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* (Long) Introduction

e an exercise in QM
* introduction to DGLAP and BFKL equations

* (Relatively Short) Derivation of DGLAP/BFKL Mixing

e a little bit technical

* Application in QCD Phenomenology

e with many colorful figures



Physics Iin a Nutshell

In physics, our investigations often focus on two aspects:

kinematics dynamics
phase space evolution equation
states Hamiltonian/Lagrangian
operators spectrum and OPE coefficients
[ _ o

If not exactly solvable, we are likely to try perturbation theory for many cases ...

[non-perturbative methods include Monte Carlo, bootstrap, duality, variational and mean field theory methods...]
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Perturbation Theory in QM

Physicists are extremely good at doing perturbation theories.

Hamiltonian: H = Hy + \V » Goal: solving equation H|V,,) = E,|V¥,,)

perturbation

Hilbert space: Hy|n) = E”|n) [assume no degeneracy]

| | (k|V|n) |?
Perturbative expansion: E,(\) = E + X\ (n|V|n) + A\ Z | (0)‘ " (‘0)
ktn by’ — by

(k[Vn) |7 (n|VIm) (m|Vk) (k[V|n)
+A2 | = (n[V[n) 0 0 Z Z 0 0 0 o, | T
( o (E( ) E( )\2 k;énm;én E( ) E( ))(E( ) E7(n))

gl

At each order in the expansion, we find pole structures when energy levels are very close.

— Numerically, this approximation is not good when the energy gap is O(4) [resummation is needed]
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Two-level system example

If the first excited state is close to the ground state, while all other states are far-separated,

—— the leading approximation for lowest two states is a two-level system

B
Example: H = EO'Z -+ )\(30‘$ -+ O'Z) |B| is the energy gap for “free” Hamiltonian Hy = 50

Perturbative expansion for the ground state energy

B ONZ  18X%  45A\% 414)\°
b, = A | | .- B>0
7 2 B B? B3 B4

Not easy to resum if one does not recognize the pattern of coefficients

dE, a1\ + as solution 1
N <%| Wg> NS russ e E, 2\/3 + 4B + 40\

Hellmann-Feynman theorem

But everyone knows there is a straightforward way! [direct diagonalization]

1
det(H — EI) = E?> — (B*/4+ BA+10\?) ——— E = :5\/32 + 4B + 402

0



Avoided Level Crossing

1) . 1) The “free” Hamiltonian has degeneracy at
\ ’ B = 0, but is lifted by small perturbation.
A = 0.02
Comparison btw two methods:
1. Perturbation + resummation
/:>|<:\ 2, [may not know the existence of the second level]

Apply perturbation within the valid regime

Resum the series near the intersection

/7 AN
74 AN
7 AN
74 AN
74 AN
74 AN
‘|>/ \|I>

2. The existence of the second level is known,

the direct diagonalization is much simpler.
Varying the external field B, we find

avoided level crossing near B ~ 0.




Avoided Level Crossing

Avoided level crossing is a general phenomenon in physics.

The immediate impact of avoided level crossing in a degenerate two state system is the emergence of a lowered energy eigenstate.
https://en.wikipedia.org/wiki/Avoided crossing

Quantum Resonance: e.g. benzene

(- @

have the same e.v.

delocalized pi
system

In solid physics, the avoided crossing can have an influence on the band structures.
Nearly free electron model: single electron spectrum

E(k) L (k)
In this example, the
continuous parameter Is
Turn on lattice potential _
— the momentum k in the
< first Brillouin zone.

First Brillouin zone


https://en.wikipedia.org/wiki/Avoided_crossing

A similar scenario occurs in QCD

05 10 15 What object are we going to discuss?

Chew-Frautschi Plot

=

nat is meaning of the spectrum?

What is the continuous parameter?



For those who may know relevant concepts

. & . & .. . o . 4

. & . .

0.5 1.0 15

Chew-Frautschi Plot
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Renormalization and Scale Dependence

Renormalization is one of the most important concepts in QFT.
It is closely related to UV or IR behavior (divergences).

Wilsonian RG picture

 Flows from UV to IR by integrating out high-energy d.o.f. .

Physics at different scales might look completely different.

