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Low energy High energy

!! ≫ !Proton
("!, $")

Proton
(", $")
SaturationDilute

Early History of Proton
21st Century View of Proton

Quarks and gluon in QCD

Underlying theory ) Quantum Chromodynamics (QCD).

From math and symmetry, gluon must exist to ensure gauge symmetry.

The carrier of the color force is also the gluon.

Extraction of 1-D quark and gluon distributions inside proton.
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Gluon splitting Gluon fusion

Gluon Saturation in the small-x

• dense gluon field —gluon saturation— Color Glass Condensate (CGC)  


• multiple gluon scattering + small-x non-linear evolution (BK/JIMWLK)
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• CMS will measure heavy quark di-jets/hadrons with higher-statistics Run 3 data.

• High-precision experimental data will be available in the near future !!! 

The heavy quark pair in UPC
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D0  production peaks at negative rapidities 
→ photons (although very energetic) have on 

     average less energy than the gluons
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2)  The heavy quark/meson pair photo-production in small-x framework
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• Studying this process can help us to understand the gluon saturation effect.

The heavy quark pair in UPC
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small-x gluon! (Dense)

xg =
P2

⊥ + m2
Q

s
(e−y1 + e−y2) ≪ 1

heavy quark pair

nucleus

ultra-dense 
gluonic matter


quasi-real photon
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In the back-to-back limit ( ), it can be factorized as TMD hard factor   WW gluon disq ≪ P ⊗

 7

TMD 

Hard factor

• Golden channel to study Weizsacker-Williams (WW) gluon dis.

•  WW gluon dis encodes dense gluon info.

Factorization of heavy quark pair photo-production
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un-polarized 

WW gluon

linearly-polarized

 WW gluon

P = (1 − z)k1 − zk2

q = k1 + k2Momentum imbalance

Relative momentum

dσγA→QQ̄X
LO

dy1dy2d2Pd2q
= xγ f(xγ)OTMD(P)[F(3)

gg (xg, q) + f1 cos(2ϕPq)H(3)
gg (xg, q)]

z = k+
1

p+γ

longitudinal momentum fraction 


Q

Q̄

...

�A

A

WW gluon

Introduction
Collectivity of Heavy Mesons in CGC

Wilson Lines in Color Glass Condensate Formalism

Consider the multiple scattering between a fast quark and target background gluon fields.

x?

AA A A

· · ·U(x?)=P exp
�
�ig

R
dz+A�(x?,z+)

�
· · · · · ·

The Wilson loop (color singlet dipole) in McLerran-Venugopalan (MV) model
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Nc

⌦
TrU(x?)U†(y?)

↵
=e� Q2

s(x?�y?)2

4 · · · · · ·

Dipole (DP gluon)

· · ·⌦⌦ ⌦⌦

Quadrupole (WW gluon)

· · ·

· · ·

⌦⌦

⌦⌦

⌦⌦
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[Dominguez, Marquet, Xiao, Yuan, Phys.Rev.D 83 (2011) 
105005; Metz, Zhou, Phys.Rev.D 84 (2011) 051503 ; 
Dominguez, Qiu, Xiao, Yuan, Phys.Rev.D 85 (2012) 045003]



Initial radiation 

from the gluon

Final radiations 

from the quark pair
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Soft gluon radiations and qt broadening
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LO
dσLO

d2q
∝ F(3)

gg (q) + f1 cos(2ϕPq)H(3)
gg (q)

( Saturation scale   )q ∼ Qs

LO+ Soft-gluon radiations

Soft gluon radiations 

dσ
d2q

∝ ∫
dσLO
d2q′ 

⊗ )r(kg)δ(2) (q − kg − q′ )

)r(kg) ∝ ᾱs

k2g
ln M2

in

k2g
+ . . .
[Muller, Xiao, Yuan, PRD88, 114010 (2013); Stasto, Wei, Xiao, Feng Yuan, Phys.Lett.B 784 (2018) 301-306; 
Hatta, Xiao, Yuan, Zhou, PRD104, 054037 (2021); Shao, YS, Zhang, Zhou, Zhou, JHEP 07 (2024) 189]

∞

∑
n=0

1
n! (αsL)n = eαsL Soft-gluon radiations Saturation effect

azimuthal asymmetry
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dσ
dy1dy2d2Pd2q

= xγ f(xγ)∫ d2bd2k
(2π)2 eiq⋅b−iq′ ⋅be−Sud(b,Min)[1 − c2

2Cfαs(μb)
π

cos(2ϕbP)]
× [OTMD(P)F(3)

gg (xg, q′ ) + cos(2ϕPq′ 
)ΩTMD(P)H(3)

gg (xg, q′ )]

small-x and the Sudakov resummation

[Marquet, YS, Zhang, in preparation]
• The resummation improved cross-section  

• the Sudakov factor 

Sud(b, Min) = Sudi(b, Min) + 2Sudf(b, Min) + Sudi
NP(b, Min)

Initial gluon 
radiation 


Final heavy quarks

radiation 


Non-perturbative

effects


 Soft gluon radiations 
also generate azimuthal 

asymmetry!!!

