Small Radius Inclusive Jet Production through NNLO+NNLL QCD

Based on work by

Terry Generet, Kyle Lee, Ian Moult, René Poncelet, Xiaoyuan Zhang

New Opportunities in Particle and Nuclear Physics with Energy Correlators

Wuhan, China, 7 May 2025

Introduction to the software

NNLO computations with $\operatorname{Stripper}$

- STRIPPER framework: Monte Carlo code for the numerical computation of NNLO cross sections
- Designed to handle the real phase space of any NNLO cross section
- Fully general: only process-specific part: two-loop amplitudes
- Underlying technology: sector-improved residue subtraction scheme Czakon (2010, 2011); Czakon, Heymes (2014); Czakon, van Hameren, Mitov, Poncelet (2019)
- Completely takes care of all soft and/or collinear divergences
- Fully differential: can study any (IRC-safe) parton-level observable

Examples of results

Angular correlations between leptons in $p \ p \to t \ \overline{t} + X \to \ell \overline{\ell} + Y$ Cuts on (*b*-)jets: non-trivial result!

Behring, Czakon, Mitov, Papanastasiou, Poncelet (2019)

4/20

Terry Generet, University of Cambridge Small Radius Inclusive Jet Production through NNLO+NNLL

Examples of results

JHEP 07 (2023) 085

Terry Generet, University of Cambridge

Small Radius Inclusive Jet Production through NNLO+NNLL

$\operatorname{Stripper}$ and fragmentation

- Original STRIPPER implementation: parton-level final states only
- Extended to support fragmentation a few years ago Czakon, TG, Mitov, Poncelet (2021)
- As for the base code: fully general implementation
- I.e.: any process with any number of identified hadrons supported!

Introduction Small Radius Jets

Example: $\pi^0 p_T$ spectrum at 8 TeV LHC (ALICE)

Terry Generet, University of Cambridge Small Radius Inclusive Jet Production through NNLO+NNLL

Introduction Small Radius Jets

Example: $\pi^0 \pi^0$ invariant mass spectrum at 13 TeV LHC

Terry Generet, University of Cambridge Small Radius Inclusive Jet Production through NNLO+NNLL

Small radius jets at the LHC

Goal and background

- High-precision predictions for small-radius jet production
- NLO+NLL threshold and In R resummation already available

NLL threshold: Kidonakis, Oderda, Sterman (1998); Kidonakis, Owens (2000) NLL In *R*: Dasgupta, Dreyer, Salam, Soyez (2014,2016); Kang, Ringer, Vitev (2016); Dai, Kim, Leibovich (2016) NLL threshold+In *R*: Liu, Moch, Ringer (2017, 2018); Moch, Eren, Lipka, Liu, Ringer (2018)

• Fixed-order NNLO inclusive jet and dijet also available

Currie, Glover, Pires (2016); Currie, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Pires (2017, 2018); Czakon, van Hameren, Mitov, Poncelet (2019); Chen, Gehrmann, Glover, Huss, Mo (2022)

- Now: resum ln^mR to NNLL and match to NNLO
- Factorisation very similar to fragmentation: Lee, Moult, Zhang (2024)

$$\frac{d\sigma_{\text{jet}}}{dp_T}(p_T, R) = \sum_i \int_0^1 \frac{dz}{z} \frac{d\sigma_i}{dp_T}(p_T/z, \mu_J) J_i\left(z, \ln \frac{p_T R}{z \, \mu_J}\right) + \mathcal{O}(R^2 \ln^m R)$$

- J_i is the 'FF' for producing a jet with radius R from parton i
- \Rightarrow Can repurpose fragmentation implementation in STRIPPER! 10/20

Approach

- DGLAP evolution performed by truncating at high order
- Converges well and gives precise control over included terms
- Matching trivial: σ = (exact NNLO) + (LP beyond NNLO)
- Requires convolutions with many different distributions
- In practice: α_s^5 for LL and NLL and α_s^4 for NNLL terms
- \Rightarrow Need convolutions with $\left(\frac{\ln^5(1-x)}{1-x}\right)_+$ \Rightarrow Need very robust and stable code
- $\bullet~\mathrm{Stripper}$ generalised to support arbitrary distributions