IR uv
g . D  RGflow (@ N
Example: QCD confined < -
hadrons :

In high-energy scattering, parton distribution function of is
an important example that connects these two concepts.
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Review of Deep Inelastic Scattering

In DIS, we have the notion of Parton Distribution Functions f (x; 1)
[philosophy of factorization] / \

momentum fraction PDFs are scale dependent
[factorization scale]

The scale i can be regarded as off-shellness/virtuality or k.

S 1)

The natural high-ener cale in DIS is determined by the

momentum transfer ~ v/ —¢q2

Matrix element definition Radiation from partons can increase virtuality.  J —*—Qﬁi

(hadronic part):
(Pl (=q)|P)

splitting function P;_;
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Parton Distribution Functions
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o, o sneows - suc o Parton Distribution Functions £, (xc; i)

\

. M“/ X_S'Z%OSSZ; ® HI1 96 Preliminary
+.)y/ .x—O.(;()OOR (ISR) B ] ]
T, oo O HITT Ry  PDFs are non-perturbative functions
_ :fy// ooz ® HI 94-97(§Ii~égrgi%ary _— [from experiment data or lattice calculation]
jjif:” coms NLOQCDFH - * Thelir evolution is perturbatively calculable, called
x=0.0013 HI Preliminary | .
' ;i:// o - DGLAP eguation Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
. % (=0.0032  Ci(X)= 0.6+ (i(x)-0.4) d 1 dZ
e e fols) = [ Puz () o/
_ 7 . 2

W x=0.008
) x=0.013 (i=10)
® X 2
O L] ‘

4

4

Increase Q

Q2

% Increase
Q@

From OPE perspective, they are the evolution of local twist-2 operators

illustration from Gavin
Salam’s QCD lectures

B i A x=0.65i-1) q °° .q
il il il M1 My

1 10 0> 100 10° QQ/IGO;/2 <P | ]M(Q)JM(—Q) ‘ P> ~ (_ 2)(A+J—2)/2 P‘ OrH | P>
Bjorken Scaling and Violation 1 Moments of PDF
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Dictionary for PDF

Integer moment matrix element of
: twist-2 spin-J operator

parton distribution function f,(x; /) (P|OY(0;n) P),

------------- ' '

‘Wilson line{ _,*°

Local (integer spin) operators

/" light-ray operators analytic continuation
/ D B
¥ eg. dlan)yiWon, axli(azn) e.g. Uih(n-D)" 1
‘ e.g. [Balitsky, Braun, 1988]

PDFs are FT of matrix elements of light-ray operators

/dOé e "™ (Pl (an)pW e, 0]4(0) | P) Later we will discuss another form of light-ray operators.

Evolution kernels:

Mellin moment

(space-like) splitting functions

(space-like) anomalous dimensions
[Gross, Wilczek, 1973]

Pab (Z; 045) state-of-the-art calculations: Yab (J’ 045)
@ 3 loop [Moch,Vermaseren,Vogt, 2004]
| z 11 n : : 4 4 11 2
LO(,\ - - T s partially available @ 4 loop LO( 7\ 0 6 [4]{ _ _ o2
Pog (2) ~ 6 [ . ta—a, oA e (12 1z )00 —2) 14 Yoy (J) T II=0 T+DJ+2 3 9



Different Physics at Small Momentum Fraction

small-x physics

1

1] 1 IFIIYT] 1] LA
NNPDF3.0 (NNLO)

 Gluon and sea quarks dominate in PDF

 The DGLAP evolution kernels have divergences

e.g. @ leading order Py(z) ~ s or Vgg(J) ~ Jozs -
" —
)
e Different kinematics/dynamics at small-x x= Zp?q

MM
q :

g

15 related to forward scattering configuration



log (1/x)

Small-x Resummation and BFKL equation

q \
P N
large rapidity gap
y 4 N\
. Regge limit/forward scattering limit
Generalized PDF  F(«z, liT)

transverse momentum

BFKL equation (LO)

region _od 9, CVSNC
; G Fleky) =
v Ox (#: k) 272

% kQ 0—1/2
§ eigenfunction Fs(x, kp) = z~<©) (u—g)
2 ] SNC
BFKL eigenvalue w(d) = —— — (0 +1/2) +9(1/2 = 0) = 24(1))
@
©
e s « NLO kernel has been calculated in [Fadin, Lipatov, 1998]
©
T > * At very small value of x, non-linear evolution equation — BK/JIMWLK.

