Form factors for $D_s \rightarrow \phi l \nu$ semileptonic decay from 2+1-flavor lattice QCD

Gaofeng Fan (樊高峰)^{1,2}

In Collaboration with: Yu Meng (孟雨)³, Zhaofeng Liu (刘朝峰)¹, Lei Zhang (张雷)²

¹IHEP, ²Nanjing University, ³Zhengzhou University

Based on arXiv:250x.xxxx

2025年强子物理和有效场论前沿讲习班

Outline

- Motivations
- Introduction to lattice QCD
- Lattice set up
- Methods
- Results
- Summary

Motivations

- Semi-leptonic decays offer an ideal place to deeply understand hadronic transitions in the nonperturbative region of QCD, and can help to explore the weak and strong interactions in charm sector
- Vector meson decay makes this transition notoriously difficult to model due to theoretical complexity
- Combining with the experimental data, the CKM matrix element can be extracted, and it helps to test unitarity of CKM matrix and search for new physics beyond SM
- Calculating branching fractions helps to test μe lepton flavor universality

SM parameter $\frac{\mathrm{d}\Gamma(D_{s} \to \phi \ell \nu)}{\mathrm{d}a^{2}} = \frac{G_{\mathsf{F}}^{2} |V_{cs}|^{2} |\boldsymbol{p}_{\phi}| q^{2}}{96\pi^{3} M_{\mathsf{D}}^{2}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \left[\left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right) \left(|H_{+}|^{2} + |H_{-}|^{2} + |H_{0}|^{2}\right) + \frac{3m_{\ell}^{2}}{2q^{2}} |H_{t}|^{2}\right]$

[BESIII, JHEP 12, 072 (2023)]

non-perturbative 2/18

Motivations

• Status of theoretical and experimental studies

A precise lattice calculation is important!

• Provide lattice QCD input to investigate the SU(3) symmetry (by combining with $D \to K^* l \nu$ calculation)

2025/8/22 3/18

Introduction to lattice QCD

• Path integral in discrete Euclidean space

$$Z = \int [dU] \prod_f [dq_f] [d\bar{q}_f] e^{-S_g[U] - \sum_f \bar{q}_f(D[U] + m_f) q_f}$$
$$Z = \int [dU] e^{-S_g[U]} \prod_f \det(D[U] + m_f)$$

 Expectation values of gauge-invariant operators, also known as "correlation functions"

$$\langle \mathcal{O}(U,q,\bar{q})\rangle = (1/Z) \int [dU] \prod_f [dq_f] [d\bar{q}_f] \mathcal{O}(U,q,\bar{q}) e^{-S_g[U] - \sum_f \bar{q}_f(D[U] + m_f) q_f}$$

Monte-Carlo method and data analysis

Lattice set up

- (2+1)-flavor Wilson-clover gauge ensembles [CLQCD, PRD 111, 054504 (2025)]
- Computer resources: "SongShan" supercomputer at Zhengzhou University

Ensemble	C24P29	C32P23	F32P30	F48P21	G36P29	H48P32
a (fm)	0.10524(05)(62)	0.10524(05)(62)	0.07753(03)(45)	0.07753(03)(45)	0.06887(12)(41)	0.05199(08)(31)
$ ilde{m}_s^{ m b}$	-0.2400	-0.2400	-0.2050	-0.2050	-0.1926	-0.1700
$ ilde{m}_l^{ m b}$	-0.2770	-0.2790	-0.2295	-0.2320	-0.2150	-0.1850
$ ilde{m}_c^{ m b}$	0.4159(07)	0.4190(07)	0.1974(05)	0.1997(04)	0.1433(12)	0.0551(07)
$L^3 \times T$	$24^3 \times 72$	$32^3 \times 64$	$32^3 \times 96$	$48^3 \times 96$	$36^{3} \times 108$	$48^{3} \times 144$
$N_{ m cfg} imes N_{ m src}$	450×72	200×64	180×96	150×96	200×108	150×144
$m_{\pi} \; ({ m MeV})$	292.3(1.0)	227.9(1.2)	300.4(1.2)	207.5(1.1)	297.2(0.9)	316.6(1.0)
t	2 - 17	2 - 20	4-22	4 - 26	2 - 32	8 - 30
Z_V^s	0.85184(06)	0.85350(04)	0.86900(03)	0.86880(02)	0.87473(05)	0.88780(01)
Z_V^c	1.57353(18)	1.57644(12)	1.30566(07)	1.30673(04)	1.23990(13)	1.12882(11)
Z_A/Z_V	1.07244(70)	1.07375(40)	1.05549(54)	1.05434(88)	1.04500(22)	1.03802(28)

2025/8/22 5/18

Methods (scalar function)

