Dissecting Jet Modification in the QGP with Multi-Point Energy Correlators

João M. Silva (U. Granada/LIP - Lisbon)

Mainly based on the work by Barata, Moult, Sadofyev, JMS, 2503.13603

New Opportunities in Particle and Nuclear Physics with Energy Correlators Wuhan, May 15th 2025

DEGRANADA

"ERC-PT A-Projects - Unveiling the Time Dynamics of Quantum Chromodynamics in the Quark-Gluon Plasma"

European Research Council Established by the European Commission

Quark-gluon plasma in HICs

(Near) local thermal eq.

nuclear matter lifetime $\sim 10 \text{ fm} \longrightarrow \text{use } \underline{\text{hard probes}}!$

Probing the QGP with jets

jets - high energy, collimated QCD cascades

By **comparing heavy-ion jets** with their vacuum counterparts (**p-p jets**), <u>dedicated observables</u> can be used to access the **QGP's transport properties**.

Wuhan, May 15th 2025

Probing the QGP with jets

jet-medium momentum exchanges

Probing the QGP with jets

He, Luo, Wang, Zhu, PRC, 2015 Tachibana, Chang, Qin, PRC, 2017 Casalderrey-Solana et al, JHEP, 2021 Chen, Yang, He, Ke, Pang, Wang, PRL, 2021 Yang, Luo, Chen, Pang, Wang, PRL, 2023

How are these two physical effects imprinted on energy correlators?

Wuhan, May 15th 2025

Energy correlators

Energy correlators

Energy flow operator

[Barata, Kuzmin, Milhano, Sadofyev, 2412.03616]

classical/uncorrelated energy flow correlated energy flow (e.g. described by hydro) (e.g. calculated perturbatively) $\hat{\mathcal{E}}(n) = \mathcal{E}_c(n) + \hat{\mathcal{E}}_h(n)$

Energy flow operator

[Barata, Kuzmin, Milhano, Sadofyev, 2412.03616]

How are these two energy flows imprinted on ENCs / PENCs?

[Barata, Kuzmin, Milhano, Sadofyev, 2412.03616]

classical/uncorrelated energy flow (e.g. described by hydro) $\hat{\mathcal{E}}(n) = \mathcal{E}_c(n) + \hat{\mathcal{E}}_h(n)$ Includes medium response (sourced by jet energy deposition) Lassical/uncorrelated energy flow (e.g. calculated perturbatively) Jet energy flux (includes medium-induced modifications)

In 2412.03616 (Barata, Kuzmin, Milhano, Sadofyev), for E2C:

- ◆ Assume a form for the **energy deposited by the jet** on the medium.
- ◆ Use it as a source term for <u>linearised hydrodynamics</u> equations:

$$\partial_{\mu}\delta T^{\mu\nu} = J^{\nu}$$

• Calculate corresponding classical energy flow from the perturbation $\delta T^{\mu\nu}$.

see Andrey's talk

[Barata, Kuzmin, Milhano, Sadofyev, 2412.03616]

$$\frac{d\Sigma_{cc}^{(2)}}{d\theta} \sim \int \frac{\langle \mathcal{E}_c(\mathbf{n}_1)\mathcal{E}_c(\mathbf{n}_2) \rangle}{p_t^2} = \int \frac{\mathcal{E}_c(\mathbf{n}_1)\mathcal{E}_c(\mathbf{n}_2)}{p_t^2}$$

In 2412.03616 (Barata, Kuzmin, Milhano, Sadofyev), for <u>E2C</u>:

- ◆ Assume a form for the **energy deposited by the jet** on the medium.
- Use it as a source term for <u>linearised hydrodynamics</u> equations:

$$\partial_{\mu}\delta T^{\mu\nu} = J^{\nu}$$

• Calculate corresponding classical energy flow from the perturbation $\delta T^{\mu\nu}$.

