

Study of $B^0 \to K^+ K^- \pi^0$ at Belle and Belle II

Kairui Huang, Mingkuan Yuan, Wanyi Zhuang, Xiaolong Wang

Date: 2025.1.15

Fudan University

BHadronic

Content

Update log

- Update Belle II analysis using MCrd instead of MCri
- Add Belle analysis

Motivation

- \succ B⁰ → K⁺K⁻π⁰ suppressed in standard model (SM)
 - Charmless three-body decay
 - Sensitive probe of new physics
 - Potential intermidiate states ...
- Dominant decay amplitude : $b \rightarrow u$ tree
- Internal *W* exchange diagram
 - $B^0 \to K^{*\pm} K^{\mp}$ with $K^{*\pm} \to K^{\pm} \pi^0$

> Belle

- ✓ Evidence with significance of 3.5σ ^[1]
- ✓ $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = [2.17 \pm 0.60(\text{ stat}) \pm 0.24(\text{ syst})] \times 10^{-6}$
- ✓ 711 fb^{-1} data sample contains 772 × 10⁶ $B\overline{B}$ pairs
- Belle & Belle II

□ 711 fb^{-1} + 365 fb^{-1} data sample to reach higher signal significance (Goal > 5 σ)

CP asymmetry measurement and Amplitude analysis ...

Typical Feynman diagrams that contribute to the decay $B^0 \rightarrow K^+ K^- \pi^0$: (a) $b \rightarrow u$ tree and (b) internal *W* exchange ^[1]

Evidence for the decay $B^0 \rightarrow K^+ K^- \pi^{0}$ ^[1]

Research Method

 \succ Select $B^0 \rightarrow K^+ K^- \pi^0$ candidates

> Extract signal yields using an unbinned maximum likelihood fit to the variables:

 ΔE and transformed CS (apply tight cut on M_{bc})

Major analysis steps

Event reconstruction & Basic event selection

□ Selection optimization

- □ Background study
- □ Signal yield extraction
- □ Fitter validation
- □ Control channel study
- □ Systematic uncertainties
- □ Fit the data

Evidence for the decay $B^0 \to K^+ K^- \pi^0$ ^[1]

Belle II

Dataset

Dataset		Version
Signal MC	2M (MC15rd) (decayfile) : <u>https://gitlab.desy.de/belle2/software/basf2/-</u> /blob/main/decfiles/dec/1110021003.dec	
Generic MC	1.4 ab^{-1} qqbar (MC15rd) 1.4 ab^{-1} mixed & charged (MC15rd)	light-2409-toyger
Data	365 fb^{-1} Y(4S) on-resonance data 42.7 fb^{-1} off-resonance data	

Baseline Selection

• $B^0 \rightarrow K^+ K^- \pi^0$

basf2 default final-state particle list builder functions

- Tracks
 - dr < 0.5 cm & |dz| < 2 cm
 - thetaInCDCAcceptance
 - nTracks > 2
- **B**⁰
 - 5.25 $< M_{bc} < 5.289 \, {\rm GeV/c^2}$
 - $-0.3 \text{ GeV} < \Delta E < 0.15 \text{ GeV}$
 - treefit
- *K*[±]
 - No PID requirement

- $\pi^0 \rightarrow \gamma \gamma$
 - StdPi0 (eff50_May2020)
 - $0.105 < InvM < 0.150 \text{ GeV/c}^2$
 - kFit
 - γ
 - StdPhoton (eff50_May2020)
 - ClusterNHits > 1.5
 - 0.2967 < ClusterTheta < 2.6180
 - Cluster E in different area:
 - E_{γ} in forward endcap > 0.025 GeV
 - E_{γ} in barrel > 0.025 GeV
 - E_{γ} in backforward endcap > 0.04 GeV
 - |ClusterTiming| < 200 ns

Selection Optimization

• $B^0 \rightarrow K^+ K^- \pi^0 (\pi^0 \rightarrow \gamma \gamma)$

Variable	Description
γ relevant variable	
clusterE	ECL cluster's energy corrected for leakage and background
${\bf be am Background Suppression Score}$	The output of an MVA classifier that uses shower-related
	variables to distinguish true photon clusters from beam
	background clusters (Belle II)
${\it fake Photon Suppression Score}$	The output of an MVA classifier that uses shower-related
	variables to distinguish true photon clusters from fake photon
	clusters (Belle II)
π^0 relevant variable	
$\chi^2_{\pi^0}$	χ^2 of π^0 mass constraint fit
daughterAngle	The three dimensional angle between the two clusters used for
	π^0 reconstruction
$\cos Helicity Angle Momentum$	Cosine of the angle between the line defined by the
	momentum difference of two photons in the frame of π^0 and
	the momentum of π^0 in the lab frame
\mathbf{InvM}	The invariant mass of diphoton used to reconstruct π^0
Charged kaon relevant variable	
$atcPIDBelle_3_2$	The kaon likelihood against pion $\mathcal{L}(K/\pi)$. (Belle)
kaonIDNN	The kaon identification probability calculated from the PID
	neutral network. (Belle II)

