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Introduction

• Multiple scatterings in deep inelastic scattering, 
hadron-nucleus, and heavy-ion collisions lead to 
important phenomena like jet quenching and 
transverse momentum broadening which serve as 
tools to study the properties of cold and hot nuclear 
matter.

• These effects have been observed at fixed-target 
experiments (DESY, Jefferson Lab, Fermilab) and 
collider experiments (RHIC, LHC), and will be a 
major focus at the future Electron-Ion Collider (EIC).
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Higher Twist 

• One of the approaches to study effects of 
multiple scatterings is based on a generalized 
high-twist factorization theorem.

• Most studies have focused on double parton
scatterings and their effect on transverse 
momentum broadening, which leads to 
nuclear enhancement.
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Transverse Momentum Broadening

• The transverse-momentum weighted NLO SIDIS cross section at twist-4 has been 
calculated by [Kang Z., Wang E., Wang X., Xing H. (2014)]. 

• It was shown that the cross-section factorizes.

• Soft divergences in real and virtual corrections cancel.  

• Collinear divergences can be absorbed into the standard fragmentation function 
and/or the twist-4 parton correlation function of the nuclear state.
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IR-safe quantity 

• It is possible to consider quantities that measure the transverse 
spread of the QCD jets which do not depend on how partons
fragment into hadrons. These quantities are infrared safe.

• Non-infrared-safe quantities need some information on what are the 
quark and gluon fragmentation functions, but no such information is 
needed for infrared-safe quantities.

• We want to use the angular spread of the energy flow as an 
illustration of an infrared-safe measure of transverse size.
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Kinematics

• Consider a lepton 𝑙 scattering off a large 
nucleus 𝐴.

𝑙 𝐿 + 𝐴 𝑝 → 𝑙 𝐿′ + ℎ 𝑙ℎ + 𝑋

• The usual SIDIS Lorentz-invariant variables 
are defined as follows:

6

𝑥𝐵 =
𝑄2

2𝑝. 𝑞
𝑦 =

𝑝. 𝑞

𝑝. 𝐿
𝑧ℎ =

𝑝. 𝑙ℎ
𝑝. 𝑞

𝑄2 = −𝑞2

𝑙ℎ

𝑝

𝑞

𝐿

𝐿′



Energy Flow 

• Energy Flow definition in SIDIS:

where 𝜃 is the angle between the hadron ℎ and the nucleus. 
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Energy Flow

• Using the fact that the fragmentation functions obeys the momentum 
sum rule :
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The width of Energy Flow

• The angular spread of a QCD jet can be described by

sin2 𝜃 =
 𝑑𝑐𝑜𝑠𝜃 sin2 𝜃
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2𝑑𝑐𝑜𝑠𝜃

• Therefore, sin2 𝜃 , besides depending only on the parton structure 
functions, is normalized by the total cross section.

• Thus a calculation of sin2 𝜃 will need less experimental input than 
what is needed for the average transverse momentum. 
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A measure of nuclear effects

• We want to investigate the nuclear effects 
on the width of the energy flow using 

Δ sin2 𝜃 = sin2 𝜃 𝑒𝐴 − sin2 𝜃 ep

as function of 𝜃 at fixed 𝑥𝐵 and 𝑄2.
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Another measure

• One can also consider the ratio

𝑅𝑒𝐴/𝑒𝑝 = sin2 𝜃 𝑒𝐴 / sin
2 𝜃 ep

to measure the in-medium modification to the width of the energy     
flow as function of 𝜃 at fixed 𝑥𝐵 and 𝑄2.
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How exactly does the final state divergence 
cancel?
• Example: NLO cross section at Leading Twist

• The Energy flow for 𝛾∗ + 𝑞 → 𝑞 + 𝑔 should have two contributions: 
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NLO cross section at Leading Twist

• The cross section has both initial and final state IR logs that can be 
factorized. 

• The initial and final state divergences can be combined with the bare 
PDF/FF to yield a 𝑠𝑐𝑎𝑙𝑒-dependent PDF/FF.

• The weighting with 𝑧ℎ and the sum over all hadrons allows us to 
remove all reference to FF by using the momentum sum rule.
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NLO at Twist-2
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• The IR-sensitive part has the form
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NLO cross-section at twist-4

• Through explicit calculations of real and virtual 
corrections at twist-4, the transverse-
momentum-weighted differential cross section 
due to double scattering is shown to factorize 
at NLO [Z.Kang, E. Wang, X. Wang, H. Xing arxiv:1409.1315].
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NLO at Twist-4: Gluon Fragmentation 

• We need to calculate some additional diagrams that contribute to the 
gluon fragmentation:

where the red bar represents where the soft pole arises. Soft here 
means the initial gluon momentum goes to 0 as 𝑘𝑇 goes to 0.
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Hard Scattering

• There are also other diagrams that are called hard scattering because 
the initial gluon momentum becomes finite as 𝑘𝑇 goes to zero.
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Poles
Soft

•
1

𝑙𝑔−𝑘𝑔
2
+𝑖𝜖

Hard

•
1

𝑘1+𝑞
2+𝑖𝜖
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Diagrams: 
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Diagrams:
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Weighted cross section: Gluon Fragmentation

• We want to calculate 
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Current status

• We are now in the process of calculating these different diagrams: 
Hard-Hard, Soft-Soft, Hard-Soft and Soft-Hard. 

• Then, one should extract the final-state divergence and add that to 
the final-stat divergent part from the quark contribution:

• This will verify the IR-safety of the width energy flow in SIDIS (NLO at 
twist-4). 
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Thanks
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