In 2503.13603 (this work, Barata, Moult, Sadofyev, JMS), for <u>PENC and E3C</u>:

◆ Directly assume the functional form for the classical energy flow as an illustration:

$$\mathcal{E}_c(\boldsymbol{n}) = rac{\Delta}{\pi heta_0} e^{- heta^2/ heta_0^2}$$

see Andrey's talk

[Barata, Kuzmin, Milhano, Sadofyev, 2412.03616]

correlated energy flow (e.g. calculated perturbatively) $\hat{\mathcal{E}}(oldsymbol{n}) = \mathcal{E}_c(oldsymbol{n}) + \hat{\mathcal{E}}_h(oldsymbol{n})$ **Jet energy flux** (includes medium-induced modifications)

see e.g. Andres et al., 2307.15110, Barata et al., 2308.01294

$$\int \langle \hat{\mathcal{E}}_h(\boldsymbol{n}_1) \hat{\mathcal{E}}_h(\boldsymbol{n}_2) ... \hat{\mathcal{E}}_h(\boldsymbol{n}_N) \rangle \sim \int d\sigma_{1 \to N} E_1 E_2 ... E_N$$

Wuhan, May 15th 2025

In-medium perturbative calculation

Resummation of *single* gluon exchanges with the medium (*BDMPS-Z*) ($p^+ \gg |p|, |\Delta p|$)

In-medium perturbative calculation

The medium is described by a stochastic gauge field, with configurations following a gaussian white noise model:

•
$$n(t) = n \Theta(t < L)$$
 (static and finite length)

- $\gamma(x, y) = \gamma(y x)$ (*homogeneous*, i.e., translation invariant)
- $\gamma(y x) = \gamma(|y x|)$ (*isotropic*, i.e., rotation invariant)

 $\hat{q} \sim \text{accumulated } k_{\perp}^2$ per mean free path

(multiple soft scattering approximation)

Wuhan, May 15th 2025

In-medium perturbative calculation

$$\langle \mathscr{A}_a^-(x^+, \boldsymbol{x}), \mathscr{A}_b^{*-}(y^+, \boldsymbol{y}) \rangle$$

Medium model

Resummation of *single* gluon exchanges with the medium + color precession

Stochastic gauge field in light-cone gauge Gaussian white noise model

$$\frac{d\sigma_{1\to N}}{d\Omega}(\hat{q},L) = \langle \mathscr{M}\mathscr{M}^{\dagger} \rangle_{\mathscr{A}} \sim \int \mathscr{D}\boldsymbol{r}_{1} \dots \langle \mathscr{U}_{1}\mathscr{U}_{2}^{\dagger} \dots \rangle_{\mathscr{A}}$$

n

Projected ENCs (perturbative only)

First focus on a simpler object: the **projected ENC (PENC)**, i.e. only the largest angular distance (R_L) is fixed.

only need the $1 \rightarrow 2$ **vacuum** splitting function for the PENC

Wuhan, May 15th 2025

Projected ENCs (perturbative only)

First focus on a simpler object: the **projected ENC (PENC)**, i.e. only the largest angular distance (R_L) is fixed.

Wuhan, May 15th 2025

¹⁹

Full PE3C

Focus on the PE3C. What happens if we add a classical/uncorrelated energy flow?

Full PE3C

Focus on the PE3C. What happens if we add a classical/uncorrelated energy flow?

Full PE3C

Our simple physical picture of a classical energy flow is in **<u>qualitative</u>** agreement with, e.g., the Hybrid model.

Wuhan, May 15th 2025

Full PE3C: collinear limit

Focus on the **PE3C**. What is the behaviour in the collinear limit?