Selection optimized based on

Figure of Merit (FOM) = $\frac{N_S}{\sqrt{N_S + N_B}}$

- N_S : expected signal events in the experimental data estimated by assuming the branching ratio to be $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = 2.17 \times 10^{-6}$ [1]
- N_B : background events scaled to the luminosity of the experimental data

γ relevant variable

- $B^0 \rightarrow K^+ K^- \pi^0 \ (\pi^0 \rightarrow \gamma \gamma)$
 - > clusterE (forward end-cap region) > 0.275 GeV
 - \blacktriangleright clusterE (barrel region) > 0.15 GeV
 - → clusterE (backward end-cap region) > 0.2 GeV

- fakePhotonSuppressionScore > 0.675
- beamBackgroundSuppressionScore > 0.1

π^0 relevant variable

Charged kaon relevant variable

• $B^0 \to K^+ K^- \pi^0 \ (\pi^0 \to \gamma \gamma)$

➢ kaonIDNN > 0.52

B0→K+K-pi0

Cutflow

Summary of the optimized selection

$$\varepsilon = \frac{N_S^{\text{cor}}}{N_{\text{gen}}}, \quad SCF = \frac{N_S^{\text{mis}}}{N_S^{\text{cor}} + N_S^{\text{mis}}},$$

• $\varepsilon = 28.55 \pm 0.04\%$ SCF = $4.35 \pm 0.04\%$

Target	Selection	Signal efficiency [%]	SCF $[\%]$
	Baseline Selection	48.25	45.07
	cluster E (forward end-cap region) $> 0.275~{\rm MeV}$	47.25	41.47
	cluster E (barrel region) $> 0.15~{\rm MeV}$	39.82	18.05
γ	cluster E (backward end-cap region) $> 0.2~{\rm MeV}$	39.22	15.49
	fakePhotonSuppressionScore > 0.675	37.91	13.75
	beamBackgroundSuppressionScore > 0.1	37.91	13.74
	$\chi^2_{\pi^0} < 13$	37.07	13.16
_0	daughterAngle < 0.5	36.68	12.29
π°	$ \cos Helicity Angle Momentum < 0.88$	36.63	12.27
	$0.115 < \text{InvM} < 0.150 \text{ MeV}/c^2$	36.56	12.25
K^{\pm}	kaonIDNN > 0.52	28.55	4.35

$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2},$$

$$\Delta E = E_B - E_{beam},$$

Modified *M*_{bc}

• $B^0 \to K^+ K^- \pi^0 \ (\pi^0 \to \gamma \gamma)$

$$M_{bc}^{\prime} = \sqrt{E_{beam}^{*2} - p_{B}^{*\prime 2}} \qquad p_{B}^{*\prime} = p_{K^{+}}^{*2} + p_{K^{-}}^{*2} + p_{\pi^{0}}^{*\prime}$$
$$p_{\pi^{0}}^{*\prime} = \sqrt{\left(E_{beam}^{*} - E_{K^{+}}^{*} - E_{K^{-}}^{*}\right)^{2} - m_{\pi^{0}}^{2}} \times \frac{p_{\pi^{0}}^{*}}{|p_{\pi^{0}}^{*}|}$$

Tight cut on M'_{bc}

> $5.272 < M'_{bc} < 5.285 \text{ GeV}/c^2$

Fitting region

 \succ -0.25 < Δ*E* < 0.15 GeV

Continuum Suppression

- Continuum suppression
- Total 15 variables used in FBDT training
 - Event shape variables
 - Vertex fit variables

Data-simultaion comparison of the FBDT output on (left) background-enhanced and (right) signal-enhanced $B^+ \rightarrow \overline{D}{}^0(\rightarrow K^+\pi^-\pi^0)\pi^+$ candidates. MC is normalized to the total number of data events for better comparison

