High-precision measurement of full

event EEC in 91 GeV e+e- collisions

with archived ALEPH data

<u>Jingyu Zhang 张竞予 (Vanderbilt University)</u> Yen-Jie Lee, et al.

with Hannah Bossi, Yi Chen, Yu-Chen Chen, Marcello Maggi,

EEC Workshop, May 2025 CCNU, Wuhan, China

š

	12 I.	_	
	0		
	1		
	-		
	_		
			-
	L 10		
	b. 11		
	E2 II.		
	P 8		
	P=18		
	1.1		
	P 11.		
		_	
	-	_	
		_	-
		10.0	
		10	
		-	
	- 52		
	C. **		
-			

Outline

- Introduction
- The archived ALEPH dataset
- High precision measurement of EEC at 91 GeV with archived ALEPH data
- Discussions and future perspectives

Full Range EEC

- Correlation of energy flux in full space
 - No complication from the definition of jet
- Angular scale imprints space-time QCD evolution in collider physics
 - Small angle: parton shower and hadronization in a "jet"
 - Wide angle radiation, "multi-jet" events
 - Back-to-back region: di-jet process modified by soft radiation

Jingyu Zhang (May 2025)

Previous Results

• Calls for a high resolution and high precision measurement to test the latest theory development

Jingyu Zhang (May 2025)

60

0.5 02 0.1 L

χ(deg.)

10.48550/arXiv.hep-ex/0307048

E_{CM} 202 GeV 200 GeV 196 GeV 192 GeV 183 GeV 172 GeV 161 GeV 133 GeV 93 GeV □91.2 GeV * 89 GeV 76 GeV △66 GeV •45 GeV

4

Jingyu Zhang (May 2025)

LEP and the ALEPH Experiment

The ALEPH Detector

5

LEP and the ALEPH Experiment

- Precision QCD laboratory and reference for pp and PbPb measurements
- Colorless initial-state
 - QED initial-state radiation
- Structureless beam
 - Negligible pile-up
- Point-like collision particle
 - No underlying events and PDF effect
 - **Fixed hard scale**

The Archived ALEPH Dataset

- February 2017: Yen-Jie Lee connected to Gigi Rolandi and later to spokesperson Roberto Tenchini about the use of archived data
- Marcello Maggi help extract the energy flow information and archived data and simulation
- Mid-2017: all samples converted to the MIT open-data format
- Started working on validation of the converted sample
- **Guenther Dissertori** provided analysis code from the QCD paper
- March 2018: successfully reproduced published thrust distribution

*On-going: generative ML to unfold and extract the strong coupling constant

The Archived ALEPH Dataset: 2 Particle Correlation

10.1103/PhysRevLett.123.212002

- No significant ridge-like signal

Jingyu Zhang (May 2025)

• First measurement of two-particle correlation function for e^+e^- collisions at 91 GeV

The Archived ALEPH Dataset: 2 Particle Correlation

• First measurement of two-particle correlation for e^+e^- collisions up to 209 GeV • LEP2 with thrust axis interesting structure in high multiplicity events

The Archived ALEPH Dataset: Jet and substructure

10.1007/JHEP06(2022)008

• First measurement **anti-k_T** jet spectrum and substructure in hadronic Z decays in e^+e^- collisions

Jingyu Zhang (May 2025)

VANDERBILT 🚺 UNIVERSITY

Analysis Strategy

High resolution double-log style plot to present physics at small scale Parametrization in θ and $z = (1 - \cos \theta)/2$

Log scale

Jingyu Zhang (May 2025)

Flipped log scale

Analysis Strategy

- Use only charged tracks
 - Much better momentum and position resolution than neutral
- **Detector response (fake, efficiency, and bi migration**) corrected using 2d D'Agostini unfolding
 - EEC weight and $\theta(z)$
- Acceptance and phase space (track and evaluation) **selection**) corrections also applied

ution			
	Event selection		
	Acceptance	$7\pi/36 \le heta_{ m sphericity} \le 29\pi/36$	
	Hadronic events	at least five good tracks	
n		total reconstructed charged-particle energy $\geq 15~{\rm GeV}$	
	Non-calibration runs	$E_{\rm vis} < 200 {\rm ~GeV}$	
	Charged particles		
	Acceptance	$ \cos \theta < 0.94$	
	High quality tracks	$p_{ m T} \geq 0.2~{ m GeV}$	
		at least 4 TPC hits	
vont	Impact parameter	$d_0 < 2 \text{ cm}, z_0 < 10 \text{ cm}$	
VCIIL			

12

To begin with: we have good data vs MC comparison at detector-level with archived ALEPH MC

Jingyu Zhang (May 2025)

Data vs MC Comparisons

13

Unfolding

$y_{det.} = \epsilon \cdot U \cdot y_{gen.} + b$

- $\varepsilon \rightarrow \text{efficiency}$
- $U \rightarrow$ migration matrix
- $b \rightarrow fake$

• **EEC weight** and $\theta(z)$

• Estimated with MC samples with detailed detector simulation

$$y_{gen.} = \epsilon^{-1} \cdot U^{-1} \cdot (y_{det.} - b)$$

- Matrix inversion for matrices with singularities need regularization
 - D'Agostini iterative method with early stopping

(200 x 28) x (200 x 28) migration matrix

Small migration effect thanks to the fact that we are only using tracks

1	0 ⁷
1	0 ⁶
1	0 ⁵
1	0 ⁴
1	0 ³
1	0 ²
1	0

Unfolding

• Main effect from degraded tracking reconstruction for low p_T (soft/forward) and merging tracks

Size of Correction

- forward) and merging tracks
- Very small angle affected by numerical precision

Jingyu Zhang (May 2025)

10%-20% correction depending on the angle mainly from degraded tracking efficiency for low p_T (soft/

Size of Correction

- Correct back to full phase space

• Effect dominated by low p_T (Soft/forward) tracks that is beyond the acceptance of the detector

- procedure
 - Estimated by reweighting the archived MC to match data and re-do the unfolding

Systematic Uncertainties

• Main source of systematic uncertainty comes from the **model dependence** of the unfolding

VANDERBILT 🚺 UNIVERSITY

Comparison with Analytical Prediction

Jingyu Zhang (May 2025)

MOD 1 - 10⁻⁴ $z = (1 - \cos(\theta))/2$

Theory input: Max Jaarsma, Yibei Li, Ian Moult, and **Huaxing Zhu**

More info on slides from Yibei and Max

FO: NNLO pQCD

Collinear:

NNLL resummation

Back-to-back:

- **NNNLL** resummation
- **Colins-Soper kernel** from lattice QCD
- **NP** Ω parameter extracted from thrust

Conclusion

- High resolution and high precision measurement of EEC performed with archived ALEPH data at 91 GeV
- Measured distribution compared to analytic predictions to test QCD
- Paper publication including the unfolded data

Further Perspectives

- EEC: charge dependence, azimuthal dependence, energy dependence, etc.
- E3C: gluon spin correlation, α_s
- DELPHI published their entire dataset, simulation, software for open access (August 2024)
 - Analysis of 2 particle correlation on-going
 - Possible for b-tagging?

VANDERBILT 💱 UNIVERSITY

Jingyu Zhang (May 2025)

Backup

Measurement in very small angle limited by numerical precision

VANDERBILT 🚺 UNIVERSITY

Closure

Jingyu Zhang (May 2025)

VANDERBILT 🚺 UNIVERSITY

ESC

