

CEPC Performance RefTDR meeting

Jets & Clusters

Mohamed Reda Mekouar on behalf of the Jets & Cluster group January 13, 2025

Institute of High Energy Physics, Chinese Academy of Sciences

CEPC sample/release

- · Please use latest master release.
- · Software team just provided latest 25.1.0 with Endcap included
- · Currently verification getting done before starting mass sample generation
- · Other processes and generators under study by Nazima

```
192.168.50.114@tcp:/cefs    3.7P 3.2P 356T 91% /cefs
```

· Limited /cefs disk quota. 800T->356T available.

-

Sample Requirements for TDR note

- Endcap fixed: Software group promised it for this
- week and delivered
- ECal 10*10mm.
- Assuming no big changes in detector level.
- Following samples are almost ready.
- For ttbar, Vcs/Vcb, LLP, weak mixing angle, need analyzer to participate.

63	Process @ c.m.e ⁽⁻⁾	Domain ²	Relevant Det. Performance
Z→μμ€³	Z@ 91.2 GeV₽	Ze3	lepton ID, tracking
H→yye ²	qqHe ²	Higgs ^{c3}	photon ID, EM resolution
Higgs recoil€	een⇔	Higgs ^{c3}	Lepton ID, track dP/P
H→ss ^{c3}	vvH @ 240 GeV ^Q	Higgs€	PID, Vertexing, PFA + JOI€
H→inve ²	qqH€	Higgs/NP€	PFA, MET
Vcs/Vcb ¹²	WW→£vqq @ 240/160 GeV	Flavor	PFA, JOI + PID (lepton, tau)
H→LLP¢3	€€He2	NP43	TPC, TOF, calo, muon detector
	e		
Н→µµ€³	qqHe ²	Higgs ^{c3}	lepton ID, tracking, OTK↔
Top mass & width€	Threshold scan @ 360 GeV [△]	EW₽	Beam energy€
Weak mixing angle∈3	Z→bb @ 91.2 GeVe3	EW€	JOI63

Signal Process	Sample Stats	Bkg Process	Stats
Z->mm@91.2GeV	100k	ee->mm@91.2	In barrel nearly bkg free.
H->yy Z->qq	100k	ee->qqy, ee->WW/ZZ->qqy	
Z->II, Hrecoil	100k	ee->WW/ZZ->II+qq	
Z->vv, H->ss	100k	ee->(WW/ZZ)->qq	
Z->qq, H->invisible	100k	ee->(WW/ZZ)->qq	
Z->qq, H->mm	100k	ee->(WW/ZZ)->II+qq	

^{-&}gt; Generally, for bkg, need 240GeV, ee \rightarrow qq(γ); ee \rightarrow WW/ZZ \rightarrow (qq)qq; ee \rightarrow WW/ZZ \rightarrow ll(same flavor)+qq.

