

Interview report for applying for CCAST postdoctoral position 申请CCAST博士后岗位的面试报告

Dr. Jun Wang from Sun Yat-sen University 中山大学,王俊 January 11, 2025

Contents

Neutrinos, JUNO, damping signatures, machine learning

01

Brief biography 个人简介

02

Work achievements 以往工作成绩

03

Future research plans 未来的研究计划

Brief biography 个人简介

Work achievements 以往工作成绩 Future research plans 未来的研究计划

Name: Jun Wang (王俊) Gender : Male Age : 32 Degree : PhD 政治面貌:中共党员 Date of graduated: June 20, 2022 Nationality: P. R. China Employer: IFCEN of Sun Yat-sen University Current position: Postdoctoral associate / 党支部纪检委员 Tel: 17717014380 Email: wangj933@mail,sysu.edu.cn **Research interests : neutrino physics and experiment. Expertises: neutrino phenomenology & machine learning.**

Skills: C++, Python, PHP, Javascript, MySQL, Matlab, etc.

Brief biography 个人简介

Nork achievements 以往工作成绩

Future research plans 未来的研究计划

Main Education		Employment History	Application
Anhui University of Science and Technology	Sun Yat-sen University	Sun Yat-sen University	CCAST
 Bachelor of Science in Applied Physics Supervisor: Assoc. Prof. Hu Li 	 PhD in Particle Physics and Nuclear Physics Supervisor: Prof. Wei Wang Thesis: Research on Mass Ordering and New Physics Effects with the JUNO Experiment Experiment: JUNO 	 Postdoctoral Associate Mentors: Prof. Wei Wang (Dean of IFCEN), Assoc. Prof. Yuehuan Wei Report: Extraction of fissile isotope antineutrino spectra using feedforward neural network Experiments: JUNO & NEREUS 	 Postdoctoral Associate for JUNO Mentor: Prof. Guofu Cao

2010.09 - 2014.07

2016.08-2022.06 2022.11-Current

Future

Work achievements 以往工作成绩

Fund statistics

Postdostoral Science Foundation V 80k shair	2024 07 2026 12	
Name of Funding Organization: China Postdoctoral Science Foundation Grant Number: 2024M753715 Title: Research on the application of deep learning in neutrino mass ordering dement Status: Ongoing Fundamental Research Funds for the Central Universities, ¥ 51.3k, c	termination in the JUNO experi-	During my postdoctoral tenure, I chaired two grant projects with a total amount of 131.3K yuans (13.13万).
Name of Funding Organization: Sun Yat-sen University (Funding source: Minist	ry of Education)	
Title: Research on event reconstruction in the TAO experiment Status: Ongoing	Strategic Priority Research P personnel	Program of the Chinese Academy of Sciences, ¥ 11.245 millions, key 2017.01-2023.12
	Name of Funding Organization: C Grant Number: XDA10011102 Title: Photomultiplier tube test Status: Completion	Chinese Academy of Sciences
During my graduate studies, I participated in three grant projects as a key personnel with a total amount of 12.065 million yuans (1206.5万).	Youth Program of NSFC, ¥ Name of Funding Organization: N Grant Number: 11905299 Title: Research on new physics wi Status: Completion	240k, key personnel2022.01-2022.12Vational Natural Science Foundation of Chinaith the JUNO experiment
	General Program of NSFC, S Name of Funding Organization: N Grant Number: 11675273 Title: Study on quantum decohere Status: Completion	¥ 580k, key personnel 2017.01-2020.12 National Natural Science Foundation of China 2017.01-2020.12 ence effects in reactor neutrino oscillations 2017.01-2020.12
		6

Brief biography 个人简介

Work achievements 以往工作成绩

Future research plans 未来的研究计划

Sensitivity results

Database system for managing 20,000 20-inch PMTs at JUNO

Highlights:

- The first database system for large-scale PMT testing and self-developed.
- Reducing human resources & improving testing efficiency;
- Smoothly serving over 7 years.