Continuum Suppression optimization

- Continuum suppression optimization
 - 1000 ToyMC for each requirement

•

PDFs extracted from MC shape

 \blacktriangleright CSMVA > 0.9 (The most stringent threshold)

To minimize possible systematic uncertainties proportional to background contamination

➤ Reject 98.52% continuum background and preserve 71.53% signal events

BB Background

B decays background ۲

GeV/c²

Event / 0.05

• M_{bc} strongly peaks around 5.279 GeV/c² and a potential peak appears in the range from -50 MeV to 50 MeV in ΔE distribution

 $\blacktriangleright D \rightarrow KK \& D \rightarrow K\pi$ decay \blacktriangleright Topoana ($B \rightarrow K\pi\pi$: Main peaking background)

$$M_{KK} = \sqrt{(E_{K^+} + E_{K^-})^2 - (p_{K^+} + p_{K^-})^2}$$

$$M_{K\pi} = \sqrt{(E_K + E_{\pi})^2 - (p_K + p_{\pi})^2}$$

$$E_K = \sqrt{p_K^2 + m_K^2}$$

$$E_{\pi} = \sqrt{p_{\pi}^2 + m_{\pi}^2} \text{ (use the pion mass from PDG)}$$

Peak from D decay $(D \rightarrow KK \& D \rightarrow K\pi)$

B0→K+K-pi0

BB Background

- *B* decays background
- **>** Peaking background: $B \rightarrow K\pi\pi$
- > Generic $B\overline{B}$ background:

The remain $B\overline{B}$ background after removing peaking background

➤ Charm veto :

$$1.846 < M_{K^{\pm}\pi^{\mp}}, M_{K^{+}K^{-}} < 1.884 \text{ GeV}/c^{2}$$

Peaking Background

• Peaking background

 $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = (2.17 \pm 0.6) \times 10^{-6}$ $\mathcal{B}(B^0 \to K^+ \pi^- \pi^0) = (37.8 \pm 3.2) \times 10^{-6}$

> Require further cut on PID: kaonIDNN > 0.9

• The event number of the two components are scaled to the expected yields corresponding to the integrated luminosity of the real data

Candidate Multiplicity and Final Selection

• $B^0 \rightarrow K^+ K^- \pi^0$

- Mutiplicity: 1.007
- Best candidate selection
 - > Lowest π^0 mass-constrained χ^2
 - → Then lowest B^0 vertex fit χ^2

• Final selection

Target	Selection	Signal efficiency [%]	SCF [%]
	Baseline and Optimized Selection	28.55	4.35
gignal Pagian	$5.272 < M_{bc}' < 5.285 \ { m GeV}/c^2$	27.19	2.39
signal Region	$-0.25 < \Delta E < 0.15~{\rm GeV}$	27.05	2.23
Continuum Suppression	$\mathrm{CSMVA} > 0.9$	19.35	1.71
Charm voto window	$1.846 < M_{K^\pm K^\mp} < 1.884 \ {\rm GeV}/c^2$	19.16	1.71
Charm veto window	$1.846 < M_{K^{\pm}\pi^{\mp}} < 1.884 \ {\rm GeV}/c^2$	18.76	1.71
Further PID requirement	kaonIDNN > 0.9	9.91	1.49
Best candidate selection		9.89	1.04

- $\varepsilon = 9.89 \pm 0.02\%$ SCF = 1.04 $\pm 0.02\%$
- Sample composition
 - Signal (Correctly reconstructed and self-crossfeed signal)
 - Continuum background
 - ▶ Generic $B\overline{B}$ background
 - Peaking background

Signal yield extraction

- Fitter for $B^0 o K^+ K^- \pi^0$
 - tight cut on M_{bc}
 - 2D Fit on ΔE and transformed CS (C') (μ -transformation)
 - Probability density function (PDF) of each event category j: $\mathcal{P}_j^i = \mathcal{P}_j(\Delta E^i)\mathcal{P}(C'^i)$,
 - Extended likelihood function: $\mathcal{L} = \exp(-\sum_{j} n_{j}) \times \prod_{i} [\sum_{j} n_{j} \mathcal{P}_{j}^{i}]$

Event category	ΔE	C'
CR signal	Double CB	Flat
SCF signal	2D histog	gram
Continuum Background	Poly1	2Exp
Generic $B\overline{B}$ Background	Double G	Poly2
Peaking Background	2D KD	\mathbf{E}

