Energy-energy correlators in jets across collision systems

Anjali Nambrath

University of California, Berkeley

nambrath@berkeley.edu

New Opportunities in Particle and Nuclear Physics with EECs May 6–17, Wuhan

In this talk: differential measurements of EECs

1. EECs in pp

probing perturbative and non-perturbative phenomena

- 2. EECs in D⁰-tagged jets probing flavor effects
- 3. EECs in p-Pb probing jets in higher-multiplicity environments
- 4. EECs in Pb-Pb

probing jets in the presence of the QGP

In this talk: differential measurements of EECs

- 1. EECs in pp probing perturbative and non-perturbative phenomena
- 2. EECs in D⁰-tagged jets probing flavor effects
- 3. EECs in p-Pb probing jets in higher-multiplicity environments
- 4. EECs in Pb-Pb

probing jets in the presence of the QGP

EECs in pp

Clear separation of perturbative and nonperturbative regions.

EEC peak is visibly dependent on jet p_{T} .

Universal transition region after rescaling the x-axis to $\langle p_T^{ch jet} \rangle R_L$ (common peak position and height).

 $\Sigma_{EEC}(R_L)$

increasing time, decreasing energy

We can probe hadronization with pp EECs...

- PYTHIA & Herwig perform well, Herwig captures peak position
- Sherpa Lund does well, AHADIC does not
- both cluster models peak at smaller R₁

Lund string models: PYTHIA 8, Sherpa Lund Cluster models: Herwig 7, Sherpa AHADIC

cluster models

We can probe hadronization with pp EECs...

- PYTHIA & Herwig perform well, Herwig captures peak position
- Sherpa Lund does well, AHADIC does not
- both cluster models peak at smaller R,

Lund string models: PYTHIA 8, Sherpa Lund Cluster models: Herwig 7, Sherpa AHADIC

... or with charged energy correlators!

- Are there more unlike-sign or like-sign correlations? $\langle \mathcal{E}_+ \mathcal{E}_- \rangle$ or $\langle \mathcal{E}_+ \mathcal{E}_+ \rangle + \langle \mathcal{E}_- \mathcal{E}_- \rangle$
- Exploring correlations in angle and charge increases sensitivity to different hadronization mechanisms.

ALICE measured charged correlators.

$$\Sigma_{\text{EEC}}^{Q}(R_{\text{L}}) = \frac{1}{N_{\text{jet}}} \int dR \sum_{i,j \in \text{jet}} q_{i}q_{j} \frac{p_{\text{T},i}}{p_{\text{T}}^{\text{jet}}} \frac{p_{\text{T},j}}{p_{\text{T}}^{\text{jet}}} \delta(R - R_{\text{L}})$$

Correlations of unlike-and like-sign pairs show familiar features.

Charge-weighted EEC is overall negative: more unlike-sign pairs.

ALICE measured charged correlators.

$$\Sigma_{\text{EEC}}^{Q}(R_{\text{L}}) = \frac{1}{N_{\text{jet}}} \int dR \sum_{i,j \in \text{jet}} q_{i}q_{j} \frac{p_{\text{T},i}}{p_{\text{T}}^{\text{jet}}} \frac{p_{\text{T},j}}{p_{\text{T}}^{\text{jet}}} \delta(R - R_{\text{L}})$$

Correlations of unlike-and like-sign pairs show familiar features.

Charge-weighted EEC is overall negative: more unlike-sign pairs.

Data favor string-breaking models? Best captures small R_L de-correlation.

We can parse model differences:

- **PYTHIA** and **HERWIG** differ most in unlike-sign EEC

Charged EECs are sensitive to model differences.

Correlations of unlike-and like-sign pairs show familiar features.

Charge-weighted EEC is overall negative: more unlike-sign pairs.

Data favor string-breaking models? Best captures small R_L de-correlation.

We can parse model differences:

- **PYTHIA** and **HERWIG** differ most in unlike-sign EEC
- Monash and Vincia differ most in like-sign EEC (parton shower)

Charged EECs are sensitive to model differences.

Correlations of unlike-and like-sign pairs show familiar features.

Charge-weighted EEC is overall negative: more unlike-sign pairs.

Data favor string-breaking models? Best captures small R_L de-correlation.

We can parse model differences:

- **PYTHIA** and **HERWIG** differ most in unlike-sign EEC
- Monash and Vincia differ most in like-sign EEC (parton shower)
- Lund and AHADIC differ most in low-R_L unlike-sign (hadronization)

Another perspective on EECs: three-point correlators.