NNLO jet constant

- NNLL part of NNLO jet functions, i.e. $\mathcal{O}(\ln^0 R)$ not known
- But: can compute exact, fixed-order NNLO cross section
- Extract unknown terms by comparing exact and factorised result!
- In practice: cross section moments double-differential in y and \hat{H}_T
- Also split up cross section according to initial-state partons
- Allows to disentangle quark and gluon-initiated jet very well
- Computed at R = 0.1, power corrections found to be negligible
- Obtained the first 50 half-integer moments of both J_q and J_g

Cross-check: NLO jet constant

Terry Generet, University of Cambridge Small Radius Inclusive Jet Production through NNLO+NNLL

Introduction Small Radius Jets

Result: NNLO jet constant

Terry Generet, University of Cambridge Small Radius Inclusive Jet Production through NNLO+NNLL

The measurement

- Ultimately want to compare to data
- arXiv:2005.05159: '3D' measurement of inclusive jets by CMS
- Double-differential in p_T and y for R = 0.1, 0.2, ..., 1.2
- Absolute spectra not provided; only ratio's w.r.t. R = 0.4
- Will use same binning and cuts to facilitate comparison

Results: cross sections at 13 TeV LHC

Terry Generet, University of Cambridge

Small Radius Inclusive Jet Production through NNLO+NNLL

Results: cross sections at 13 TeV LHC

17/20

Terry Generet, University of Cambridge Small Radius Inclusive Jet Production through NNLO+NNLL

Results: cross section ratios at 13 TeV LHC

Conclusion & outlook

- Highlighted the STRIPPER framework
- Can compute any fully differential IRC-safe NNLO cross section
- Can now convolve with any (1D) distribution useful for many things!
- Here: first NNLO+NNLL calculation of small radius jets at the LHC
- Reduced or more reliable uncertainties w.r.t. FO NNLO
- Better agreement with data w.r.t. both FO NNLO and NLO+NLL
- Important part of energy correlator calculations

Conclusion & outlook

Many directions to explore:

• For e.g.: *N*-point energy correlators in the collinear limit:

$$\Sigma^{[N]}\left(R_{0}, R_{L}, \ln \frac{p_{T}^{2}}{\mu^{2}}\right) = \int_{0}^{1} dx \, x^{N} \vec{J}^{[N]}\left(\ln \frac{R_{L}^{2} x^{2} p_{T}^{2}}{\mu^{2}}\right) \cdot \vec{H}\left(R_{0}, x, \ln \frac{p_{T}^{2}}{\mu^{2}}\right)$$

- \bullet Can achieve NNLO+NNLL using ${\rm Stripper}$
- Straightforward application of existing implementation stay tuned!
- Can also convolve with two or more functions (e.g. small radius dijet)
- Generalisable in many directions: track functions, di-hadron FFs, fragmenting jet functions, ...

We would love to hear any thoughts and ideas you may have!

Introduction Small Radius Jets

Backup

Terry Generet, University of Cambridge Small Radius Inclusive Jet Production through NNLO+NNLL

Example: charged hadrons at 5.02 TeV LHC (ATLAS)

Jets with R = 0.4 anti- k_T , $z = p_T(h) \cos(\Delta R) / p_T(\text{jet})$

Small Radius Inclusive Jet Production through NNLO+NNLL

Terry Generet, University of Cambridge

Not quite fragmentation

• Kinematics-dependent cutoff scale $R p_T$ in the jet functions

•
$$J_i\left(z, \ln \frac{p_T(\text{jet})R}{z \,\mu_J}\right) = J_i\left(z, \ln \frac{p_T(\text{parton})R}{\mu_J}\right)$$

- Choice: fix $p_T(parton)$ or $p_T(jet)$?
- Leads to difference in convolution structure / DGLAP evolution van Beekveld, Dasgupta, El-Menoufi, Helliwell, Karlberg, Monni (2024); van Beekveld, Dasgupta, El-Menoufi, Helliwell, Monni, Salam (2024); Lee, Moult, Zhang (2024)
- I.e. when fixing *p*_T(parton):

$$\frac{d\vec{J}\left(z,\ln\frac{p_{T}(\text{parton})R}{\mu_{J}},\mu\right)}{d\ln\mu^{2}} = \int_{z}^{1}\frac{dy}{y}\vec{J}\left(\frac{z}{y},\ln\frac{y^{2}p_{T}(\text{parton})R}{\mu_{J}},\mu\right)\cdot\widehat{P}_{T}(y)$$