16 [Balitsky, 1995; Kovchegov, 1999; JKMW, 1996; JKLW 1997; ILM, 2000... ]



DGLAP vs. BFKL

From 50 Years of Quantum Chromodynamics

The meaning of evolution 1n the two cases 1s essentially different.

DGLAP: action d/d In k%, dynamics in x; ... Eigenvalues are anomalous dimensions; ...

BFKL: action d/d In(1/x), dynamics in l_c)T; ... the spectrum of BFKL 1s Regge trajectories; ...

In spite of all the difference the two are intimately related [Kotikov, Lipatov, 2002].

We derive the DGLAP and BFKL evolution equations in the N = 4 supersymmetric
gauge theory in the next-to-leading approximation. The eigenvalue of the BFKL kernel

in this model turns out to be an analytic function of the conformal spin |n| Its analytic p0|e StrUCtl.JreS ar? rela:ted
continuation to negative |n| in the leading logarithmic approximation allows us to obtain after analytlc continuation

residues of anomalous dimensions Y of twist-2 operators in the non—EhXSical Eoints Z. =

0,—1,... from the BFKL equation in an agreement with their direct calculation from the

DGLAP equation. Moreover, in the multi-color limit of the NV = 4 model the BFKL and O
DGLAP dynamics in the leading logarithmic approximation is integrable for an arbitrary e.g. LOBFKL — 7gg (J) ~ 71

number of particles. In the next-to-leading approximation the holomorphic separability
of the Pomeron hamiltonian is violated, but the corresponding Bethe-Salpeter kernel has

the property of a hermitian separability. The main singularities of anomalous dimensions see also
v at 7 = —r obtained from the BFKL and DGLAP equations in the next-to-leading [Jaroszewicz,1982; Lipatov,1996;
approximation coincide but our accuracy is not enough to verify an agreement for residues Kotikov, Lipatov, 2000:...]

of subleading poles.
17



More Analytic Structures

Gauge/String Duality Integrablllty of planar /' =4 SYM

[Brower, Polchinski, Strassler, Tan, 2006] . lGromoy, Levkovich-Maslyuk, Sizov, 2015]

2.0 Double log

|||||||||||||||||||||||||||||||

A A
* No divergence in dimensions The spectrum of local operators is discrete,
— (J/ — 1) pole in DGLAP anom. dim. is not “physical” what is the meaning of the analytic curves?

e DGLAP and BFKL are recombined near intersection
18

Any operator interpretation or just analytic continuation of functions?



Analyticity in Spin Syt ms e

Light-ray operators are expected to be the analytic continuation of local operators.

[Kravchuk, Simmons-Duffin, 2018]

....................................................................................................................................

..............................................................................................................
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Light-ray Operators

 The most important example of light-ray operator is
energy flow operator/calorimeter/ANEC operator.

* The energy flow operator is a hon-local operator
defined on a light-ray located at future null infinity

T — OO
[Sveshnikov, Tkachov, 1996; Hofman, Maldacena, 2008;...]

£(7) = lim r~ / dt ;T " (t, r77)
0

 (Generalization to other local operators

direction .~¢

L(O)a.m) = |

starting point © ~ °°

AL (g
do(—a) 2770 (x ,n)
@
[Kravchuk, Simmons-Duffin, 2018]

Examples of more general light-ray operators,

see [Chang, Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 2020; Caron-
Huot, Kologlu, Kravchuk, Meltzer, Simmons-Duffin, 2022;...]

20

Interesting Objects

for studying
Lorentzian Dynamics

S|



Recombination of Light-ray Operators in Scalar Theory

[Caron-Huot, Kologlu, Kravchuk, Meltzer , Simmons-Duffin, 2022}

Provides an operator interpretation for level repulsion in a scalar theory.

0.5
0.4
In Wilson-Fisher theory, resolving mixing
between leading twist trajectory with its 0.3
celestial shadow predicts the level crossing
near Regge intercept. 0.2
™~ I
$0’ ¢ is located at upper branch when J > 0, 0.1
while ¢»° is on the lower branch. .
0.1

« What about gauge theories? 02 04

 How to construct the operator related to BFKL?

