CEPC Silicon Tracker

Qi Yan *on behalf of the Silicon Tracker Group* CEPC Day, Jan 24, 2025, IHEP

Overview of CEPC Silicon Tracker

We have developed a comprehensive design for the CEPC Silicon Tracker, incorporating many unique design features compared to existing experiments.

In this presentation, I will give a complete overview of the CEPC Silicon Tracker.

CEPC ITK Design: Barrels with HVCMOS Pixels

- Sensor size: 20 mm × 20 mm (active area of 17.4 mm × 19.2 mm)
- Array size: 512 rows × 128 columns
- Pixel size: $34 \ \mu m \times 150 \ \mu m$ (spatial resolution: $8 \ \mu m \times 40 \ \mu m$)
- Time resolution: 3-5 ns
- Power consumption: ~200 mW/cm²
- Module:
 - 14 sensors (2 rows × 7 columns)
 - Sensor gap: 100 μm
 - Module dimensions: 140.6 mm × 40.1 mm
- Stave:
 - Module gap: 300 μm
 - Length: 986.6 mm (ITKB1), 1,409.6 mm (ITKB2), and 1973.2 mm (ITKB3)
 - Barrel radii: 235 mm (ITKB1), 345 mm (ITKB2), and 555.6 mm (ITKB3)

Information about staves, modules, and sensors used for 3 ITK barrels construction								
Barrel	Number of staves	Modules per stave	Sensors per module	Total number of sensors	Sensor area [m ²]			
ITKB1	44	7	14	4312	1.72			
ITKB2	64	10	14	8960	3.58			
ITKB3	102	14	14	19992	8.00			
Total	210			33264	13.31			

3

CEPC ITK Design: Endcaps with HVCMOS Pixels

Module:

• 3 types of modules: 8, 12, and 14 sensors for all 4 ITK endcaps

Endcap active area radii:

81.5 mm<r<242.5 mm(ITKE1), 110.5 mm<r<352.3 mm (ITKE2), 163 mm <r<564 mm (ITKE3), and 223 mm<r<564 mm (ITKE4)

Back view of endcap

Perspective view of full endcap

The Module and Sensor Layout of a Single Face of Each ITK Endcap							
Endcap	Number of module rings	Number of modules per module ring	Number of sensors per module	Total sensors			
ITKE1	2	13,20	8,8	264			
ITKE2	2	16,24,28	8,8,8	544			
ITKE3	3	24,36,44	12,14,14	1408			
ITKE4	3	24,36,44	8,12,14	1312			
Total				3528			

CEPC ITK Design: Endcaps with CMOS Strips (Alternative)

CEPC OTK Barrel Design with AC-LGAD Strips

3600 mm

- Sensor size: $87.388 \text{ mm} \times 52.20 \text{ mm}$ (2 sets of strips) 89.888 mm × 52.20 mm (2 sets of strips)
- Strip length: 43.644 mm or 44.894 mm ٠
- Strip number: 512 ×2 ٠
- Strip pitch: 100 µm
- Time resolution: 50 ps
- Power consumption: 300 mW/cm²
- Module: 2 sensors (16 readout ASICs with 128-channels)
- Ladder:
 - 8 modules (16 sensors)
 - Length: 699.8 mm or 719.8 mm
- Stave: 8 ladders (4 short+4 long)

CEPC OTK Endcap Design with AC-LGAD Strips

- Each group of sensors is aligned to a 1/16 sector.
- The long sensor contains 4 sets of short strips while short sensor contains 2 sets of short strips.
 - Strip pitch: 80.7-113.8 μm
 - Strip length: 28.38-37.61 mm

Maximize the use of silicon wafers and facilitate detector assembly.