PDF used to model each event category

• The CR signal and SCF signal are considered distinct and their combined PDF is : $n_{sig} \times [(1 - f)\mathcal{P}_{CR} + f\mathcal{P}_{SCF}]$

Parameters fixed

- SCF fraction
- PDF parameters (except 2 parameters of $q\bar{q}$ bkg)
- The yield of peaking background
- Parameters floated :
 - The yield for each event category except for peaking background (n_{sig} includes CR and SCF signal)
 - Continuum background PDF parameters (2 parameters are floated, coefficient p_0 and the fraction of two exponential function)

Event estimation

□ Signal Events : estimated by assuming the branching ratio to be $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = 2.17 \times 10^{-6}$

$$\succ N_{sig}^{exp} = N_{B\bar{B}} \times \mathcal{B}(B^0 \to K^+ K^- \pi^0) \times \varepsilon_{sig}^{rec}$$

Continuum bkg & Generic BB bkg : scaled to the integrated luminosity of experimental data

□ Peaking bkg : calculated by

$$\succ N_{peak}^{exp} = N_{B\bar{B}} \times \mathcal{B}(B^0 \to K^+ \pi^- \pi^0) \times \varepsilon_{peak}^{rec}$$

	Expected Yield
Signal	84
Continuum background	431
Generic BB background	201
Peaking background	9

Fitter validation

- **GSIM** (1000 samples)
 - Yield of each component fluctuated drawing from a Poisson distribution around their nominal expected value

$$\text{ull} = \frac{x_{fit} - x_{true}}{\sigma_x}$$

Significance : $\sqrt{2 * (NLL - NLL_{min})}$

Fitter validation

• **GSIM** (1000 samples)

Fitting results for one of the GSIM samples

Fitter Validation

- Linearity test (Branching ratio varies from 0.8×10^{-6} to 3.0×10^{-6})
- 1000 GSIM samples for each input)

Dataset

Belle Dataset				Version
Signal MC	2M			
Background MC	type	Numbers of streams	Experiments	light-2409-toyger
	$q\bar{q}$ uds + charm	1	7 - 65	
	Generic $B\overline{B}$ charged + mixed	5	7 - 65	
	Rare $B\overline{B}$ charged + mixed	50	7 - 65	
Data	711 $fb^{-1} \Upsilon(4S)$ on-resonance data 89.5 fb^{-1} off-resonance data			

Baseline Selection

- $B^0 \rightarrow K^+ K^- \pi^0$
 - Tracks
 - dr < 0.5 cm & |dz| < 2 cm
 - thetaInCDCAcceptance
 - nTracks > 2
 - **B**⁰
 - 5.25 $< M_{bc} < 5.289 \, {\rm GeV/c^2}$
 - $-0.3 \text{ GeV} < \Delta E < 0.15 \text{ GeV}$
 - treefit
 - *K*[±]
 - No PID requirement

- $\pi^0 \rightarrow \gamma \gamma$
 - $0.105 < InvM < 0.160 \text{ GeV/c}^2$
 - kFit
- γ
 - GoodBelleGamma
 - Cluster *E* in different area:
 - E_{γ} in forward endcap > 0.10 GeV
 - E_{γ} in barrel > 0.05 GeV
 - E_{γ} in backforward endcap > 0.15 GeV

Selection Optimization

• $B^0 \rightarrow K^+ K^- \pi^0 (\pi^0 \rightarrow \gamma \gamma)$

Variable	Description
γ relevant variable	
${f cluster E}$	ECL cluster's energy corrected for leakage and background
beamBackgroundSuppressionScore	The output of an MVA classifier that uses shower-related variables to distinguish true photon clusters from beam background clusters (Belle II)
${\it fake Photon Suppression Score}$	The output of an MVA classifier that uses shower-related
	variables to distinguish true photon clusters from fake photon
	clusters (Belle II)
π^0 relevant variable	
$\chi^2_{\pi^0}$	χ^2 of π^0 mass constraint fit
daughterAngle	The three dimensional angle between the two clusters used for π^0 reconstruction
$\cos Helicity Angle Momentum$	Cosine of the angle between the line defined by the momentum difference of two photons in the frame of π^0 and the momentum of π^0 in the lab frame
\mathbf{InvM}	The invariant mass of diphoton used to reconstruct π^0
Charged kaon relevant variable	
$atcPIDBelle_3_2$	The kaon likelihood against pion $\mathcal{L}(K/\pi)$. (Belle)
kaonIDNN	The kaon identification probability calculated from the PID
	neutral network. (Belle II)