 Linearly-polarized 
gluon generate 

azimuthal asymmetry.
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Preliminary results for heavy quark pair photo-production

• without Sudakov effect, only linearly polarised 

WW gluon          generates  .⟨cos 2ϕ⟩

• With Sudakov effect, the linearly polarised WW 

has been suppressed, and the soft-gluon 

radiation dominates. 

p
s = 5360 GeV, yi = 1.5

P = [2.5, 5.5] GeV, c quark pair

0 0.2 0.4 0.6 0.8 1 1.2
0

0.02

0.04

0.06

0.08

0.1

q [GeV]

hc
os

2�
i

H
(3)
gg , w/o Sud

H
(3)
gg , w/ Sud

F
(3)
gg +H

(3)
gg , w/ Sud

Exploring Saturation via Azimuthal Asymmetry in Open Heavy flavor Pair
Production at UPC

Cyrille Marquet,
1
Yu Shi,
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and Cheng Zhang

1CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
2Key Laboratory of Particle Physics and Particle Irradiation (MOE),

Institute of frontier and interdisciplinary science,
Shandong University, Qingdao, Shandong 266237, China

Exploring the evidence of gluon saturation e↵ect has always been an essential topic in the high-

energy collisions. We investigate the impact of the multi-soft-gluon radiation on the azimuthal angle

asymmetries between the total transverse momenta and the transverse momenta imbalance of heavy

quark/meson pair in the ultraperipheral pA and AA collisions. By incorporating resummation of the

soft-gluon radiation within the small-x framework, we find that the azimuthal angle asymmetries of

heavy meson/quark pairs are sensitive to the gluon saturation e↵ect in ultraperipheral collisions.

I. INTRODUCTION

II. THE HEAVY QUARK PAIR PRODUCTION IN THE �A COLLISION

Let us describe the heavy quark pair production via photo-production as follows:

�(x�) +A ! Q(k1) + Q̄(k2) +X, (1)

where a quasi-real photon, carrying a longitudinal momentum fraction x� , interacts with a nucleus A to produce a

heavy meson pair. In high-energy collisions, the incoming electron or nucleus radiates a quasi-real photon with low

virtuality. This photon then undergoes a splitting process, generating a heavy quark-antiquark pair. The produced

heavy quark pair subsequently interacts with the dense gluon field inside the target via multiple scatterings. Finally,

the heavy quarks hadronize, leading to the formation of a heavy meson pair.

Within the Color Glass Condensate (CGC) framework, the leading-order (LO) cross-section for this process can be

factorized as:

d�
�A!QQ̄X
LO

dy1dy2d
2P d2q

= x�f(x�)

h
OTMD(z,P )F

(3)

gg (xg, q) + cos(2�Pq)⌦TMD(z,P )H
(3)

gg (xg, q)
i
, (2)

where x�f(x�) represents the collinear photon distribution inside the nucleus, and H(xg, z,P , q) stands for the hard

factor of this process. ki and yi represent the transverse momenta and rapidities of the heavy quark and anti-quark.

The total momentum of the heavy di-quark system, P , and the transverse momentum of the heavy quark pair,

q, are defined as P = (1 � z)k1 � zk2 and q = k1 + k2 where z is the longitudinal momentum fraction of the

heavy quark relative to the incoming photon. Furthermore, x� denotes the longitudinal momentum fraction of the

incoming quasi-real photon with respect to the electron/nucleus, while xg represents the longitudinal momentum

fraction of the small-x gluon with respect to the dense nucleus. These kinematic variables are explicitly defined

as z = mT1e
y1/(mT1e

y1 + mT2e
y2) and x�/g = (m1T e

±y1 + m2T e
±y2)/

p
s where the transverse mass is defined as

miT =

q
k2

i +m2

Q with heavy quark mass mQ and the collisional energy
p
s.