21



DGLAP/BFKL Mixing

In the detector language



DGLAP Operators in QCD

For unpolarized cases, there are only two kinds of twist-2 operators in QCD

Local Operators Light-ray Operators

1 - : J— lim TQ/ dt
2_J¢”Y+(ZD+) 1¢ r— 00 0

S

_ _%Fu+(iD+)J_2FM+ Light Transform
24 ¢ a

J; is the spin of light-ray operator, which is

The analytic continuation of even spin branch is more useful than label J in the mixing problem.
For bare DGLAP detectors, J; = — 1 —J.

3
Physics Interpretation OYl(7) = Z/ D 0 (p— i) BT7EbL by +d. ds )
[in free theory]
Measuring E7 !

Not IR-safe measurement [HC, Moult, Zhu, 2021]
23



Renormalization of Light-ray Operators

In perturbation theory, the light-ray operators have divergences.

require renormalization [Caron-Huot, Kologlu, Kravchuk, Meltzer, Simmons-Duffin, 2022]

bare twist-2 local operators

) we(n) = lim (”25”’)2/% in-2) 00 (@)

0]
_ a;bare
n-x— 00 B

Introducing a renormalization factor and define renormalized light-ray operators

ol

a;bare

=z o IR behaviors of detectors]

contains scale dependence

Only @g‘]] and @gj] can mix, as long as J is large enough.

Time-like anomalous dimension différent from the space-iike
anomalous dimension for the

: d
RG equation: : Ol (n;p) =~2 (J; Ozs(u))@é‘ﬂen(n; p)  local operators. But they are
dln g | —_— related by reciprocity relation.

This describes the DGLAP evolution of final-state fragmentation.
24



spin of detectors

|

From now on, we will switch from J to Jy,
J=—-1—-Jg

We will work with dimensional regularization d = 4 — 2¢

Also for simplicity, let us consider pure gluon theory first

Key question: how to construct BFKL detector?

25



One-Loop Divergences (DGLAP)

We insert the gluon detector into a matrix element
1 DY (2 Z / o) dLile a,\c(p)a,\,c(p)}

tr( £, FH)

4N, l
(QO(=)DG (O] =((N? = 1) ey (22 @) ()| 4+

tree-level

a1 o @ by ky e a, p, k1
One loop calculation: %% izi% w %@ % % ‘%z

(Q]Oren(—7) DT ™ (2) Oren(9)|)1-100p  has divergence in € [soft and collinear divergences]
e DGLAP 7gg
.
l—>p g ) - Bo]

0)(— . —
(47[')26 [4Nc <¢ ( JL) + YE
. . Leading pole 1 (@*Ne o 2 N2—1 T(2—¢) 2, 2v3c
but it also has divergences at J, = -2+ N — > H((M)ze K amyi—ze (1 — 20 2% 90 (@) )

1
Jr(Jp — 1)

1
(Jo+2)(Jr +1)

(@3&26 (z ) > tree,d=4

20



Soft Theorem and J; Pole

Origin of the pole Jr + 2

e E~JtdE
Dy (2) = /\Z /0 2 T9E o} (Pare®)] | ~1/E inthe E — 0 limit (soft limit

Weinberg soft theorem: 0
C, P [/
N \ A \ /
E— An I — Z_ - — > Z E(p) TC X —Ap_1 —

Steven}Welnberg

Soft theorem at cross section level (see [Catani, Grazzini, 1999], here we use form factor for illustration):

/s> | /\ e /T\

F, — , QQZ Pi - Dj

\ (pi p)(pg p) "o~ -
\\ 2753 i#] / ' _
) ¢ Sii(p : Stefano Catani

27 key to construct BFKL detector




BFKL Detector

Apply DGLAP measurement and extract its leading J; pole from soft theorem

® full phase space °
/ dd_lﬁi /999'2 2 / \ /i \
(2m)4-12F; z{

[\» Soft Thm 2
@ DGLAP detector F, —e| —» Z ¥ O g >

/ (QE);L?{;EE /ddp5(p B \\. it ] \ / + integrate E JL + 2 vy \\iji 7
- é .

[constrained P.S.]

Integrating out soft gluon — > Measurement is transferred

28



BFKL Detector

Apply DGLAP measurement and extract its leading J; pole from soft theorem

® full phase space
d*='p;
/ (27T)d_12E7;
@® DGLAP detector

E-JLdE
/ (27)4—12F / d°pé(p - Ez)

[constrained P.S.]

[o®

\\.

New “measurement function’

<3

Zi'Zj

‘ 9/ Soft Thm 7

AN

<
~.