Selection optimized based on

Figure of Merit (FOM) = $\frac{N_S}{\sqrt{N_S + N_B}}$

- N_S : expected signal events in the experimental data estimated by assuming the branching ratio to be $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = 2.17 \times 10^{-6}$ [1]
- N_B : background events scaled to the luminosity of the experimental data

γ relevant variable

• $B^0 \rightarrow K^+ K^- \pi^0 \ (\pi^0 \rightarrow \gamma \gamma)$

- \blacktriangleright clusterE (forward end-cap region) > 0.25 GeV
- \blacktriangleright clusterE (barrel region) > 0.125 GeV
- \blacktriangleright clusterE (backward end-cap region) > 0.15 GeV

π^0 relevant variable

• $B^0 \rightarrow K^+ K^- \pi^0 \ (\pi^0 \rightarrow \gamma \gamma)$ ➢ 0.114 GeV < pi0_InvM < 0.152 GeV</p> $\succ \chi^2_{\pi^0} < 12$ \blacktriangleright pi0_daughterAngle < 0.5 \triangleright Corresponding to $[-3\sigma, +3\sigma]$ \triangleright |pi0_cosHelicityAngleMomentum| < 0.91 range centered at the known π^0 mass 8 2 2 2 2 0.145 2 0.145 2 2 0.145 sigual ccbar uds BB rareBB Event/(1) Erent' 1 Belle CR signal Belle SCF signal Belle 10 0.135 10⁴ 10 0.13 10⁴ 10³ 0.125 10³ 0.12 50 60 pi0_MassChi2 20 2 pi0 MassChi2 20 25 pi0 MassChi2 Event (0.1 rad) 8+ N N N 0.14 1 sigual ccbar uds BB rareBB CR signal Belle Belle 7000 F SCF signal Belle 0.12 0.1 200 H 4000 0.08 150 3000 0.06 100 F 2000 0.04 50 1000 0.02 2 2.5 3 pi0_daughterAngle (rad) 2 2.5 3 pi0_daughterAngle (rad) 2 2.5 3 pi0_daughterAngle (rad) 9 0.148 0.1475 2 0.1475 Event/ 0.02 ccbar uds BB rareBB Belle CR signal Event/(0.02) Belle 10 SCF signal 10⁴ Belle 10 0.1465 10³ 0.146 0.1455 10⁴ 10² 0.145 0.1445 10³ 0.144 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 pi0_cosHelicityAngleMomentum 4 -0.2 0 0.2 0.4 0.6 0.8 pi0_cosHelicityAngleMomentum 0.8 0.9 0.95 1 pi0_cosHelicityAngleMomentum -0.4 --0.2 0.85

Charged kaon relevant variable

• $B^0 \to K^+ K^- \pi^0 \ (\pi^0 \to \gamma \gamma)$

 \rightarrow atcPIDBelle_3_2 > 0.60

Cutflow

Summary of the optimized selection

$$\varepsilon = \frac{N_S^{\text{cor}}}{N_{\text{gen}}}, \quad SCF = \frac{N_S^{\text{mis}}}{N_S^{\text{cor}} + N_S^{\text{mis}}},$$

• $\varepsilon = 23.09 \pm 0.03\%$ SCF = 4.45 $\pm 0.03\%$

Target	Selection	Signal efficiency [%]	SCF [%]
	Baseline Selection	38.72	35.37
	cluster E (forward end-cap region) $> 0.25~{\rm MeV}$	38.05	33.07
γ	cluster E (barrel region) $> 0.125~{\rm MeV}$	34.15	18.05
	cluster E (backward end-cap region) $> 0.15~{\rm MeV}$	34.15	18.05
	$\chi^2_{\pi^0} < 12$	31.75	12.74
<i></i> 0	m daughter Angle < 0.5	31.17	11.31
М	m cosHelicityAngleMomentum < 0.91	31.13	11.29
	$0.114 < \text{InvM} < 0.152 \text{ MeV}/c^2$	30.88	11.19
K^{\pm}	$\mathcal{L}(K/\pi) > 0.6$	23.09	4.45