In the back-to-back limit, the hard factor can be simplified as the coupling of the TMD hard factor and WW gluon

distribution, which is given as [1, 2, 4]

H(z, xg,P , q) = OTMD(z,P )F
(3)

gg (xg, q) + cos(2�Pq)⌦TMD(z,P )H
(3)

gg (xg, q), (3)

F
(3)

gg (xg, q) represents the un-polarized Weizsäcker-Williams (WW) gluon distribution, while H
(3)

gg (xg, q) corresponds
to the linearly polarized WW gluon distribution. The isotropic term OTMD and the azimuthal asymmetry term ⌦TMD

can be expressed as

OTMD(z,P ) =

⇣
P 4

+ ✏
4

f

⌘ ⇥
z
2
+ (1� z)

2
⇤
+ 2m

2P 2

⇣
P 2 + ✏2f

⌘4
, (4)

⌦TMD(z,P ) = cos(2�Pq)
�2✏

2

fP
2
⇥
z
2
+ (1� z)

2
⇤
+ 2m

2P 2

⇣
P 2 + ✏2f

⌘4
,
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⟨cos 2ϕ⟩ =
∫ d0 . ) . cos(2ϕ) dσ

d0 . ) .

∫ d0 . ) . dσ
d0 . ) .
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Preliminary results for heavy quark pair photo-production

strong saturation effect!!!

p
s = 5360 GeV, yi = 1.5

P = [2.5, 5.5] GeV, c quark pair
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dσγA→DD̄X

dy1dy2d2p1d2p2
= ∫ DD/c(zD, μ) ⊗ DD̄/c̄(zD̄, μ) ⊗ dσγA→QQ̄X

dy1dy2d2k1d2k2

Preliminary results for open heavy flavour pair photo-production
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• The   ratio may serve as a good process to detect the saturation effect.cos(2ϕ)

p
s = 5360 GeV, yi = 2.5

P h = [2.5, 5] GeV, D meson pair
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2)   The transverse energy-energy correlator in heavy quark pair photo-production
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The TEEC in heavy quark pair photo-production

• The Transverse Energy-Energy Correlator (TEEC)

[ Ali, Pietarinen, Stirling, Phys.Lett.B 141 (1984) 447-454; Gao, Li, Moult, Zhu, 2019, 2023]

dΣγA

dτ
= ∑

h1,h2
∫ dy1dy2d2p1d2p2

dσγA→hhX

dy1dy2d2p1d2p2

Eh1TEh2T

(∑h′ 1/T
Eh′ 1/c̄T) (∑h′ 2/T Eh′ 2/c̄T)

δ(τ − 1 + cos ϕab

2 )

Transverse Energy  
weighted

Sum over  
all hadrons

Azimuthal angle  
correlations

Precision Hadronic Event Shapes:

From Drell-Yan to Dijets

A

[Gao, Li, IM, Zhu]

ATLAS SM Seminar April 6, 2022 2 / 19

• Collinear limit  : Probe jet substructure.


• Back-to-back limit  : Probe TMD physics.

τ → 1
τ → 0

[Liu, Liu, Pan, Yuan, Zhu, PRL, 2023; Liu, Zhu, 24;  Liu, Vogelsang, Yuan, Zhu, 
PRL, 25; Kang, Lee, Shao, Zhao, JHEP, 24; Kang, Penttala, Zhao, Zhou, PRD, 
2024; Devereaux, Fan, Ke, Lee, Moult, 23; Chen, Ma, Tong, JHEP, 2024; 
Mantysaari, Tawabutr, Tong, 25; Bhattacharya, Kang, Padilla, Penttala, 2025; Kang, 
Kao, Li, Penttala, 25;] And many other works

• Recent developments (EEC/TEEC in TMD/Small-x)

[ Andres, Dominguez, Holguin, Marquet, Moult, 
PRD, 2024; Xing, Cao, Qin, Wang, PRL, 25]

Heavy quark in collinear limit
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p
s = 5.36 TeV, y = 2

pi? > 10 GeV
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s = 5.36 TeV, y = 2
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Preliminary results for transverse energy-energy correlator

Nuclear modification factor                    RpA = 1
A

σγA

σγp

Saturation 
 effects 

• In the back-to-back region
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Summary
• We investigate the impact of the multi-soft-gluon radiation on 

heavy quark/meson pair photo-production (small x + Sudakov).


• Two observables: azimuthal Asymmetry and TEEC.