- For each triplet of tracks inside the jet, calculate the energy weight.
- 2. Fill energy-weighted histogram of triplets as a function of R_1 .

Allows us to probe shape dependence of energy flow.

Gives precise access to α_s using jet substructure!

The large-*R*₁ scaling of EECs and E3Cs is different.

Large- R_{L} slope is set by quantum corrections: anomalous dimensions of EEC (γ_{2}) and E3C (γ_{3}) operators.

We can probe these corrections with the E3C/EEC ratio.

E3C/EEC
$$\propto R_L^{\gamma_3 - \gamma_2} \propto \alpha_s \ln(R_L)$$

In the perturbative regime:

- the change in slope with jet p_{T} is sensitive to the running of the coupling constant

In the non-perturbative regime:

- flat slope indicates consistent hadronic scaling

Extraction of α_s is underway at ALICE – complicated because of charged jets.

In this talk: differential measurements of EECs

- 1. EECs in pp probing hadronization
- 2. EECs in D⁰-tagged jets probing flavor effects
- 3. EECs in p-Pb probing jets in higher-multiplicity environments
- 4. EECs in Pb-Pb

probing jets in the presence of the QGP

How does the shower depend on flavor?

- At the largest R₁, the scaling behavior in heavy-flavor jets is identical to light quark jets.
- Turnover exhibits a mass dependence!
- Change of shape at small angles is a consequence of the dead cone.

gluon jets

Flavor effects can be probed with ratios to inclusive jets.

quark iets

heavy guark jets

arXiv: 2210.09311 (Craft, Lee, Mecaj, Moult)

D⁰-tagged jet EECs show mass-effect modifications.

Upper panel:

- p_{T} cut on leading track in incl. jets to study fragmentation bias
- significant suppression at all R_{L} , slopes at large R_{L} seem different
- peak positions are similar due to gluon contribution to inclusive

From the ratios:

- D^0 /inclusive \rightarrow mass + Casimir
- $D^0/LF \rightarrow$ isolated mass effects

Clear mass effect in D⁰ jets!

ALICE, arXiv:2504.03431 [hep-ex]

pQCD calculation from K. Lee

Probing hadronization with D⁰-tagged jet EECs

Data appear to favor PYTHIA.

- Herwig overpredicts inclusive jet EECs; underpredicts in HF
- Sherpa Lund consistently underpredicts the data
- AHADIC consistently predicts a too-small peak position

Lund string models: PYTHIA 8, Sherpa Lund Cluster models: Herwig 7, Sherpa AHADIC

Can we say: PYTHIA does well in pp inclusive EECs, and better in charged and HF EECs?

In this talk: differential measurements of EECs

- 1. EECs in pp probing hadronization
- 2. EECs in D⁰-tagged jets probing flavor effects
- 3. EECs in p-Pb probing jets in higher-multiplicity environments
- 4. EECs in Pb-Pb

probing jets in the presence of the QGP

Are EECs modified in p-Pb?

Differences from pp:

- initial state (nPDF, isospin)
- final-state interactions?
- comovers? collectivity??

EECs in p-Pb are a window into interactions in small systems.

EECs are modified in p-Pb in the lowest jet p_{T} bin.

- Significant difference between EECs in p-Pb compared to pp!
- Jet structure appears to be altered only in the lowest jet $p_{\rm T}$ range
- Initial state or final state effect?

 Modification is comparable to ALICE measurement^{*} of HM/MB z_{ch} in pp

* ALICE, arXiv:2311.13322

nPDF models do not fully capture the data.

- Comparing to PYTHIA with an nPDF turned on, and PYTHIA Angantyr
- PYTHIA results use:
 - nPDF: EPPS21nlo_CT18Anlo
 - PDF: CT14nlo
- nPDFs are within ~1 σ at small R_{L} but these have very large uncertainties
- Neither captures behavior at large *R*₁!

Some theory models can reproduce the enhancement.

Theory colleagues have suggested a variety of mechanisms:

- multiple scatterings with CNM
- transverse momentum broadening
- twist-4 OPE corrections

We can look at a few things in the data:

- jet p_{T} dependence
- jet rapidity
- forward multiplicity
- track charge
- track p_{T} cut

arXiv:2411.11782 [hep-ph] (Barata, Kang, Mayo López, Penttala)

Some jet p_{T} dependence is visible in the EEC ratio.

- Split the 20-40 GeV/c jet p_T bin into 20-27 GeV/c and 27-40 GeV/c
- Jet p_T dependence in p-Pb/pp ratio: still see modification in
 27-40 GeV/c jets
- 40-80 GeV/c combined bin is essentially flat

The modification is strongest at low jet p_{τ} and fades at higher energy.