17479 \ / + integrate E JL +2 ; \\ij: 7
4 +

' — BFKL detector

72— d%22.d% %2,
{ / Tz 2)(2 - 2)

<]

color-interference
number detector

No() o T [ i

N (z)N (%)

EY24E.

/ddpz' 5(]%‘ — Ezzz)

29



BFKL Detector

Apply DGLAP measurement and extract its leading J; pole from soft theorem

® full phase space

°
ddc:f@; Z 2 / \ /z\
/ (2m) 12, / 999' o Soft Thm I

9 2
@® DGLAP detector Fn —e —_— Z .Z — >~ Jr +2

g
_Jr . t te £
[t [owen | NS TN N
; i

[constrained P.S.]

New “measurement” function — BFKL detector
BFKL detector

detector at J; = — 2

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
* *

DEFRE(:)

— | .. . _JL/2
I‘(]L—|—d 2) /dd_zzidd_ZZj (( 22’7, < )> NC(Zz)Nc(Z])

[(Letd=2)2 22 2;)(22 - 2,

- *
------------------------------------------------------------------------------------------------------

number detector

y E{*dE;
color-interference NC(Zz) o T;/ i ./ddpié(pi —EiZz')



BFKL Detector

Apply DGLAP measurement and extract its leading J; pole from soft theorem

® full phase space

°
ddc:f@; Z 2 / \ /z\
/ (2m) 12, / 999' o Soft Thm I

9 2
@® DGLAP detector Fn —e —_— Z .Z — >~ Jr +2

g
Ty e integrate E s
/ (ir)d—clifE [ it B2 \\0 7 \' / T 7 \iji /
4 :

[constrained P.S.]

New “measurement” function — BFKL detector
BFKL detector

detector at J; = — 2

R ee——————————eeeaesea ettt nem st ne s ne et ene st ene et eneaeeemn,
L — dd_2 Z‘dd_Q ' i E C(~. Cl~. I'(Jp +d—2) d—2_ 1d—2 ( 22+ 23
{ / WA )y N BN ) | T [t (G,
B
d—2
color-interference c c k7 dE; d :
number detector 7V (%1) < T / (7)1 12, / d®p; 6(pi — Eizi) Why this name?



| have little to explain the name... Let’s follow the advice from great physicists:

Shut up and Calculate!

This spirit may date back to
Radiation Lab at |||i|-

The Rad. Lab rallying cry of
“Get the numbers out” shaded

into “Shut up and calculate!”
https://www.nature.com/articles/505153a#/b10

Richard Feynman Nathaniel David Mermin

Though it is often misattributed to Richard Feynman, Mermin coined
the phrase "shut up and calculate!” to characterize the views of many
physicists regarding the interpretation of quantum mechanics.

Julian Schwinger (standing) with colleagues

at MIT's Radiation Laboratory during the
Second World War. Credit: MIT MUSEUM

https://en.wikipedia.org/wiki/N._David_Mermin



One-Loop Divergences (BFKL)

Matrix element calculation via amplitude/form factor / | \

I'(Jp +d—2) 2D * D —JL/2
DBFKL _ /LIP J * : T
i) = iz 2 ) 0 X (i) R T

\ /
17J YJE /

e same one-loop diagrams as DGLAP case

* color interference
* non-trivial kernel in the phase space integral

e the “measurement” is different

One-loop divergence in €
2
N,

87’(’6

BFKL
E— <DJL,bare(Z)>1_1OOp —

2y + O (1 + J1/2) + 6O (= J1/2) [ (DITEL (), + O)

BFKL eigenvalue!

One-loop divergence near J; ~ — 2

g2i% N (N2 — 1) * proportional to DGLAP detector

DBFKL R <D9 bare > e
< JL baLre(Z)>1—loop JL — ( 2+ 46) ( ) Jr (Z) tree i

e comes from collinear divergence

33 Z1,R9 ~ 2




Structures near the Intersection

DGLAP

e-pole

Ve
/7
/7
/7
7/
/7
7/
7
7/
7/
(1
71
/7
i

soft divergence

e-pole S
.’ '  pDGLAP _, 1 pBFKL
.’ : Jr Jp+27 -2
// 1
3 o ¢
g BFKL
DGLAP _ HBFKL
DBFKL _, 1 pBFKL Dy- =Dy
Jr,—6+2d ~ 6—2d

collinear divergence -

This kernel has pole at J; =2 —d

Degeneracy at J; =2 —d _—

BFKL ['(Jp+d—2) / 2pi - Dj e x c
(P bare(2)) = D(45=2) Z R jEZX <2,z pi) (22 pg)) Tk, |TE @ 51 Px)
]