• Linearly-polarized WW gluon has been suppressed by the 

Sudakov effect.

     Question: how to detect the linearly-polarized WW gluon?


• Sensitivity of the   ratio to saturation effect.


• For the TEEC, the suppression of 15 − 20%  in   .

⟨cos 2ϕ⟩A

⟨cos 2ϕ⟩p

RpA

• Great potential in searching for compelling evidences of gluon 

saturation in the near future.
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p
s = 5360 GeV, yi = 2.5

P h = [2.5, 5] GeV, D meson pair
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• Consider the multiple scattering between a fast quark and target background gluon fields.

Wilson lines in CGC

<X�6KL��Ꭺ紲�

U(x⊥) = 0 exp (−ig∫ dz+A−(x⊥, z+))

Introduction
Collectivity of Heavy Mesons in CGC

Wilson Lines in Color Glass Condensate Formalism

Consider the multiple scattering between a fast quark and target background gluon fields.

x?

AA A A

· · ·U(x?)=P exp
�
�ig

R
dz+A�(x?,z+)

�
· · · · · ·

The Wilson loop (color singlet dipole) in McLerran-Venugopalan (MV) model

x?

y?

· · ·1
Nc

⌦
TrU(x?)U†(y?)

↵
=e� Q2

s(x?�y?)2

4 · · · · · ·

Dipole (DP gluon)

· · ·⌦⌦ ⌦⌦

Quadrupole (WW gluon)

· · ·

· · ·

⌦⌦

⌦⌦

⌦⌦
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linearly-polarized 

xGWW(xg, q) = 4
g2s ∫ d2xd2y

(2π)3 e−q⋅(x−y)⟨Tr [(∂iUx)U†
y (∂iUy)U†

x ]⟩

= ℱ(3)
gg (xg, q) + (

2qiqj

q2 − δij) ℋ(3)
gg (xg, q)

un-polarized  

• Weizsacker-Williams (WW) gluon     Quadrupole→

• The Wilson loop (color singlet dipole)

1
Nc

⟨Tr [UxU†
y ]⟩
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35

dependence for simplicity. In our numerical implementation, we define S(2)

xg (r?) = 1�N(⌘, r?). Here N(⌘, r?) is the
solution to the rcBK evolution equation [99–106], which is given by

dN(⌘, r?)

d⌘
=

Z
d2r1?KBK(r?, r1?, r2?)[N(⌘, r1?) +N(⌘, r2?)�N(⌘, r?)�N(⌘, r2?)N(⌘, r2?)], (177)

where r2? ⌘ r? � r1?. We employ the approach proposed in Ref. [102] to take into account the running coupling
corrections. The BK evolution kernel, KBK, is then given by

KBK(r?, r1?, r2?) =
↵s(r?)Nc

2⇡2


r2?

r2
1?r

2

2?
+

↵s(r1?)� ↵s(r2?)

↵s(r2?)

1

r2
1?

+
↵s(r2?)� ↵s(r1?)

↵s(r1?)

1

r2
2?

�
, (178)

where

↵s(r?) =
4⇡

(11� 2

3
nf ) ln

4

a2
0r

2
⇤

, (179)

with a0 = 0.2 GeV, nf = 3, r2⇤ = r2?
1+r2?/r2max

and rmax = 5 GeV�1. This method is similar to the b⇤-prescription in

the well-known Collins-Soper-Sterman (CSS) formalism and it has also been implemented in Ref. [108]. It ensures
a smooth transition from the perturbative region to the infrared regime and freezes the strong coupling constant in
the long distance limit. The numerical solution of the rcBK equation with this prescription for ↵s(r?) is quite close
to that with the conventional method where ↵s is frozen at a certain value. We set rmax to be 5 GeV�1, so that
↵s(r? ! 1) = 1, which is in line with Ref. [99].

The above rcBK evolution equation can be solved numerically with a given initial condition. In our calculation, we
employ the initial condition given by the modified McLerran-Venugopalan model [99, 107]

N(⌘ = 0, r?) = 1� exp


�1

4
(r2?Q

2

s0)
� ln(e+

1

|r?|⇤BK

)

�
, (180)

where � = 1.118 and ⇤BK = 0.24 GeV. Here ⇤BK is used to regulate the infrared physics, and it is usually interpreted
as the QCD scale ⇤QCD. As one of the two parameters in the modified MV model for the initial condition, we use the
value[107] ⇤BK = 0.24 GeV close to ⇤QCD which determines the one-loop running coupling in calculating the NLO
hard factors. This initial condition is identical to the one used in Ref. [99] and it is extracted from the global analysis
to the HERA data. Following Ref. [99], we use Q2

sp0 = 0.16 GeV2 for a proton target and set Q2

sA0
= 5Q2

sp0 for a
gold/lead nucleus target for the initial condition, and then solve the above rcBK evolution equation numerically.