The EEC does not depend on rapidity.

- EECs for jets with η > 0 (forward) and η < 0 (backward)
- Backward (p-going) and forward (Pb-going) EECs agree within 5%

Asymmetry in dN/dη doesn't affect EEC!

The EEC does not depend on forward multiplicity.

- Categorize jets based on VOA
 multiplicity in corresponding event
 VOA detector sits in Pb-going
 - direction, covering 2.8 < η < 5.1
- Label events by VOA percentile
 - High-multiplicity: top 5%
 - Low-multiplicity: bottom 95%
- HM/LM EEC ratio is consistent with 1

We see no dependence on event activity.

The EEC does not depend on particle charge.

- Build the EEC separately from like-sign and unlike-sign pairs
 - like-sign: EEC⁺⁺ and EEC⁻⁻
 - unlike-sign: EEC⁺⁻
- Charged energy correlators are sensitive to the parton shower and hadronization mechanisms

Charged EECs show the same p-Pb/pp ratio — no charge dependence.

Varying the track cut changes the EEC behavior at large R_{L} .

Strong sensitivity to track p_{T} cut in low p_{T} jets!

non-perturbative effects increase for lower jet p_{T}

Track cut modifies the large-*R*_L enhancement in ratio

Even if we only use tracks with $p_T > 2$ GeV, we still see the 20-40 GeV/c modification.

The EEC depends on jet constituent multiplicity.

- Separate EECs based on the # of jet constituents (charged hadrons)
 - inclusive EEC from PYTHIA
 - EEC from jets with 2-6 tracks
 - EEC from jets with 7-10 tracks
 - EEC from jets with 11+ tracks
- We see a dramatic shift in the EECs due to jet constituent multiplicity
- If we redistribute 12% of jets to higher multiplicities, we can largely reproduce the measured p-Pb EEC modification

In this talk: differential measurements of EECs

- 1. EECs in pp probing hadronization
- 2. EECs in D⁰-tagged jets probing flavor effects
- 3. EECs in p-Pb probing jets in higher-multiplicity environments
- 4. EECs in Pb-Pb probing jets in the presence of the QGP

EECs in Pb-Pb can probe various medium effects.

 $\Lambda_{
m med}r$

 $\Lambda_{
m med} r_{\perp}$

Color coherence

- *large angle emission*: medium resolves emitted gluon as a separate object
- *small angle emission*: gluon and emitter resolved as single object
- critical angle: minimum separation to resolve separately

EECs in Pb-Pb can probe various medium effects.

Color coherence

- *large angle emission*: medium resolves emitted gluon as a separate object
- *small angle emission*: gluon and emitter resolved as single object
- critical angle: minimum separation to resolve separately

Medium response

- Jets can induce a *medium response* (recoil partons and back-reaction).
- Energetic partons can pull the medium, leaving a depletion called the *"jet wake"*.

JHEP 09 (2023) 088 (Andres, Dominguez, Holguin, Marquet, Moult)

ALICE measured EECs in Pb-Pb.

Pb-Pb loosely has the same features as observed in pp.

ALICE measured EECs in Pb-Pb.

Pb-Pb loosely has the same features as observed in pp.

Pb-Pb exhibits a peak universality similar to pp.

modification relative to pp!

We don't see a strong jet p_{τ} -dependent modification.

Pb-Pb/pp ratio shows an enhancement at small R_1 (energy loss) and suppression at large R_1 .

We don't see a strong jet p_{τ} -dependent modification.

Pb-Pb/pp ratio shows an enhancement at small R_{L} (energy loss) and suppression at large R_{L} . Onset of suppression seems to shift to smaller angles at higher jet p_{T} .

We don't see a strong jet p_{τ} -dependent modification.

Pb-Pb/pp ratio shows an enhancement at small $R_{\rm L}$ (energy loss) and suppression at large $R_{\rm L}$. Onset of suppression seems to shift to smaller angles at higher jet $p_{\rm T}$. Level of modification does not show strong jet $p_{\rm T}$ dependence!

How do models compare to this data?

Can't really differentiate between Hybrid with/without wake. Slightly favor elastic scattering? JEWEL consistently overestimates the low-R_L enhancement. CoLBT does well at low R_L but doesn't capture large-R_L suppression.