First author NUCL SCI TECH **33**, 24 (2022)

2 invention patents 12 software registration certificates.

Damping signatures at JUNO

Damping type	Phenomenological limits (experiment: original results, CL [Ref])	Exclusion sensitivities
Parameter [units]	{Experimental limits (experiment: original results, CL [Ref])}	for JUNO (CL)
QD I	$< 1.62 \times 10^5 ~({\rm MINOS} + {\rm T2K} + {\rm reactor:}~\alpha < 3.2 \times 10^{-23} ~{\rm GeV^3},~90\%~[33])$	< 3.72 (90%)
$\alpha~[\times 10^{-6}~\frac{\rm MeV^2}{\rm m}]$	$< 0.41~{\rm (solar+KL:}~\alpha < 0.81 \times 10^{-28}~{\rm GeV^3},~95\%~[20])$	< 4.42 (95%)
	< 3.45 (KL: 6.8×10^{-22} GeV, 95% [40])	
QD II	$<0.33~({\rm MINOS+T2K+reactor:}~\alpha<6.5\times10^{-23}$ GeV, 90% [33])	< 0.80 (90%)
$\alpha \left[\times \frac{10^{-6}}{m} \right]$	$< 0.18~({\rm SK:}~\alpha < 3.5 \times 10^{-23}~{\rm GeV},~90\%~[35])$	< 0.95 (95%)
	$< 3.40 \times 10^{-3} ~{\rm (solar+KL:}~\alpha < 0.67 \times 10^{-24}$ GeV, 95% [20])	
QD III $\alpha \ [\times \frac{10^{-8}}{\text{MeV}^2 \cdot \text{m}}]$	$\begin{split} &< 2.38 \times 10^{-3} (\text{solar+KL:} \; \alpha < 0.47 \times 10^{-20} \text{ GeV}^{-1}, 95\% \; [20]) \\ &< 1.42 \times 10^{-5} \; (\text{MINOS+T2K+reactor:} \; \alpha < 2.8 \times 10^{-23} \; \text{GeV}^{-1}, 90\% \; [33]) \\ &< 4.56 \times 10^{-10} \; (\text{SK:} \; \alpha < 0.9 \times 10^{-27} \; \text{GeV}^{-1}, 90\% \; [35]) \end{split}$	< 1.22 (90%) < 1.46 (95%)
Absorption $\alpha \ [\times \frac{10^{-7}}{\text{MeV} \cdot \text{m}}]$	$<7.60 \text{ (KL: } \alpha < 1.5 \times 10^{-19}, 95\% \text{ [40])}$ $<0.10 \text{ (SK: } \alpha < 2.0 \times 10^{-21}, 90\% \text{ [35])}$ $<2.94 \times 10^{-3} \text{ (solar+KL: } \alpha < 0.58 \times 10^{-22}, 95\% \text{ [20])}$	< 1.04 (90%) < 1.23 (95%)
$ u_3 \text{ decay} $ $ \alpha \equiv \frac{m_3}{\tau_3} $ $[\times 10^{-4} \frac{\text{MeV}}{\text{m}}] $	$ \begin{array}{l} < 256.59 \; (OPERA: \frac{1}{m_0} > 1.3 \times 10^{-13} \frac{1}{m_0}, 90\% \; [43]) \\ < 2224 \; (NOV_{2} TRE: \frac{1}{m_0} > 1.5 \times 10^{-12} \frac{1}{m_0}, 90\% \; [17]) \\ < 0.36 \; (167722 \bigcirc OS \; (1170) \bigcirc OS \; \frac{1}{m_0} > 90\% \; [17]) \\ < (1.58 \; (MINOS: \frac{1}{m_0} > 2.1 \times 10^{-12} \frac{1}{m_0}, 90\% \; [15]) \end{array} $	< 0.44 (90%) < 0.53 (95%) < 0.75 (99%)
WPD I $\alpha \equiv (4\sqrt{2}\sigma_x)^{-2}$ $[\times 10^{-3} \text{MeV}^2]$	< 116.96 (RENO+D)B: g, > 1.02 × 10 ⁻⁴ nm, 90% [24]) < 27.59 RENO 20-4 KR (1, 2, 2, 0, 5 nm, 90% [49])	< 0.18 (90%) < 0.22 (95%)
WPD II $\alpha \ [\times 10^{-4}]$		< 0.14 (95%)
WPD III $\alpha \equiv \sigma_{\rm rel} \; [\times 10^{-2}] \label{eq:wpd}$	↑~22 ™times ^{[22])}}	< 1.04 (95%)
$\sigma_x \equiv (2\alpha E)^{-1}$ [×10 ⁻³ nm]	$\{> 10^{-1} \text{ (DYB: } \sigma_x > 10^{-4} \text{ nm, } 95\% \text{ [22]})\}$	> 2.32 (95%)