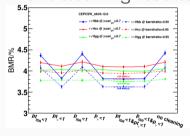
Towards TDR

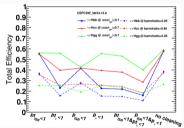
napter		ector and r nysics performance
1.1	Introdu	ction
1.2	Detecto	or Performance
	1.2.1	Tracking (Chenguang Zhang, Hao Zhu, et al.)
		1.2.1.1 Tracking efficiency
		1.2.1.2 Momentum resolution
		1.2.1.3 Impact parameter resolution
	1.2.2	PID
		1.2.2.1 Photon, Electron and Muon (Ligang Xia, Danning Liu, et al.)
		1.2.2.2 Charged Hadrons (Chenguang Zhang, Xiaotian Ma, et al.)
	1.2.3	Jets (Kaili Zhang, Xiaotian Ma, Yingqi Hou, Chenguang Zhang, Jiarong Li, et al.)
		1.2.3.1 Actual Jet Energy Resolution
		1.2.3.2 Jet performance in physics events
	1.2.4	Vertexing (Chenguang Zhang, et al.)
		1.2.4.1 Vertex Efficiency
		1.2.4.2 Vertex Resolution
	1.2.5	Jet Flavor Tagging - traditional way (Chenguang Zhang, et al.)
	1.2.6	Jet Origin ID (Manqi Ruan, Kaili Zhang, et al.)
1.3	Physics	Benchmarks
	1.3.1	Event Generation (Kaili Zhang, Gang Li, et al.)
		1.3.1.1 Monte Carlo event generators
		1.3.1.2 Generated signal and background samples
	1.3.2	Analysis Tools
		1.3.2.1 Multivariate analysis tools
	1.3.3	Higgs mass and production cross-section through recoil mass (Mingshui Chen, et al.)
	1.3.4	Branching ratios of the Higgs boson in hadronics final states (Yanping Huang, et al.)
	1.3.5	$H \to \gamma \gamma$ (Yaquan Fang, et al.)
	1.3.6	H o invisible (Mingshui Chen, et al.)
	1.3.7	Weak mixing angle (Zhijun Liang, Bo Liu, et al.)
	1.3.8	A channel in flavor physics (Shanzhen Chen, et al.)
	1.3.9	top mass and width (Xiaohu Sun, et al.)
	1.3.10	W fusion cross section (Hongbo Liao, et al.)
	1.3.11	Long-lived particles (Liang Li, et al.)
	1.3.12	smuon (Xuai Zhuang, et al.)
	1.3.13	$Z \rightarrow \mu\mu$
	1.3.14	$H \rightarrow \mu\mu$

Re-calibration needed for distributions after new CEPCSW update (PID, Vertex Fit)

Timescale: Mid-February?

14


Some channels are starting (photon, muon)


Endcap being ready so better samples coming soon + increase in preliminaries results for BMR in barrel

Analysis tools (now PID available,
Still need isolated objects, vertex, flavor
tagging.)

BMR by Xiaotian Ma

Event cleaning results consistent with CDR.

Efficiency cutflow/%	ZH → vvgg	ZH → vvbb	ZH → vvcc
$\Sigma Pt_{\rm ISR} < 1{\rm GeV}/c$	95.3	95.4	95.4
$\Sigma Pt_{\nu} < 1 \text{GeV}/c$	89.8	39.3	66.6
$\left \cos\theta_{\mathrm{jet}}\right < 0.7$	53.1	22.0	38.0
BMR/%	3.99 ± 0.02	3.81 ± 0.03	4.10 ± 0.02
$\left \cos\theta_{\rm jet}^{\rm truth}\right < 0.7$	48.5	20.8	35.9
BMR/%	3.97 ± 0.02	3.76 ± 0.03	4.07 ± 0.02
barrelratio > 0.95	23.9	15.0	24.4
BMR/%	3.76 ± 0.02	3.62 ± 0.03	3.94 ± 0.03

Event display (by Zeng Yujie & You Zhengyun)

- Slides
- Version to use: https: //code.ihep.ac.cn/zhangkl/phoneix

CHEC Net*TDR werd Display Tool. Mentamed by Yulje Zeng, migration to code Reip ac.on by Kalii

Phoneix. https://gith.ac.om/HEF/phoneix

Start with python. python-in miting arever BIDD--directory-phoneix-app-root-path

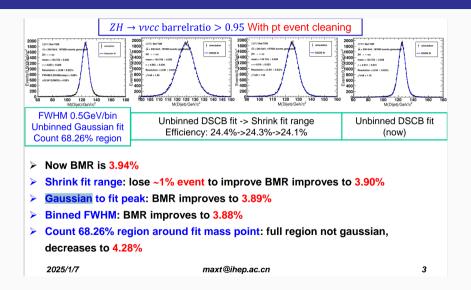
Then get access Phoneix with http://ocasivoss1000/

Then jones attached, tops_cid. edmi-thep.jon from F.c., With Vertex_lets objects; rec_601_be_00388.edm-thep.jon

from CEP is w-v-v-ta.

Then functions under developing.

- · Latest geometry applied;
- Enough for general purpose



Interactive web app

Thank you!

Back-up

Back-up