The Fourier transform of the sample solutions are shown in Fig. 11, and they agree with previous numerical results
well. In the high k? regime, it is quite challenging to obtain a smooth curve for F (⌘, k?). This is due to the rapid
oscillation of the Bessel function when k? is large and insu�cient numerical accuracies. In general, this kind of
oscillatory behavior can be mitigated with more computing resources. Nevertheless, in fact, we know that the high k?
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FIG. 11. The numerical Fourier transform of S(2)
xg (r?) compared with the power-law fit in the high k? region. The oscillating

curves indicate that the direct numerical Fourier transform is quite unstable. However, the power-law fit method captures the
key feature of F (⌘, k?) at the high k? tail and smooths the non-physical oscillation.
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dependence for simplicity. In our numerical implementation, we define S(2)

xg (r?) = 1�N(⌘, r?). Here N(⌘, r?) is the
solution to the rcBK evolution equation [99–106], which is given by
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where r2? ⌘ r? � r1?. We employ the approach proposed in Ref. [102] to take into account the running coupling
corrections. The BK evolution kernel, KBK, is then given by
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with a0 = 0.2 GeV, nf = 3, r2⇤ = r2?
1+r2?/r2max

and rmax = 5 GeV�1. This method is similar to the b⇤-prescription in

the well-known Collins-Soper-Sterman (CSS) formalism and it has also been implemented in Ref. [108]. It ensures
a smooth transition from the perturbative region to the infrared regime and freezes the strong coupling constant in
the long distance limit. The numerical solution of the rcBK equation with this prescription for ↵s(r?) is quite close
to that with the conventional method where ↵s is frozen at a certain value. We set rmax to be 5 GeV�1, so that
↵s(r? ! 1) = 1, which is in line with Ref. [99].

The above rcBK evolution equation can be solved numerically with a given initial condition. In our calculation, we
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hard factors. This initial condition is identical to the one used in Ref. [99] and it is extracted from the global analysis
to the HERA data. Following Ref. [99], we use Q2

sp0 = 0.16 GeV2 for a proton target and set Q2
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and rmax = 5 GeV�1. This method is similar to the b⇤-prescription in

the well-known Collins-Soper-Sterman (CSS) formalism and it has also been implemented in Ref. [108]. It ensures
a smooth transition from the perturbative region to the infrared regime and freezes the strong coupling constant in
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to that with the conventional method where ↵s is frozen at a certain value. We set rmax to be 5 GeV�1, so that
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hard factors. This initial condition is identical to the one used in Ref. [99] and it is extracted from the global analysis
to the HERA data. Following Ref. [99], we use Q2
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oscillation of the Bessel function when k? is large and insu�cient numerical accuracies. In general, this kind of
oscillatory behavior can be mitigated with more computing resources. Nevertheless, in fact, we know that the high k?

Q2
sA0 = 0.8 GeV2

10�2 10�1 100 101 102 103 104
10�10

10�8

10�6

10�4

10�2

100

k2
?
⇥
GeV2

⇤

F
(⌘
,k

?
)
⇥ G

eV
�
2
⇤

⌘ = 0.3
pow-fit, ⌘ = 0.3
⌘ = 3
pow-fit, ⌘ = 3
⌘ = 6
pow-fit, ⌘ = 6

FIG. 11. The numerical Fourier transform of S(2)
xg (r?) compared with the power-law fit in the high k? region. The oscillating

curves indicate that the direct numerical Fourier transform is quite unstable. However, the power-law fit method captures the
key feature of F (⌘, k?) at the high k? tail and smooths the non-physical oscillation.

<latexit sha1_base64="d+AMJC1pFj6C8UcFexwHmDb256U="></latexit>

F (⌘, k?) ⇠
C(⌘,�)

k2�?

<latexit sha1_base64="WHWtVLtCpJE5XlATxy9mWpHULsA="></latexit>

F (⌘, k?) =

Z
d2r?
(2⇡)2

eik?·r? (1�N(⌘, r?))

We use the modified MV model as the initial condition [Albacete, Armesto, Milhano, Quiroga-Arias 
and Salgado, 11]
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