8" wafer (group A, B, D sensors)

CEPC OTK Endcap Design with AC-LGAD Strips (2)

Silicon Tracker Power Cabling Scheme

Power Rail for ITK Barrel Stave

ITKB1: 7 modules per stave (986.6 mm) ITKB2: 10 modules per stave (1,409.6 mm) ITKB3: 14 modules per stave (1,973.2 mm)

The staves of ITKB2 and ITKB3 use 2 Power Buses, each serving 5 or 7 modules from one end.

Power requirement per Power Bus: 5-module: ~60 W 7-module: ~84 W

For the 7 modules, the currents are: 48V:1.75 A 12V (with 2 lanes): 3.5 A

Luo, Xiongbo Yan

1: Power Bus: HV input 150 V LV input 48 V

Power Rail for OTK Barrel Stave

Qi Yan, Yihan Zhang, Shoudong Luo, Xiongbo Yan

One OTK stave consists of 8 ladders (700 mm or 720 mm), with 4 ladders read out in one direction.

OTK Voltage Transmission

- The high voltage (HV, 200 V) and original low voltage (LV, 48 V) are transmitted to the 2nd data aggregation boards through the long power bus FPC (Stave FPC).
- The DC-DC converters in the 2nd data aggregation boards step down the 48 V LV input to 12 V.
- The 12 V LV, along with 200 V HV for sensor biasing, is distributed to all modules via shorter ladder FPC.

Data Link:

• Data output, clock and commands inputs are transmitted between sensor modules and optical module on the secondary data aggregation board through the ladder FPC.

Power Rail for OTK Endcap (1/16 Sector)

OTK Endcap Power Rail: Power Buses on 3 Frames

Power Bus transmits: HV (200 V) and LV (48 V)

- 180 μ m thick (with metal layer of 25 μ m copper or aluminum) is more than sufficient
- pins x 0.5 mm pitch)
- Max length: 1,330 mm
- Max power transmission: 4.8 A, 230 W 13

Improvement of the ITK Stave Support and Cooling Design

Water with polyimide cooling pipe was used as baseline cooling fluid for the ITK. Polyimide possesses outstanding properties such as low mass, high temperature resistance, corrosion resistance, radiation resistance, and high strength.

ITK Stave Deformation and First Natural Frequency A: Static Structural Total Deformation Type: Total Deformation Unit: mm ITKB1 stave deformation Time: 1 0.085187 Ma: TPC 0.075722 0.066257 0.056792 0.047326 0.037861 0.028396 0.018931 Barrels 0.0094653 Yujie Li and Quan Ji 150.00 Type: Total Deformation Erequency: 126.17355 Hz Unit: mm 376.17 Max 334 37 292.58 250.78 208.98 167.19 125.39 83.593 41.797 First order mode and first natural frequency 200.00 (mm 150.00 **ITK Stave** ITKB1 ITKB2 ITKB3

The first natural frequency indicates the frequency at which an external impulse can induce resonance phenomena in the structure, resulting in oscillations of the sensor positions. 15

987

85

126

1410

289

69

1974

896

34

Stave length [mm]

Maximum sag [µm]

First natural frequency [Hz]

ITK Barrel Stave Thermal Characterisation

The heat generated by ITK sensors with a magnitude of 200 mW/cm². The cooling design should achieve the following:

- The overall sensor operating temperature <30 °C.
- The temperature uniformity across a single sensor <5°C.

A water cooling fluid structure coupled finite element model was established to study the temperature distribution:

The temperature gradient along the 987 mm length of the stave can be controlled within 5°C. The water cooling meets the detector's requirements.

