

Investigation of small-angle EEC in heavy-ion collisions

Vanderbilt University

New Opportunities in Particle and Nuclear Physics with Energy Correlators 05/06/2025~05/16/2025

Central China Center for Nuclear Theory 华中核理论中心

Zhong Yang

Energy-energy correlators

Energy-energy correlators (EEC) have recently emerged as excellent jet substructure observables for studying the space-time structure of the jet shower. [PRL 130 (2023) 5, 051901]

$$\langle \varepsilon^{(n)}(\overrightarrow{n_1}) \dots \varepsilon^{(n)}(\overrightarrow{n_k}) \rangle$$

 $\varepsilon^{(n)}(\overrightarrow{n_1})$ measures the asymptotic energy flux in the direction $\overrightarrow{n_1}$

$$\varepsilon^{(n)}(\overrightarrow{n_1}) = \lim_{r \to \infty} \int dt r^2 n_1^i T_{0i}(t, r \overrightarrow{n_1})$$

The n-th weighted normalized two-point correlation:

$$\frac{\langle \varepsilon^{(n)}(\vec{n_1})\varepsilon^{(n)}(\vec{n_2})\rangle}{Q^{2n}} = \frac{1}{\sigma} \sum_{ij} \frac{d\sigma_{ij}}{d\vec{n_i}d\vec{n_j}} \frac{E_i^n E_j^n}{Q^{2n}} \delta^{(2)}(\vec{n_i} - \vec{n_1})\delta^{(2)}(\vec{n_j} - \vec{n_2}) \qquad n = 1$$
$$\frac{d\Sigma^{(n)}}{d\theta} = \int dn_{1,2} \frac{\langle \varepsilon^{(n)}(\vec{n_1})\varepsilon^{(n)}(\vec{n_2})\rangle}{Q^{2n}} \delta(\vec{n_1} \cdot \vec{n_2} - \cos\theta) \qquad \cos\theta = 0$$

 $= n_1 \cdot n_2$

EEC in vacuum and medium

Zhong Yang (Vanderbilt University)

In vacuum, the EEC presents a clear separation between the perturbative and non-perturbative regions

 $R_L \sim \Lambda_{QCD} / p_T^{jet} \sim 10^{-2}$

A smooth power law behavior in perturbative region

Medium-induced emissions lead to significant enhancement at large angle relative to vacuum splittings

> Carlota A, et al. Phys. Rev. Lett. 130 (2023) 26, 262301 Patrick V, et al. Phys. Rev. Lett. 130 (2023) 5, 051901

LBT and CoLBT-hydro model

Linear Boltzmann Transport model (LBT): $p_1 \partial f_1 = -\int dp_2 dp_3 dp_4 (f_1 f_2 - f_3 f_4) |M_{12 \to 34}|^2 (2\pi)^4 \delta^4 (\sum_i p^i) + inelastic$ LO pQCD High-Twist

Medium response: Recoil and Negative partons

CoLBT-hydro model:

- Hard parton: LBT
- Soft parton: CLVisc

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}$$

Parton hadronization + Hydro response

EEC workshop (CCNU Wuhan)

Effect of medium modification of EEC

Single parton

PRL 132 (2024) 1, 011901

Parton shower

Transverse momentum transfer: $q_{\perp} \sim \mu_D$ Energy transfer to the medium: $\delta E \sim \mu_D^2/T$

EEC of γ -jet in Pb+Pb collisions

Similar but enhancement reduced

No enhancement expect K=4

EEC of single jet in Pb+Pb collisions at CMS

EECs of single inclusive jets in Heavy-Ion Collisions.

Zhong Yang (Vanderbilt University)

Large angle: Medium response **Medium-induced emissions**

Small angle: $10 \sim 40\%$

Where does the enhancement come from?

Energy loss or anything else ...

CMS results shows significant enhancement at both small and large angle.

