its relic density

Majoron mass:	$m_a^2 = \frac{1}{f_a^2}$
Initial velocity: (Noether theorem)	from
ΕΟΜ	$\ddot{\theta} + 3H$

WEI CHAO

$$\frac{d^2 V}{d\theta^2} = \frac{1}{16\pi^2 f_a^2} \left| a_1 + 4a_2 + 9a_3 + 16a_4 \right|.$$

 $U(1)_{L}$ In the traditional misalignment mechanism $\dot{\theta}_{i} = 0$

$$\dot{\theta} + \frac{1}{f_a^2} \frac{dV_a}{d\theta} = 0,$$

Different oscillation temperature

WEI CHAO

Majoron mass and its relic density

WEI CHAO

Sehemas

Baryon asymmetry of the universe

Source term:

 $\left(n_{S}^{WS}, n_{S}^{W_{12}},\right)$

Weinberg operator decoupling temperature: $T_{\rm W} \simeq 6 \times 10^{12} \,{\rm GeV} \times \left(\frac{0.05 \,{\rm eV}}{m_{\nu}}\right)^2$.

$$\left(\frac{i}{S}\right) = -\frac{1}{g_i} \sum_{\alpha} n_i^{\alpha} \frac{\gamma_{\alpha}}{H} \left[\sum_j n_j^{\alpha} \left(\frac{\mu_j}{T}\right) - n_S^{\alpha} \frac{\dot{\theta}(T)}{T} \right]$$

$$n_{S}^{W_{3}}, n_{S}^{SS}, n_{S}^{Y_{\tau}}, n_{S}^{Y_{t}}, n_{S}^{Y_{b}} = \left(\frac{3}{2}, 1, 1, 0, 0, 0, 0\right).$$

Baryon asymmetry of the universe

Baryogenesis induced by the axion-like particles

*****Majorogenesis (Axiogenesis)

***Axion-inflation Baryogenesis**

(2)New attempts to the detection of axion-like particle

*Phonon signal for ALP that has to axion-diphoton coupling

*Phonon signal for ALP that couples to photon and dark-photon

WEI CHAO

Outline

O Original idea : Alexander, Peskin, Sheikh-Jabbari, PRL 2004

$$S = \int \sqrt{-g} \left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - F(\phi) F(\phi) \right] F(\phi)$$
$$= \frac{3}{16\pi^2} R\tilde{R}$$

- Hyper U(1) gauge field via the Chern-Simons interaction, $g(\phi)F\tilde{F}$.

• Net number densities of SM particles can be produced via the axion-inflaton that couples to the • Hyper-magnetic field may survive to the EWPT, resulting in net BAU (JHEP12(2017)011)

• Axion inflation with interactions

$$\mathscr{L}_{\text{int}} = \frac{\alpha}{4\pi} \frac{\phi}{f_a} F$$

$$A(\tau, x) = \sum_{\lambda=\pm} \int \frac{d^3k}{(2\pi)^3} \left[A_{\lambda}(\eta, k) \varepsilon_{\lambda}(\eta, k) \right]$$

$$\boxed{\frac{\partial^2}{\partial \eta^2} + k(k + 2\lambda\xi aH)} A_{\lambda}(\eta, k) = 0$$

$$A_{\lambda}^{k}(\tau) = \frac{e^{\lambda \pi \xi/2}}{\sqrt{2k}} W_{-i\lambda\xi,1/2}(2ik\tau)$$

• Axion inflation $\rightarrow q_{CS} \rightarrow q_5$

WEI CHAO

• Chern Simons number:

$$n_{CS} \equiv \frac{1}{(2\pi)^2} \mathcal{K}(\xi) a^3 H^3$$
$$= \frac{1}{(2\pi)^2} \sum_{\lambda=\pm}^{\infty} \lambda e^{i\kappa_{\lambda}\pi} \int \tilde{\tau}^3 d\ln \tilde{\tau} W^*_{\kappa_{\lambda},\mu}(-2i\tilde{\tau}) W_{\lambda_{\sigma},\mu}(-2i\tilde{\tau}) a^3 H^3$$

• Chiral fermion asymmetry during reheating

$$n_{f,\sigma} = -\epsilon_{\sigma} N_{f,\sigma} \frac{g_X^2}{8\pi^2 a^3} n_{CS} = -\epsilon_i N_i \frac{g_X^2}{2(2\pi)^4} H^3 \mathscr{K}(\xi)$$

From chiral fermion asymmetries to the BAU

Transport equations:

Interaction		WS	SS	Y_e	Y_{μ}	$Y_{ au}$
Γ_{lpha}/T^4		$rac{1}{2}\kappa_{ m WS}lpha_2^5$	$rac{1}{2}\kappa_{ m SS}lpha_3^5$	$\kappa_{Y_e}y_e^2$	$\kappa_{Y_e}y_\mu^2$	$\kappa_{Y_e}y_{ au}^2$
$T_{lpha}[{ m GeV}]$	$6.0 imes 10^{12}$	$2.5 imes 10^{12}$	$2.8 imes 10^{13}$	$1.1 imes 10^5$	4.7×10^{9}	$1.3 imes 10^{12}$
Interaction	Y_u	Y_c	Y_t	Y_d	Y_s	Y_b
Γ_{lpha}/T^4	$\kappa_{Y_u}y_u^2$	$\kappa_{Y_u}y_c^2$	$\kappa_{Y_t}y_t^2$	$\kappa_{Y_d}y_d^2$	$\kappa_{Y_d}y_s^2$	$\kappa_{Y_d}y_b^2$
$T_{lpha}[{ m GeV}]$	$1.0 imes 10^6$	$1.2 imes 10^{11}$	$4.7 imes 10^{15}$	$4.5 imes 10^6$	1.1×10^{9}	$1.5 imes 10^{12}$