Yujie Li and Quan Ji

ITK Mechanical and Cooling Structure Design

							E-timetian of
Functional unit	Component	Material	Thickness [µm]	X_0 [cm]	Radiation Length [% X ₀]		Estimation of
Sensor Module	FPC metal layers	Aluminium	100	8.896	0.112	Functional unit	Component
	FPC Insulating lavers	Polyimide	100	28.41	0.035	Sensor Module	FPC metal layers
	Sensor	Silicon	150	9.369	0.160		FPC Insulating layers
	Glue		100	44.37	0.023		Sensor
	Other electronics				0.050		Glue
Cooling Plate	Carbon fleece layers	Carbon fleece	40	106.80	0.004	0	Other electronics
U U	Carbon fiber plate	Carbon fiber	150	26.08	0.057	Structure	Carbon fiber facesheet
	Cooling tube wall	Polyimide	64	28.41	0.013		Cooling tube wall
	Cooling fluid	Water		35.76	0.105		Cooling nuid
	Graphite foil	Graphite	30	26.56	0.011		Graphite Ioam+Honeycomb
	Glue	Cyanate ester resin	100	44.37	0.023		Carbon noer facesneet
Truss Frame	Carbon rowing				0.080	T-+-1	Olde
Total					0.673	10101	

Estimation of ITK HV-CMOS pixel endcap material contributions					
Functional unit	Component	Material	Thickness [µm]	X_0 [cm]	Radiation Length [% X ₀]
Sensor Module	FPC metal layers	Aluminium	50	8.896	0.056
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Sensor	Silicon	150	9.369	0.160
	Glue		100	44.37	0.023
	Other electronics				0.050
Structure	Carbon fiber facesheet	Carbon fiber	150	26.08	0.057
	Cooling tube wall	Titanium		3.560	XXX
	Cooling fluid	Water		35.76	XXX
	Graphite foam+Honeycomb	Allcomp+Carbon fiber	2000	186	0.108
	Carbon fiber facesheet	Carbon fiber	150	26.08	0.057
	Glue	Cyanate ester resin	200	44.37	0.045
Total					0.591+XXX

Mechanical and Cooling Structure Design for the OTK Barrel

Qi Yan, Shoudong Luo, Quan Ji

- 1) The TPC outer barrel is made of a carbon fiber cylinder with stepped ramp rings.
- 2) The lower support carbon fiber facesheet, with a carbon fiber honeycomb glued on top, was mounted onto the stepped ramp rings.
- 3) Two cooling pipes (~6 m in length), were then inserted into the gaps of the carbon fiber honeycomb, sealed with high conductivity foam surrounding them.
- 8 ladders were glued on top one by one to enclose stave honeycomb and complete the construction of one stave. Each OTK ladder (~0.7 meters) has its own support, consisting of 16 sensors, electronic components, and a carbon fiber facesheet.

OTK Barrel Structural and Thermal Characterisation

Using a 5 °C and 2 m/s water inlet (ID: 5 mm), the maximum temperature difference across one sensor is <2.9 °C for inlet from one end and <4 °C for inlet from two ends. Water cooling can meet the thermal requirements for the OTK over ~6 m stave length.

Mechanical and Cooling Design for the OTK Endcap

Cooling Loop Design for the OTK Endcap

A few months ago, Quan Ji, Gang Li, and I visited Zhengzhou University of Light Industry, to explore ways to strengthen CEPC's R&D capabilities in mechanical and thermal systems.

The School of Energy and Power Engineering at Zhengzhou University of Light Industry has extensive experience and a strong focus on thermal system development, including CO₂ cooling. During our visit, we were highly impressed by their expertise in both thermal and mechanical engineering.

On Jan 10, the Dean of the School of Energy and Power Engineering, Professor Xuehong Wu, and his team, visited IHEP in return. They are now actively contributing to the design and analysis of the CEPC thermal system.

Cooling loops design and thermal analysis for the OTK endcap performed by Zhengzhou University of Light Industry (郑州轻工业大学).

OTK Endcap Thermal Mesh Generation

24-layer cooling tube(16.85m, cell count 9356670, Orthogonal Quality≥0.5)

32-layer cooling tube(19.16m, cell count 10645946, Orthogonal Quality≥0.5)

- ✓ The mesh generation is performed for two different cooling tube arrangements, and numerical solutions are obtained using the finite volume method.
- ✓ The cooling performance of both arrangements is analyzed and compared.