$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2},$$

$$\Delta E = E_B - E_{beam},$$

Modified *M*_{bc}

• $B^0 \to K^+ K^- \pi^0 \ (\pi^0 \to \gamma \gamma)$

$$M_{bc}^{\prime} = \sqrt{E_{beam}^{*2} - p_{B}^{*\prime 2}} \qquad p_{B}^{*\prime} = p_{K^{+}}^{*2} + p_{K^{-}}^{*2} + p_{\pi^{0}}^{*\prime}$$
$$p_{\pi^{0}}^{*\prime} = \sqrt{\left(E_{beam}^{*} - E_{K^{+}}^{*} - E_{K^{-}}^{*}\right)^{2} - m_{\pi^{0}}^{2}} \times \frac{p_{\pi^{0}}^{*}}{|p_{\pi^{0}}^{*}|}$$

Tight cut on M'_{bc}

> $5.272 < M'_{bc} < 5.285 \text{ GeV}/c^2$

Fitting region

$$\succ$$
 -0.25 < Δ*E* < 0.15 GeV

Continuum Suppression

- Continuum suppression
- Total 22 variables used in FBDT training
 - Event shape variables
 - Vertex fit variables

Data-simultaion comparison of the FBDT output on (left) background-enhanced and (right) signal-enhanced $B^+ \rightarrow \overline{D}{}^0 (\rightarrow K^+ \pi^- \pi^0) \pi^+$ candidates. MC is normalized to the total number of data events for better comparison

Continuum Suppression optimization

- Continuum suppression optimization
 - 1000 ToyMC for each requirement
 - PDFs extracted from MC shape

 \blacktriangleright CSMVA > 0.9 (The most stringent threshold)

To minimize possible systematic uncertainties proportional to background contamination

➤ Reject 98.69% continuum background and preserve 74.45% signal events

BB Background

Generic $B\overline{B}$ background ($b \rightarrow c$ decays) ٠

Peak from D decay $(D \rightarrow KK \& D \rightarrow K\pi)$

Charm veto : $1.846 < M_{K^{\pm}\pi^{\mp}}$, $M_{KK} < 1.884 \text{ GeV}/c^2$

B0→K+K-pi0

M_{K'm} (GeV/c²)

BB Background

- Generic $B\overline{B}$ background ($b \rightarrow c$ decays)
 - Charm veto :

 $1.846 < M_{K^{\pm}\pi^{\mp}}$, $M_{K^{+}K^{-}} < 1.884~{\rm GeV}/c^{2}$

• rare $B\overline{B}$ background

> Combinatorial $B\overline{B}$ background:

> Peaking background: $B \rightarrow K\pi\pi$

The remain rare $B\overline{B}$ background after removing peaking background

Peaking Background

• Peaking background

 $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = (2.17 \pm 0.6) \times 10^{-6}$ $\mathcal{B}(B^0 \to K^+ \pi^- \pi^0) = (37.8 \pm 3.2) \times 10^{-6}$

 \blacktriangleright Require further cut on PID: kaonID > 0.9

• The event number of the two components are scaled to the expected yields corresponding to the integrated luminosity of the real data

Candidate Multiplicity and Final Selection

• $B^0 \rightarrow K^+ K^- \pi^0$

- Mutiplicity: 1.031
- Best candidate selection
 - > Lowest π^0 mass-constrained χ^2
 - → Then lowest B^0 vertex fit χ^2

• Final selection

Target	Selection	Signal efficiency [%]	SCF [%]
	Baseline and Optimized Selection	23.09	4.45
signal Region	$5.272 < M_{bc}' < 5.285 \ { m GeV}/c^2$	22.53	2.50
signal Region	$-0.25 < \Delta E < 0.15 \text{ GeV}$	22.28	2.32
Continuum Suppression	$\mathrm{CSMVA} > 0.9$	16.59	1.67
Charm voto window	$1.846 < M_{K^{\pm}K^{\mp}} < 1.884 \text{ GeV}/c^2$	16.43	1.68
Charm veto window	$1.846 < M_{K^{\pm}\pi^{\mp}} < 1.884 \text{ GeV}/c^2$	16.11	1.69
Further PID requirement	$\mathcal{L}(K/\pi) > 0.9$	11.70	1.64
Best candidate selection		11.41	1.13

• $\varepsilon = 11.41 \pm 0.02\%$

 $SCF = 1.13 \pm 0.02\%$

- Sample composition
 - Signal (Correctly reconstructed and self-crossfeed signal)
 - Continuum background
 - ▶ Generic $B\overline{B}$ background
 - \succ Combinatorial $B\overline{B}$ background
 - Peaking background