J, =2 — d ()

L d 2Z/dLIPS 0 62— 5) (Fx, | TS @ TS| Fx, ) + (i 4 )
1,7€X
1]

color identit ), :
> S0 (D))

color Qd 2 d— 2 c
conservation Z/dLIPS Z 0 i L “FX >

’LEX 34

1
example (zz -

Quark: C; =Cfp
Gluon: C; =0C}4



Pole Subtraction and Renormalization

Philosophy: near the intersection, we define renormalized detectors by
SU btraC’[ing all pOIeS. (simultaneously subtract poles in € and Jr,)

Qa_o g,bare
5—CaDY

First, we need to construct a non-degenerate basis D} =
L —J, —242e HBFKL Qd—QC 19,bare
H JL,bare_I_ 2 A Jr,
Jr,+2—2¢
. . . rf?oD?Lbare = (2—d — Jp)Dy e A
classical dimensions | — popbare _ (27 8= J 0 pare
DoDJ, bare = 0 ’ ‘?] Lo —1 0) "

- a log-multiplet \ J

Define renormalized operators with the minimal subtraction scheme ( M S-like ) 7
bare __ ren - : 1 1 1
D5 = Z‘JL\_JL/ polynomials in = 57— 75—

The matrix of dimension (or spectrum) can be extracted from the renormalization factor

9 = Z;Ll <@0 + 5(a8)ai ) ZJL B(QS) = —2eas + O(QS)

35



Avoided Crossing in QCD

The perturbative operator spectrum can be obtained by diagonalizing &

pure gluon Chew-Frautschi Plot

local operator spin/detector dimension*
2.0r

1.5}

1.0

0.5}

local operator dimension/detector spin*

0.5 1.0 15

* there may be a possible constant shift and a minus sign.
36



Avoided Crossing in QCD

The perturbative operator spectrum can be obtained by diagonalizing &

pure gluon Chew-Frautschi Plot M» QCD Chew-Frautschi Plot

local operator spin/detector dimension*

2.0¢

1.5}

1.0

0.5}

15 ~1.0 05 05 1.0 15 15 1.0 ~05 0.5 1.0 15
A \ -0.5

 We also include the mixing with the celestial shadow

local operator dimension/detector spin*

05 10 15

| | S * The lower intersection is related to subleading soft theorem
* there may be a possible constant shift and a minus sign.

37



Application



The mixing story may sound nice theoretically...

but In a practical sense,

the BFKL detector is not measurable in a real-world experiment!

* final states are hadrons, impossible to impose color interference

Why should one care about this weird detector?



The mixing story may sound nice theoretically...

but In a practical sense,

the BFKL detector is not measurable in a real-world experiment!

Why should one care about this weird detector?

Philosophy: | These perturbative detectors show up as intermediate states.

40



Simplest Family of Observables in Experiments
One-point event shapes/DGLAP-type “hadron” detectors®

*Here “hadron” is to emphasize all particles after hadronization.
In the high-energy scattering, we assume the hadrons are almost massless.

The simplest detectors do not distinguish the particle species

v =—1— JL
A
" ay,(p)an(p)

05, () =Y [ Gt @2 F

sum over all particles

For example, we can measure the observables in the eTe™ collider

measurement function

vl T ©HL(2)
f0.@) = =3 [ A3 (%) _ dr (05.G))g
- < /4 Otot

v =2 : energy

Otot QY1
. c.0.Mm. energy
v =1: multiplicity | A1 These are not IR-safe observables! (except v = 2)

heX

.




Factorization Picture in QCD

In the high-energy limit, we can factorize QCD observables into

perturbative part and non-perturbative part.

[asymptotic freedom] [confinement]

We can find a factorization scale i s.t. @ > 1> Aqcp

I 1
For hard scattering length scale 0 B can be approximated as pert. infinity.

In our case, the factorization is
the matching of hadronic detectors onto parton detectors.