Silicon Tracker Power and Cooling Rail Routing Outward

Qi Yan, Quan Ji, Xiongbo Yan

CEPC Silicon Tracker

Parameterization of CEPC Tracking Performance

Progress on Silicon Tracker Ref-TRD

5.1 Requ	uirements	
5.1.1	Physics requirements	
5.1.2	2 Specific requirements on Silicon Tracker	
5.2 Over	rview of ITK and OTK	
5.2.1	Technology Options and Boundary Conditions	
5.2.2	2 Optimization Tools	
5.2.3	3 Lavout Optimization 本刚 4	
	5.2.3.1 The tracker length	
	5.2.3.2 Barrel Region	
	5.2.3.3 End-cap Region	
5.2.4	Summary and discussion on tracker optimization	
5.3 Inne	r silicon tracker (ITK) 7	
5.3.1	CMOS chin R&D 7	
0.011	53.1.1 HV-CMOS nixel R&D 7	
	53111 Technology survey for silicon pixel detectors 7	
	5 3 1 1 2 Development of HV-CMOS pixel sensor for CEPC 8	
	53113 COFFEE1 把它点主人 木 响 用权 8	
	53114 COFFEE2	
	53.1.2 CMOS strip R&D 把它在主人中的 14	c
532	·····································	, n23
5.5.2	5321 ITK harrel design	<i>i</i> t ''
	53.2.1 ITK ordeon design 53.2.2 ITK and con design 撰写负责人: 严琪、	` .n
	53.2.2 Alternative design for the ITK	xel'
533	Beadout electronics).)
53/	1 Mechanical and cooling design	
5.5.7	5 3 4 1 Barrel local support	
	53411 Materials O型 它在电路。亚钳 32	
	5.3.4.12 Structural characterisation 33	
	5.3.4.1.2 Structural characterisation 34	ſ
L	5 3 4 2 Endcan local support for HV-CMOS nivel detector 25	
	$5.3.4.2$ Endeap local support for 11° -Civios pixel detector $\dots \dots \dots$	
	The solution 握写负责人: 严琪 26	
	5.5.4.2.2 Structural characterisation 26	
	5.3.4.2.5 Informat for CMOS strin detector	
	5.3.4.3 Endcap local support for CMOS strip detector	
	5.3.4.3.1 Materials	
	5.3.4.3.2 Structural characterisation	
5.0.5	5.3.4.3.3 Thermal characterisation	
5.3.5	Prospects and plan	
	5.3.5.1 Development of the CMOS pixel sensor	
	5.5.5.2 Development of the CMOS strip sensor	
5 1 0	5.3.5.3 Module and system level development	
5.4 Oute	r silicon tracker (OTK) with TOF	
5.4.1	AC-LGAD sensor and ASIC R&D	
	5.4.1.1 AC-LGAD Sensor R&D 撰写负责人:赵梅 42	