Signal yield extraction

- Fitter for $B^0 o K^+ K^- \pi^0$
 - tight cut on M_{bc}
 - 2D Fit on ΔE and transformed CS (C') (μ -transformation)
 - Probability density function (PDF) of each event category j: $\mathcal{P}_j^i = \mathcal{P}_j(\Delta E^i)\mathcal{P}(C'^i)$,
 - Extended likelihood function: $\mathcal{L} = \exp(-\sum_{i} n_{j}) \times \prod_{i} [\sum_{i} n_{j} \mathcal{P}_{j}^{i}]$

PDF used to model each event category

Event category	ΔE	C'
CR signal	Double CB	Flat
SCF signal	2D histog	gram
Continuum Background	Poly1	2Exp
Generic $B\overline{B}$ Background	Double G	KDE
Combinatorial $B\overline{B}$ Background	Double G	Poly2
Peaking Background	2D KD	E

- The CR signal and SCF signal are considered distinct and their combined PDF is : $n_{sig} \times [(1 f)\mathcal{P}_{CR} + f\mathcal{P}_{SCF}]$
- The combined PDF of generic $B\overline{B}$ background and combinatorial $B\overline{B}$ background is : $n_{B\overline{B}} \times [(1 - f_{gbb})\mathcal{P}_{combinatorial} + f_{gbb}\mathcal{P}_{generic}],$ $f_{gbb} = \frac{n_{generic}}{n_{generic} + n_{combinatorial}},$

- Parameters fixed
 - SCF fraction
 - PDF parameters (except 2 parameters of $q\bar{q}$ bkg)
 - The yield of peaking background
- Parameters floated :
 - The yield for each event category except for peaking background (n_{sig} includes CR and SCF signal)
 - Continuum background PDF parameters (2 parameters are floated, coefficient p_0 and the fraction of two exponential function)
 - The fraction of generic $B\overline{B}$ background (f_{gbb})

Event estimation

□ Signal Events : estimated by assuming the branching ratio to be $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = 2.17 \times 10^{-6}$

$$\succ N_{sig}^{exp} = N_{B\bar{B}} \times \mathcal{B}(B^0 \to K^+ K^- \pi^0) \times \varepsilon_{sig}^{rec}$$

Continuum bkg & Generic BB bkg : scaled to the integrated luminosity of experimental data

□ Peaking bkg : calculated by

$$\succ N_{peak}^{exp} = N_{B\bar{B}} \times \mathcal{B}(B^0 \to K^+ \pi^- \pi^0) \times \varepsilon_{peak}^{rec}$$

	Expected Yield
Signal	193
Continuum background	1760
BB background	502
Peaking background	28

Fitter validation

- **GSIM** (1000 samples)
 - Yield of each component fluctuated drawing from a Poisson distribution around their nominal expected value

$$\text{oull} = \frac{x_{fit} - x_{true}}{\sigma_x}$$

Significance : $\sqrt{2 * (NLL - NLL_{min})}$

Fitter validation

- **GSIM** (1000 samples)
 - Fit Range
 - ➤ ΔE [-0.25, 0.15] GeV
 - ≻ C' [0, 1]

Fitting results for one of the GSIM samples

- Projection Plot
 - \succ -0.15 < Δ*E* < 0.05 GeV, and
 - ➢ C' > 0.2

Fitter Validation

- Linearity test (Branching ratio varies from 0.8×10^{-6} to 3.0×10^{-6})
- 1000 GSIM samples for each input)

Control Channel

Control Channel

 $B^+ \rightarrow \ \overline{D}{}^0 (\rightarrow K^+ \pi^- \pi^0) \pi^+$

- To extract calibration parameter (shift and scale factor)
- To assess possible differences in the CS efficiency between data and MC

Target	Selection		
	$ dz < 2 ext{ cm}$		
charged tracks	$dr < 0.5 ext{ cm}$		
	theta in CDC acceptance		
γ	forward > 25 MeV, barrel > 125 MeV, backward > 150 MeV		
π^0	$115 < M_{\gamma\gamma} < 150 \text{ MeV}/c^2$		
	$\chi^2_{\pi^0} < 12$		
	daughterAngle < 0.5		
	$ \cos Helicity Angle Momentum < 0.91$		
K/π	atcBellePID_3_2 > 0.9 for selecting kaons		
	atcBellePID_3_2 < 0.1 for selecting pions		
$ar{D}^0$	$1.826 < { m InvM} < 1.893 ~{ m GeV/c^2}$		
B^+	$5.272 < M_{bc}' < 5.285 \ { m GeV}/c^2$		
	$-0.25 < \Delta E < 0.15$ GeV		
CSMVA	$\rm CSMVA > 0.9$		