• The parameterization for $P \rightarrow V$ semileptonic matrix element

$$\langle \phi_{\sigma}(\vec{p}) | J_{\mu}^{W}(0) | D_{s}(p') \rangle = \frac{F_{0}(q^{2})}{Mm} \epsilon_{\mu\sigma\alpha\beta} p'^{\alpha} p^{\beta} + F_{1}(q^{2}) \delta_{\mu\sigma} + \frac{F_{2}(q^{2})}{Mm} p_{\mu} p'_{\sigma} + \frac{F_{3}(q^{2})}{M^{2}} p'_{\mu} p'_{\sigma}$$

$$\langle \phi(\varepsilon, \vec{p}) | J_{\mu}^{W}(0) | D_{s}(p') \rangle = \varepsilon_{\nu}^{*} \varepsilon_{\mu\nu\alpha\beta} p'_{\alpha} p_{\beta} \frac{2V}{m+M} + (M+m) \varepsilon_{\mu}^{*} A_{1} + \frac{\varepsilon^{*} \cdot q}{M+m} (p+p')_{\mu} A_{2} - 2m \frac{\varepsilon^{*} \cdot q}{Q^{2}} q_{\mu} (A_{0} - A_{3})$$

Correlation functions —> Scalar functions —> Form factors

$$\langle \phi_{\sigma}\left(\vec{p}\right)|J_{\mu}^{W}\left(0\right)|D_{s}\left(p'\right)\rangle \qquad \qquad \widetilde{\mathcal{I}}_{j}$$

Relationship with the form factor

$$V = \frac{(m+M)}{2mM} F_0,$$

$$A_1 = \frac{F_1}{M+m},$$

$$A_2 = \frac{M+m}{2mM^2} (MF_2 + mF_3),$$

$$A_0 - A_3 = Q^2 \left(\frac{F_2}{4m^2M} - \frac{F_3}{4mM^2} \right).$$

 A_3 is not an independent form factor

$$A_{3}\left(q^{2}\right) = \frac{M+m}{2m}A_{1}\left(q^{2}\right) - \frac{M-m}{2m}A_{2}\left(q^{2}\right)$$

 A_0 is then

 V, A_0, A_1, A_2

$$A_0(q^2) = \frac{F_1}{2m} + \frac{m^2 - M^2 + Q^2}{4m^2M}F_2 + \frac{m^2 - M^2 - Q^2}{4mM^2}F_3$$

 $A_0(0) = A_3(0)$ is automatically perserved

Methods (scalar function)

A similar scalar function scheme has been used for high-precision calculation

•
$$\Gamma(\eta_c \rightarrow 2\gamma) = 6.67(16)_{\text{stat}}(6)_{\text{syst}} \text{ keV}$$

•
$$\Gamma(D_s^* \to \gamma D_s) = 0.0549(54) \text{ keV}$$

•
$$Br(J/\psi \to Dev_e) = 1.21(11) \times 10^{-11}$$

 $Br(J/\psi \to D\mu\nu_{\mu}) = 1.18(11) \times 10^{-11}$
 $Br(J/\psi \to D_s ev_e) = 1.90(8) \times 10^{-10}$
 $Br(J/\psi \to D_s \mu\nu_{\mu}) = 1.84(8) \times 10^{-10}$

• Br
$$(J/\psi \to \gamma \eta_c) = 2.49(11)_{lat}(5)_{exp}\%$$

[Y. M et al, <u>Science Bulletin 68, 1880 (2023)</u>]

[Y. M et al, <u>PRD 109, 074511 (2024)</u>]

[Y. M et al, PRD 110, 074510 (2024)]

[Y. M et al, <u>PRD 111, 014508 (2025)</u>]

Results (2-point function fitting)

$$C^{(2)}(\vec{p},t) = \frac{Z_h^2}{2E_h} \left(e^{-E_h t} + e^{-E_h(T-t)} \right)$$

- Least χ^2 fitting considering covariance matrix between configurations and time
- There should be a plateau when meson ground states are dominant

Results (2-point function fitting)

$$C^{(2)}(\vec{p},t) = \left(-1 - \frac{|\vec{p}|^2}{3m_h^2}\right) \frac{Z_h^2}{2E_h} \left[e^{-E_h t} + e^{-E_h (T-t)}\right]$$

- Least χ^2 fitting considering covariance matrix between configurations and time
- There should be a plateau when meson ground states are dominant

Results (dispersion relation)

$$4 \sinh^2 \frac{E_h}{2} = 4 \sinh^2 \frac{m_h}{2} + \mathcal{Z}_{latt}^h \cdot 4 \sum_i \sin^2 \frac{p_i}{2}$$

- We checked the dispersion relation of D_s meson at different momenta
- Use a discrete dispersion relation as the fitting function

 $\mathcal{Z}_{\text{latt}}$ is 1.0402(48), 1.0405(90), 1.0347(68), 1.022(11), 1.0132(76), 1.0245(77)