EEC workshop (CCNU Wuhan)

Jet p_T selection bias

Zhong Yang (Vanderbilt University)

In vacuum, the EEC presents a clear separation between the perturbative and non-perturbative region

$$R_L \sim \Lambda_{QCD} / p_T^{jet} \sim 10^{-2}$$

The peak of EEC from initial AA jet should shift to small angle, Leading to enhancement of ratio AA to pp at small angle at beginning.

Quark and gluon jet EEC

Gluon has more color charge than quark, leading to more splitting.

The EEC inside the gluon jet always has a broad distribution and peak is shifted to large angle

Dependence of EEC on collision energy

single inclusive jet EEC with same jet p_T .

- Flavor dependence of jet EEC should lead to a colliding energy dependence of
 - Initial parton momentum fraction: $x = 2p_T / \sqrt{s}$

EEC workshop (CCNU Wuhan)

Flavor dependence in jet p_T selection bias

When we consider the effect of jet p_T selection bias, we should also take account in the flavor dependence of EEC.

1. For $p_T^{jet} \in (200 - 250)$ GeV/c, we use quark and gluon jet to fit the single jet EEC. We find the ratio of quark to gluon is 45/55.

2. We assume this ratio is fixed for other p_T^{jet} ranges, and use q and g jet EECs to construct fake single jet EEC.

3. We calculate the ratio of EEC with fixed q/g fraction to EEC within single inclusive jet generated by PYTHIA8.

Zhong Yang (Vanderbilt University)

Medium effect on flavor dependence

Effect of gluon jet fraction on EEC

fraction of gluon jets in the final state in A+A collisions relative to p+p collisions.

Zhong Yang (Vanderbilt University)

- Greater energy loss experienced by gluon jets compared to quark jets also reduces the
 - As the fraction of gluon jets decreases, the overall distribution shifts toward smaller angles.
 - 10% change in the gluon jet fraction almost leads to a 10% variation in the EEC distribution at small angles.
 - With JEWEL: $p_T^{\text{jet}} \in (120 140) \text{GeV/c}$
 - Gluon jet fraction: 66%(pp) -> 64.5%(AA)
 - Only contribute to 6% of the enhancement

EEC workshop (CCNU Wuhan)

Medium effects on EEC

EEC workshop (CCNU Wuhan)

Effect of hadronization on EEC

The small angle corresponds to free hadron. Should small-angle EEC help us distinguish different hadronization model?

Lund string and cluster model

Effect of parton shower algorithm on EEC

EEC can probe different parton shower in both AA and pp collisions

Zhong Yang (Vanderbilt University)

PYTHIA:

- 1. Simple shower(default)
- 2. Dire shower(dipole)

The selected parton shower model has a significant impact on the EEC distribution, and this effect remains present in AA collisions.

Effect of parton shower algorithm on EEC

 Q_0 is the minimum value for high-virtuality parton undergoes vacuum splittings. It controls the scale at which partons begin to hadronize.

 Q_0 affects EEC distribution in both pp and AA collisions. It significantly affects the ratio distribution, leading to an enhancement at small angles.

Zhong Yang (Vanderbilt University)


```
EEC workshop (CCNU Wuhan)
```


Prediction of jet's EEC for ALICE

Zhong Yang (Vanderbilt University)

EEC workshop (CCNU Wuhan)

CoLBT results with $Q_0=1.0$ GeV also give a nice description of single jet EEC for ALICE group.

Ananya Rai, QM2025

- Medium effects contribute significantly to the EEC, which can help probe the short-distance structure of the QGP medium. (Jet quenching, medium response, and medium-induced emissions)
- Jet's EEC exhibits a clear dependence on the initial parton flavor, providing insights into the EEC ratio differences between AA and pp collisions.
- The EEC shows potential for distinguishing between different hadronization models, though further validation is needed.
- EEC can help us examine different parton shower mechanisms and is useful for determining parameters in parton shower algorithms.

Lund string and cluster model