The selection criteria for $B^+ \to \overline{D}{}^0 (\to K^+ \pi^- \pi^0) \pi^+$ (Belle)

The selection criteria for $B^+ \to \overline{D}{}^0 (\to K^+ \pi^- \pi^0) \pi^+$ (Belle II)

Target	Selection			
	dz < 2 cm			
charged tracks	$dr < 0.5~{ m cm}$			
	theta in CDC acceptance			
γ	$0.2976 < \theta < 2.6180$ rad			
	clusterNHits > 1.5			
	clusterTiming < 200 ns			
	forward $>275~{\rm MeV},$ barrel $>150~{\rm MeV},$ backward $>200~{\rm MeV}$			
	beamBackgroundSuppressionScore > 0.1			
	fakePhotonSuppressionScore > 0.675			
π^0	$115 < M_{\gamma\gamma} < 150 \text{ MeV}/c^2$			
	$\chi^2_{\pi^0} < 13$			
	daughterAngle < 0.5			
	cosHelicityAngleMomentum < 0.88			
K/π	kaon IDNN > 0.9 for selecting kaons, rest considered pions			
\bar{D}^0	$1.826 < InvM < 1.893 ~GeV/c^2$			
B^+	$5.272 < M_{bc}' < 5.285 \ { m GeV}/c^2$			
	$-0.25 < \Delta E < 0.15$ GeV			
CSMVA	$\mathrm{CSMVA} > 0.9$			

Control Channel

Summary

- Update Belle II analysis using MCrd samples
- Add Belle analysis

- Next to do
 - \succ PID correction
 - Systematic uncertainties
 - ➤ Complete Belle2Note ...

Thanks for your attention!

Back up

photonMVA

γ relevant variable	
beamBackgroundSuppressionScore	The output of an MVA classifier that uses shower-related
	variables to distinguish true photon clusters from beam
	background clusters
fakePhotonSuppressionScore	The output of an MVA classifier that uses shower-related
	variables to distinguish true photon clusters from fake photon
	clusters

https://confluence.desy.de/display/BI/Neutrals+Performance

Modified M_{bc}

B0→K+K-pi0

Variables used in CS training (Belle II)

TABLE XVIII. Variables used in FBDT training (BelleII)

Variable	Abbreviation	Variable	Abbreviation
R2	$\mathbf{R}2$	DeltaZ	Delta
$\cos TBTO$	$\cos TB$	${\rm thrustBm}$	thrust3
KSFWVariableshso12	KSFWV3	KSFWVariableshso02	KSFWV2
thrust	thrust2	KSFWVariableshoo0	KSFWV1
foxWolframR3	foxWo3	foxWolframR1	foxWo2
CleoConeCS1	CleoC2	thrustOm	thrus1
CleoConeCS2	CleoC1	foxWolframR4	foxWo1
chiProb	chiPr		

Delta

COSTB thrus3 KSFWV3 - 0

KSFWV2 - -0

thrus2 - 40 KSFWV1 foxWo3 - 🕫

foxWo2 - ®

CleoC2 - -

thrus1 - ®

foxWo1 8

CleoC1 0 55

chiPr 100 0

-00 -00 0

-3 2 -0

0-00-0

-12 -8

18

0

-61, 26

-0

J. -0

•

۹ я 32

8

-0

Efficiency map (Belle II)

PDFs (Belle II)

B0→K+K-pi0

Variables used in CS training (Belle)

Variable	Abbreviation	Variable	Abbreviation
R2	R2	$\cos TBTO$	$\cos TB2$
${\rm thrustBm}$	thrus4	DeltaZ	Delta
thrust	thrus 3	thrustOm	thrus 2
CleoConeCS1	CleoC5	foxWolframR3	foxWo2
CleoConeCS2ROE	CleoC4	KSFWVariableshso02	KSFWV6
CleoConeCS2	CleoC3	CleoConeCS3ROE	CleoC2
KSFWVariableshso12	KSFWV5	KSFWV5	$\cos TB1$
${ m KSFWV} ariable { m smm2}$	KSFWV4	foxWolframR1	foxWo1
${\it thrustAxisCosTheta}$	thrus1	KSFWVariableshso10FS1	KSFWV3
CleoConeCS4ROE	CleoC1	chiProb	chiPr
${ m KSFWV} ariableshso04FS1$	KSFWV2	KSFWVariableshso14FS1	KSFWV1

PDFs (Belle)