Highlights:

- Revealed the advantages of JUNO in measuring v3 decay and WPD effects.
- Revealed JUNO's ability to distinguish between eight types of damping effects.

First author

JHEP 06 (2022) 062 Selected as a collaboration paper.

Highlights:

- Developed two neural network models, both are white-box models with interpretability.
- **Better than the \chi^2 analysis method.**
- All relative errors < 1%.

Co-first author, NUCL SCI TECH 34, 79 (2023) Co-corresponding author, accepted by NUCL SCI TECH at Dec. 2024. 7

Work achievements 以往工作成绩

Highlights:

Determination of the neutrino mass ordering with machine learning

method within the [2.0%, 4.0%] energy resolution range during generalization and robustness tests.

First author JUNO inner reviewing, DocDB # 7428 **Reactor monitoring with mobile NEREUS** antineutrino detector

R&D and and testing of new scintillator materials

Main results

■ A mobile neutrino detector for reactor monitoring.

Co-corresponding author

Team inner reviewing

Highlights:

- Achieving the best energy resolution in current 2D perovskite scintillators.
- Demonstrates unprecedented separation of the photopeak and escape peak.

Co-corresponding author

Two papers were submitted to AM and LPR, respectively.

ef biography Work a 个人简介 以往

ork achievements 以往工作成绩

Future research plans 未来的研究计划

Atmospheric neutrino phenomenology & data analysis at JUNO

Schedule

Me Before 2028

Yifei Pan Before 2026

Jing Chen Before 2026

Thanks for your attention!

Questions & Comments

Timeline of JUNO

模型	阻尼效应	参考文献	阻尼因子 D _{ij}	α 的单位
(1)	QD I	[239–245]	$\exp(-\alpha L/E^2)$	MeV ³
(2)	QD II	[106, 239–252]	$\exp(-\alpha L)$	MeV
(3)	QD III	[1, 106, 239–247, 249–251]	$exp(-\alpha LE^2)$	MeV^{-1}
(4)	Absorption	[1, 239–244, 248]	$\exp(-\alpha LE)$	无
(5)	v_3 decay	[160, 253–258]	$\left\{\exp\left(-\alpha \frac{L}{E}\right), \exp\left(-\alpha \frac{L}{2E}\right)\right\}$	$(s/eV)^{-1}$
(6)	WPD I	[1, 101–103, 165, 259–261]	$\exp\left(-lpha rac{(\Delta m_{ij}^2)^2 L^2}{E^4} ight)$	MeV^2
(7)	WPD II	[1, 172, 262]	$\exp\left(-lpha rac{(\Delta m_{ij}^2)^2 L^2}{E^2} ight)$	无
(8)	WPD III	[37, 172, 263–265]	$\exp(-R - \mathbf{i}X)$	无