Results (dispersion relation)

$$4 \sinh^2 \frac{E_h}{2} = 4 \sinh^2 \frac{m_h}{2} + \mathcal{Z}_{latt}^h \cdot 4 \sum_i \sin^2 \frac{p_i}{2}$$

- We checked the dispersion relation of ϕ meson at different momenta
- Use a discrete dispersion relation as the fitting function

 $\mathcal{Z}_{\text{latt}}$ is 1.037(13), 1.036(17), 1.021(13), 1.070(19), 1.066(14), 1.071(17)

Results (mass and decay constant)

• We extrapolate masses and decay constants of ϕ meson to get physical results

$$m/f_{\phi} = c + da^2 + f\left(m_{\pi}^2 - m_{\pi, phys}^2\right)$$

 $m = 1.014(12) \text{ GeV}/c^2$

$$f_{\phi} = 0.2466(59) \text{ GeV}$$

Results (form factor)

$$z\left(q^{2}, t_{0}\right) = rac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

where
$$t_{+}=(m_{D_s}+m_{\phi})^2$$
, $t_0=0$

$$A_{0,1,2} = \frac{1}{1 - q^2/m_{D_{s1}}^2} \left(a_0 + a_1 z + a_2 z^2 \right)$$

• The results have been multiplied by the renormalization constant, data point errors from jackknife analysis

Results (global fit)

• Extrapolate results to the physical pion mass and continuum limit using z-expansion

$$z\left(q^{2},t_{0}\right) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

$$V\left(q^{2},a,m_{\pi}\right) = \frac{1}{1 - q^{2}/m_{D_{s}^{*}}^{2}} \sum_{i=0}^{2} \left(c_{i} + d_{i}a^{2}\right) \left[1 + f_{i}\left(m_{\pi}^{2} - m_{\pi,\mathrm{phys}}^{2}\right)\right] z^{i}$$

$$A_{0,1,2}\left(q^{2},a,m_{\pi}\right) = \frac{1}{1 - q^{2}/m_{D_{s1}}^{2}} \sum_{i=0}^{2} \left(c_{i} + d_{i}a^{2}\right) \left[1 + f_{i}\left(m_{\pi}^{2} - m_{\pi,\mathrm{phys}}^{2}\right)\right] z^{i}$$

$$m_{\pi,\mathrm{phys}}^{2} = 135.0 \text{ MeV}/c^{2}, \ m_{D_{s}^{*}} = 2112.2 \text{ MeV}/c^{2}, \ m_{D_{s1}} = 2459.5 \text{ MeV}/c^{2}$$

• $A_3(0) - A_0(0) = 0.001(17)$, consistent with zero

Results (differential decay width)

• Differential decay width using z-expansion, where the lepton mass is neglected

[Rev. Mod. Phys 67, 893 (1995)]

Results

Summary of preliminary results (form factor)

single pole

$$F(q^2, a, m_{\pi}) = \frac{1}{1 - q^2/h^2} (c + da^2) \left[1 + f(m_{\pi}^2 - m_{\pi, \text{phys}}^2) \right]$$

modified pole

$$F(q^2, a, m_{\pi}) = \frac{1}{\left(1 - q^2/m_{\text{pole}}^2\right) \left(1 - hq^2/m_{\text{pole}}^2\right)} \left(c + da^2\right) \left[1 + f\left(m_{\pi}^2 - m_{\pi, \text{phys}}^2\right)\right]$$

Results

Summary of preliminary results (branching fraction)

PDG
$$|V_{cs}|$$
 as input

$$\frac{\mathrm{d}\Gamma(D_s \to \phi \ell \nu)}{\mathrm{d}q^2} = \frac{G_{\mathrm{F}}^2 \left| V_{cs} \right|^2 \left| \boldsymbol{p}_{\phi} \right| q^2}{96\pi^3 M_{D_s}^2} \left(1 - \frac{m_{\ell}^2}{q^2} \right)^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_-|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} \left| H_t \right|^2 \right]$$

$\mathcal{B}(D_s \to \phi \ell \nu) \times 10^{-2}$	μ channel	e channel	$\mathcal{R}_{\mu/e}$
z-expansion	2.386(88)	2.530(96)	0.9433(19)
single pole	2.408(60)	2.552(66)	0.9434(15)
modified pole	2.399(61)	2.542(67)	0.9438(14)
PDG	2.24(11)	2.34(12)	0.957(68)

Summary

- Dispersion relations of D_s meson and ϕ meson are calculated
- Form factors on six lattice sets with different q^2 are calculated
- Extrapolate form factors to the physical pion mass and continuum limit
- Differential decay width and branching fraction results are calculated
- Preliminary work on $D \to K^* l \nu$ form factors are ongoing

Thank you for your attention!