--------------

--------------

Wilson coefficients that contain hadronization information
42



Properties of Detector Matching

k
Dimensional analysis v —1] v—1—Ap] «— [A]]
Aqcp Q Typical energy scale
AaelD_AL QAL Typical size
r A
Largest dimension detector dominates the detector matching.

- y
Ar +1 1
20 oWer Y For , the dominant operator is . The corresponding

matching coefficients are related to the

1.5}

(- )

f(v,Q) ~ QAT

. ,

leading approx. for
1-pt event shapes

43



Monte Carlo Simulation Data (Pythia)

We generate events from y*- and h*-decay respectively in Pythia

at center of mass energy O = 250,300,350,...,1000 GeV

g N
and fit the simulation data to the ansatz f(r,Q) ~ QAL —vtl
v = 0.495 L — 909

In the high energy limit, power law is a good approximation.



Monte Carlo Simulation Data (Pythia)

We generate events from y*- and h*-decay respectively in Pythia

at center of mass energy O = 250,300,350,...,1000 GeV

é )
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CMS Open Data

We also used the CMS Open Data with jet energy in the range [375,1125] GeV.

Positive energy weighting
—
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Analytic Structure in Complex Space

When there Is a level repulsion phenomenon, we can see branch cuts in complex space.

[Gromov, Levkovich-Maslyuk, Sizov, 2015]
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LO Top Trajectory in Complex Space

In complex space, we can easily see the branch cut from the discontinuity in
the imaginary part.

e

Im|v] 3 Im[v]

3
2 2
1 1
0 0
. 6
4

ol
4
i RG[AL—Fl] |

© Im[A]

Re|v] 1 Re[v]
Real Part o, = 0.09 Imaginary Part
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LO Top Trajectory in Complex Space

In complex space, we can easily see the branch cut from the discontinuity in

the imaginary part.

Y

Real Part

1
0
6
4
2
R
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Re|v]

elAp + 1]

a, = 0.09
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ChatGPT S HE

In collider physics, the concept of "complexified observables"—where real-valued
observables are extended into the complex plane—has not been a prevalent focus
historically. The majority of collider observables are real-valued, aligning with
measurable physical quantities.

L et’'s measure complexified observables!

However, there are instances where complex numbers play a role in the theoretical

framework of collider physics. For example, in the study of right-handed charged

@ currents within the Standard Model Effective Field Theory, complex couplings of the
p W boson to right-handed quarks are considered. These couplings are inherently
f ( Y Q Otot Z / Oete—X Z complex due to the nature of quantum field interactions, and their effects are
heX explored in both collider and low-energy precision experiments. arnavosc
Additionally, the analysis of CP-violating observables often involves complex
phases. Optimal kinematic observables, which can be sensitive to CP violation, are
sometimes defined in specific frames and approximated at the reconstruction level.
To the best of my knowledge , this might be This approach allows for the exploration of CP-violating effects in collider
the first and should be the simplest non-trivial experiments.  ccroston
complexified observable in collider physics. While these examples involve complex numbers in theoretical constructs, the direct

extension of real-valued observables to complex values—termed "complexified

observables"—is not a common practice in collider physics. The field primarily

focuses on real-valued measurements that correspond to observable quantities in
experiments.




Pythia Data

y*-decay events

Near the location of anticipated branch cuts, we see violent changes — a series of
peaks and dips!

=

»_.

We can clearly see the discontinuity!

Im|v]
2 Re[AL + 1] . .

Im|v]

* Im[A[]

N .

Re|v]

Re|v]

Real Part Imaginary Part
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Pythia Data vs LO prediction

i

view from below

Im[v]

© Im[Ay]

Real Part

Imaginary Part
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CMS Open Data

In complex space, the structure of branch cut seems to be robust to the
effects of jet algorithms and other reasonable experimental cuts.

3 Im|v]

‘ ,  RelAp +1]

Rel|v]

Real Part Imaginary Part
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light-ray operators One-point event shape
BFKL/DGLAP mixing

e Factorization

e renormalization
 Complexification

* |evel repulsion L .
* Pythia simulation

e analyticity

CMS Open Data

Thanks!

need our experimental colleagues



Behaviors Near Branch Cut

Im[v]

r — axis: ()
Choose a fixed Im v slice and y — axis: In(f(v,Q))
increase Re v to cross the branch cut

Im[AL]

® real part
® imaginary part

Near the branch cut, the ansatz In(f) = yIn O + c is not a good approximation
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