$$\exp(-R - \mathbf{i}X) = \exp\left\{-\left[\frac{1}{4}\ln(1 + y_{ij}^{2}) + \lambda_{ij} + \eta_{ij}\right] - \mathbf{i}\left[\frac{1}{2}\tan^{-1}(y_{ij}) - \lambda_{ij}y_{ij}\right]\right\}$$
(4-3)
$$= \left(\frac{1}{1 + y_{ij}^{2}}\right)^{\frac{1}{4}}\exp(-\lambda_{ij})\exp\left(-\frac{\mathbf{i}}{2}\tan^{-1}(y_{ij})\right)\exp(\mathbf{i}\lambda_{ij}y_{ij})\exp(-\eta_{ij})$$
(2-3)
这里的 $\lambda_{ij} = \frac{x_{ij}^{2}}{1 + y_{ij}^{2}}, \ x_{ij} = \frac{\sqrt{2}\Delta m_{ij}^{2}L}{4E}\sigma_{rel}, \ y_{ij} = \frac{\Delta m_{ij}^{2}L}{E}\sigma_{rel}^{2}, \ \eta_{ij} = \frac{1}{2}\left(\frac{\Delta m_{ij}^{2}}{4\sigma_{rel}E^{2}}\right)^{2}$ 和 $\sigma_{rel} = (2\sigma_{x}E)^{-1}$ 。

Eur.Phys.J.C 76 (2016) 6, 310

Earth tomograghy

Experiment/Paper	Mantle	Outer core / Inner core / Core	Primary methods
<u>IceCube (2018)</u>	Compatible with the seismological model (PREM) within the 68% to 95% confidence interval	Core/mantle distinguishable at the 10% to 20% error level	TeV~PeV atmospheric neutrino 'absorption effect ; First measurement of Earth's mass using neutrinos;
<u>ORCA (2022)</u>	±(6%~20%) (optimal–worst case)	±(12%~40%) (optimal–worst case) Inadequate resolution of the inner core	GeV-scale oscillation matter effects ; After 10 years of observation.
<u>DUNE (2022)</u>	Upper/lower mantle : ~14%/22%	Core : ~9% (400 kton-year)	0.1~10 GeV atmospheric neutrinos ; If only 60 kton·year exposure is available, the core uncertainty increases to around 30%.
<u>supernova neutrinos(2023)</u>	The mantle can be somewhat distinguished, but not as prominently as the core along "core-crossing paths"	core resolution is approximately 10% (1σ) requires 10 kpc SN, a favorable direction	Short-term observations of supernova explosions ; Differentiating chemical composition is even more challenging
<u>Hyper-K (2024)</u>	±(10%~20%) (optimal–worst case)	±(10%~30%) 10 years (optimal-worst case) subdividing the inner core becomes difficult	atmospheric neutrino oscillations ; a cumulative data period of 10–20 years, combined with mass constraints.

 v_3 decay

Experiment [reactor neutrino-RN atmospheric neutrino-AN accelerator neutrino-ACN]	Upper limits(90% CL) [10 ⁻⁶ eV ²]	Lower limits(90% CL) [<i>ps/eV</i>]	Reference
KM3NeT/ORCA (3 yr) [AN]	5.7	120	Journal of High Energy Physics, 2023, 2023(4): 1-30.
KM3NeT/ORCA (10 yr) [AN]	3.7	180	Journal of High Energy Physics, 2023, 2023(4): 1-30.
T2K, NOvA [ACN]	290	2.3	Journal of High Energy Physics, 2018, 2018(8): 1-15.
T2K, MINOS [ACN]	240	2.8	Physics Letters B, 2015, 740: 345-352.
K2K, MINOS, SK I+II [AN]	2.3	290	Physics Letters B, 2008, 663(5): 405- 409.
MOMENT (10 yr) [ACN]	24	28	Journal of High Energy Physics, 2019, 2019(4): 1-19.
ESSnuSB $(5\nu + 5\bar{\nu})$ yr [ACN]	16-13	42-50	Journal of High Energy Physics, 2021, 2021(5): 1-23.
DUNE $(5\nu + 5\bar{\nu})$ yr [ACN]	13	51	Journal of Physics G: Nuclear and Particle Physics, 2021, 48(5): 055004.
JUNO (5 yr) [RN]	7	93	Journal of High Energy Physics, 2015, 2015(11): 1-25.
INO-ICAL (10 yr) [AN]	4.4	151	Physical Review D, 2018, 97(3): 033005.