Full PE3C: collinear limit

Focus on the **PE3C**. What is the behaviour in the collinear limit?

$$\frac{d\Sigma_P^{(3)}}{dR_L} = \frac{a_{2,0}^{P(3)}}{R_L} + \left(a_{4,0}^{P(3)} + \frac{b_{4,0}^{P(3)} + c_4^{P(3)}}{R_L}\right)R_L + \dots$$

Perturbative and classical contributions:

- 1. start at order R_L
- 2. are entangled with each other, i.e., an extraction of the series coefficients **mixes** information about **perturbative** jet modifications and **classical energy flow**

E3C in a medium

Let us go beyond the PE3C to study the **full angular structure** of the E3C, differential in (R_L, ξ, ϕ) . We first change coordinates from the 3 angles $(R_L > R_M > R_S)$ to a more convenient set:

 $(R_L, R_M, R_S) \rightarrow (R_L, \xi, \phi)$ $\xi = R_S/R_M$ [Komiske, Moult, Thaler, Zhu, 2201.07800] $\sin^2 \phi = 1 - (R_L - R_M)^2/R_S^2$

Let us focus only on the fully perturbative contribution to the E3C:

Cascade approximation for the $q \rightarrow qgg$ splitting function

We approximate the $1 \rightarrow 3$ splitting function by a succession of $1 \rightarrow 2$ branchings \rightarrow **cascade approximation**. [Fickinger, Ovanesyan, Vitev, arXiv:1304.3497]

 $\frac{P_{0 \to 123}}{s_{123}} \approx \frac{P_{0 \to 1(2+3)}P_{(2+3) \to 23}}{s_{1,(2+3)}} + \frac{P_{0 \to 2(1+3)}P_{(1+3) \to 13}}{s_{2,(1+3)}} + \frac{P_{0 \to 3(1+2)}P_{(1+2) \to 12}}{s_{3,(1+2)}}$

Naturally, it misses out on <u>interferences</u> which are only included in the full $1 \rightarrow 3$ splitting function.

Wuhan, May 15th 2025

Schematically:

Cascade approximation for the $q \rightarrow qgg$ splitting function

How well does the cascade approximation work in <u>vacuum</u>?

E3C in a medium: results for *hhh*

E3C in a medium: results for *hhh*

E3C in a medium: results for *hhh* and *ccc*

 $\langle \mathcal{E}_c(\mathbf{n}_1) \mathcal{E}_c(\mathbf{n}_2) \mathcal{E}_c(\mathbf{n}_3) \rangle = \mathcal{E}_c(\mathbf{n}_1) \mathcal{E}_c(\mathbf{n}_2) \mathcal{E}_c(\mathbf{n}_3)$

Wuhan, May 15th 2025

Directional properties \leftrightarrow even powers

$$\frac{d\Sigma_P^{(3)}}{dR_L} = \frac{a_{2,0}^{P(3)}}{R_L} + \left(a_{4,0}^{P(3)} + b_{4,0}^{P(3)} + c_4^{P(3)}\right)R_L + (\dots)R_L^3 + \dots$$

- Only **odd powers** show up in the collinear expansion.
- ✦ Perturbative contributions necessarily result in odd powers.

Directional properties \leftrightarrow even powers

$$\frac{d\Sigma_P^{(3)}}{dR_L} = \frac{a_{2,0}^{P(3)}}{R_L} + \left(a_{4,0}^{P(3)} + b_{4,0}^{P(3)} + c_4^{P(3)}\right)R_L + (\dots)R_L^2 + (\dots)R_L^3 + \dots$$

- Only **odd powers** show up in the collinear expansion.
- ✤ Perturbative contributions necessarily result in odd powers.
- Classical contribution can give rise to even powers for a medium with directional effects, e.g.:

Wuhan, May 15th 2025

Summary and outlook

Summary:

- Uncorrelated / classical energy fluxes leave universal imprints on energy correlators;
- These imprints are determined by geometrical correlations rather than by the exact functional form of the classical flux;
- Classical (includes medium response) and perturbative contributions overlap in both PE3C and E3C - only by accounting for both can one systematically extract information about the medium.

Outlook:

 Even powers of the collinear expansion of PENCs can give access to directional properties of the medium.