Getting more out of this measurement

- Lower the p_{T} track cut slightly? Extend R_{L} range? Look at jets with larger R? Study E3Cs?
- Apply C₂ correction to control for energy loss / selection bias and isolate other physics at play:

arXiv:2409.07526 [hep-ph] (Andres, Holguin)

Summary and outlook

- Universality of EEC shape and turnover in pp no very obvious conclusions about hadronization
- EECs are altered in HF jets dramatic reduction in amplitude - clear mass/flavor effect
- EECs are modified in p-Pb strong sensitivity to jet constituent multiplicity
- Energy loss is visible in Pb-Pb EECs along with some interesting features at large R₁ (medium response?)

We have a rich EEC program at ALICE – more to come!

Backup

D⁰ reconstruction steps

D⁰ candidates were D⁰-tagged charged jets K. were created using the reconstructed from daughter anti- k_{τ} algorithm (R=0.4) tracks using topological and for each candidate. particle identification selections $(D^0 \rightarrow K^- + \pi^+, and charge conjugates).$ Corrected the EECs for the charged jets, anti-k_T, R = 0.4 Invariant mass analysis was performed to with $D^0 \rightarrow K^-\pi^+$ and charge coni efficiency of D⁰-tagged jet remove combinatorial $K^{-}\pi^{+}$ pairs surviving reconstruction and the D⁰ selections. removed the contribution Promot D⁰ from beauty decays. deband (SB) and charge conj. signal region signal + background ed iets. anti-k-. R = 0.4 - background sideband (SB) 30 p_____(GeV/c) nd charge coni $10 \le p_{\pi}^{\text{ch. jet}} \le 20 \text{ GeV}/c, |\eta_{-1}| \le 0.5$ iets. anti- k_{π} , R = 0.4 $B \le \rho_{1}^{D^{0}} < 12 \text{ GeV}/c, |v| \le 0.1$ < 20 GeV/c In 1<0.5 12 GeV/c, ly _l ≤ 0.8 Corrected the EECs for detector effects with a bin-by-bin correction method. ΔR_{STD-D^0}

Quark-jet and gluon-jet EECs

The EEC depends on jet constituent multiplicity.

- inclusive EEC (100%)
- EEC from jets with 2-6 tracks (59%)
- EEC from jets with 7-10 tracks (38%)
- EEC from jets with 11+ tracks (3%)

- If we redistribute 12% of jets, we can largely reproduce the measured p-Pb modification
 - 47%, 47%, <mark>6</mark>%

Quark- and gluon-jet EECs by jet constituent multiplicity

45

HM/MB z_{ch} in pp

arXiv:2311.13322 ALICE

Fragmentation probability of particles at low z_{ch} is enhanced in HM compared to MB

- more pronounced with increasing jet R
- less pronounced at higher jet p_{T}
- qualitatively described by PYTHIA

Perp. cone for combinatorial EEC background

- Particles from jet: sig + bkg
- Particles from perp cone: bkg'
- Pairs in the combined cone:

(sig + bkg + bkg')(sig + bkg + bkg') = sig*sig + 2sig*bkg + bkg*bkg + 2sig*bkg' + 2bkg*bkg' + bkg'*bkg' jet-perp perp-perp

Perp. cone for combinatorial EEC background

- Particles from jet: sig + bkg
- Particles from perp cone: bkg'
- Pairs in the combined cone:

(sig + bkg + bkg')(sig + bkg + bkg') = sig*sig + 2sig*bkg + bkg*bkg + 2sig*bkg' + 2bkg*bkg' + bkg'*bkg' jet-perp perp-perp

- Sig-bkg pairs: jet-perp 2 perp-perp
- Bkg-bkg pairs: perp-perp
- Total background: jet-perp perp-perp

p-Pb and pp comparison

The transition region in p-Pb resembles pp.

- Universality of the EEC peak position across jet p_{τ} and collision system.
- EEC peak height for 20-40 GeV/c jets is slightly lower than for other jets.

2

X

ALICE Preliminary

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

anti- k_{T} ch jets, R = 0.4

all pairs, $p_{\tau}^{trk} > 1.0 \text{ GeV}/c$

Transition region

peak $\approx 2.43 \text{ GeV}/c$

- (20, 40) GeV/c

← (60, 80) GeV/*c*

50

± 0.07 GeV/c

range

p-Pb conclusions

- We know R_{pA} is ~1 for the jet cross-section
- The EEC at low $p_{T, ch jet}$ shows a modification
- We see that the EEC does not depend on jet rapidity, forward multiplicity, or charge
- p-Pb modification could come from a relative increase in high constituent multiplicity jets

To answer: why does the average jet constituent multiplicity shift to larger values in p-Pb collisions?