Inflation

• $F\tilde{F}$: U(1)_R gauge field \checkmark

Inflation

Baryogenesis induced by the axion-like particles

*****Majorogenesis (Axiogenesis)

***Axion-inflation Baryogenesis**

(2)New attempts to the detection of axion-like particle

*Phonon signal for ALP that has to axion-diphoton coupling

*Phonon signal for ALP that couples to photon and dark-photon

Outline

Majoron interactions from anomaly

Schemas

Direct detections of Majoron DM

Boosted Majoron by supernova ν

WEI CHAO

Differential event rate

22

Direct detections of Majoron DM

Direct detections in condensed

matter systems

DM mass	DM energy or momentum	CM scale
$50 { m MeV}$	$p_{\chi} \sim 50 \text{ keV}$	zero-point ion momentum in lattice
$20 { m MeV}$	$E_{\chi} \sim 10 \ {\rm eV}$	atomic ionization energy
$2 { m MeV}$	$E_{\chi} \sim 1 \text{ eV}$	semiconductor band gap
100 keV	$E_{\chi} \sim 50 \mathrm{meV}$	optical phonon energy

 $R \sim \frac{1}{\rho} \frac{\rho_a}{m_a} \frac{3m_a^2}{4m_e^2} \frac{g_{aee}^2}{e^2} \langle n_e \sigma_{abs} v_{rel} \rangle_{\gamma}$

 $Im\Pi(\omega)$ $\langle n_e \sigma_{abs} v_{rel} \rangle_{\gamma} =$

Absorption rate for photon in material $10^{-9}10^{-8}10^{-7}10^{-6}$ * with M. Jin, H.J. Li, Y.Q. Peng and Yue Wang 2022

Combined Constraints

Baryogenesis induced by the axion-like particles

*****Majorogenesis (Axiogenesis)

***Axion-inflation Baryogenesis**

(2)New attempts to the detection of axion-like particle

*Phonon signal for ALP that has to axion-diphoton coupling

*Phonon signal for ALP that couples to photon and dark-photon

WEI CHAO

Outline

Detecting light DM using superfluid

Phonon (quasiparticle) in Superfluid

Helium-4: A Goldstone-like particle from

the spontaneous breaking of the U(1) symmetry as well as the breaking of the boosts and the time translations in the superfluid He-4.

Action of phonon field

$$S_{int} \sim \int d^4x \sqrt{\frac{\mu}{\bar{n}}} c_s \left[\left(\frac{\mu^2}{2} \frac{db}{d\mu} + \mu b \right) \dot{\pi} F^{0\rho} F^0_{\ \rho} - \mu b \partial_j \pi F^{ij} F_{0i} + \frac{b}{2} \sqrt{\frac{\mu}{\bar{n}}} d\mu \right] d\mu$$

• A. Caputo, A. Esposito, E. Geoffray, A. D. Polosa, and S. Sun, Phys. Lett. B 802, 135258 (2020), arXiv:1911.04511 [hep-ph].

DM electromagnetic form factors in superfluid

k'

- **Lagrangian:** $S_{\rm eff} = \int d^4x \left| \bar{\chi} (i \partial m_{\chi}) \chi \alpha \bar{\chi} \gamma^{\mu} \chi \partial^{\nu} \right|$ $+\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-\frac{1}{2}a(X)F_{\mu\nu}F^{\mu\nu}-\frac{1}{2}A^{\mu\nu}$
- α : charge radius; β : Anapole moment; λ : magnetic moment.

Feynman diagram for DM-**Helium scattering:**

$$\begin{split} F_{\mu\nu} &- \beta \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \partial^{\nu} F_{\mu\nu} - \frac{\lambda}{2} \bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu} - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} g_{a\gamma\gamma'} a F_{\mu\nu} \tilde{F}'^{\mu\nu} + \frac{1}{2} g_{\mu\nu} \tilde{F}'^{\mu\nu}$$

already strong constraint on g_{avv} .

$$\begin{split} \frac{d\Gamma}{d\omega} &= \frac{g_{a\gamma\gamma'}^2 \bar{n} \alpha_E^2}{16\pi m_a \omega^2 m_{He} E v_a} \frac{|\mathbf{E}|^2 \omega^2}{c_s^2} \Biggl\{ (\cos^2 \theta_E - c_s^2) \omega^2 \left(1 - \frac{1}{c_s^2}\right) \left[E^2 (1 - v_a^2) \right. \\ &+ 2E \omega \left(\frac{v_a}{c_s} \cos \theta - 1\right) + \omega^2 \left(1 - \frac{1}{c_s^2}\right) \left] - \omega^2 \left(1 - \frac{1}{c_s^2}\right) (E \cos \theta_E - c_s^2) \left[\omega \left(E - \frac{|\mathbf{p}|}{c_s} \cos \theta\right) - \omega^2 \left(1 - \frac{1}{c_s^2}\right) \right]^2 \Biggr\}. \end{split}$$

Summary

Issue-I:

Issue-II

Interesting phenomenologies can be induced by axion-like particles, such as dark matter and the baryon asymmetry of the universe.

How to directly detection axion-like particles is an open question. In addition to the traditional cavity experiment, we explore possible strategy that may detect exotic ALP interactions.

Thank you for your attention!