	5.4.1.1.1 A	C-LGAD simulation		43
	5.4.1.1.2 T	esting setup	· +v +/=· · ·	44
	5.4.1.1.3 P	ixelated AC-LGAD prototypes . (据与以贝人:	. 赵佾	46
	5.4.1.1.4 S	trip AC-LGAD prototype and properties		48
	5.4.1.2 AC-LGAD	ASIC R&D		53
	5.4.1.2.1	eneral requirements		53
	5.4.1.2.2 A	SIC architecture		54
	5.4.1.2.3 S	ingle-channel readout electronics		54
	5.4.1.2.4 D	ata process and digital blocks 把 一 在 主	· JE HEVE	57
	5.4.1.2.5 P	rototype) 《世初文	58
	5.4.1.2.6 P	ower distribution and grounding		61
	5.4.1.2.7 R	adiation tolerance		61
	5.4.1.2.8 N	Ionitoring		62
	5.4.1.2.9 D	evelopment plan and schedule		62
5.4.2	OTK design			63
	5.4.2.1 OTK barre	l design	亚琪…	63
	5.4.2.2 OTK endca	p design		65
5.4.3	Readout electronics .			70
	5.4.3.1 Front-end	board C.V.!		70
	5.4.3.2 Concentra	Pearer and power distribution		71
	5.4.3.3 Slow contr	of and monitoring	… 严 雄 波	71
	5.4.34 Clock distr	ibution C.P.		71
5.4.4	Mechanical and cool	100 to		72
QC	3.4.4.1 Burelsup	ort		72
	3.441.T N	laterials	… 严琪…	73
	5.4.4.1.2 S	tructural characterisation		74
$\chi \chi$	5.4.4.1.3 T	hermal characterisation	<u></u>	75
0.	5.4.4.2 Endcap sup	port		76
	5.4.4.2.1 N	laterials」「握写奇・人・	… 严 祖 …	78
	5.4.4.2.2 S	tructural characterisation		78
	5.4.4.2.3 T	hermal characterisation		79
5.4.5	Prospects and plan .			80
	5.4.5.1 Developme	nt of AC-LGAD strip sensor for CEPC		80
	5.4.5.2 Developme	nt of AC-LGAD readout ASIC		80
	5.4.5.3 Developme	nt of 撰写短句的 gyster X 梅、··· 严雄沉	₹、严琪	81
	5.4.5.4 Summary		<u> </u>	81
Beam I	background estimation			82
5.5.1	Beam background sir	nulation		82
	5.5.1.1 Pair produc	tion background		82
	5.5.1.2 Single bear	n background		82
	5.5.1.2.1 E	eam Inermal Photon Scattering (BIH)		82
	5.5.1.2.2 B	eam Gas Coulomb Scattering (BGC) and Beam Gas Brems	strahlung Scat-	
	5 5 1 0 0 T	ring (BGB)		82
550	5.5.1.2.3 I	buschek Scattering (ISC)		83
5.5.2	TTV talarahla hit rata			102
5.5.5	OTK tolerable hit rate	撰与负贡人 : 严琪	、今一吗	183 1 ₀₄
3.3.4 Deafean	OIK tolerable hit rat			84 96
5.6.1	The performance of	••••••••••••••••••••••••••••••••••••••		00 96
5.0.1	5 6 1 1 Momentum			00 04
	5.6.1.2 Polos of	resolution trackers		00 92
	5.6.1.2 Roles of ga	scous and Shicon Hackers		00 07
567	The performance of	he forward region (endcome) (#与贝页人: · · 字)	则、产琪	0/
5.0.2	5621 Momentum	resolution performance		00 88
	5622 Particla ide	ntesonation performance		- 90
	J.J.Z. I article lu	antineation performance		~~

Progress on COFFEE3 Development and Submission

Submitted 2025.1/ expected received 2025.5

- In-pixel electronics;
- Pix matrix readout strategy;
- Periphery digital logics and functional IPs;
- Slow control & Fast control....
- Data/Power/CLK interfaces.....

Provided by Yang ZHOU

Two readout architectures:

Both include nearly a complete ASIC readout framework, and the solution can be extended to a full-size chip. Each pixel can independently adjust its

threshold through SPI (4-bit in-pixel DAC) and configure the mask.

- Architecture 1: the optimized design framework based on current process conditions (Triple-well process);
- Architecture 2: an improved solution, while requires process modification. (Deep P-well required); fully utilize the advantages of the 55nm process node,.

- ToA and ToT information are saved in each pixel;
- Data-driven readout;

LVDS driver/receiver up to 1.28Gb/s

320MHz

Serializer

Prototypes in 55 nm HV-CMOS Process

Several MPWs to reach the full-size full-function sensor

- 浙江大学:邓建鹏、李鹏戌;
- 大连民族大学: 陈洋、王雨颉、施展;

Progress on CMOS Strip Chip (CSC1) Development

CMOS Strip Sensor Design and Simulation

- Foundry: CSMC CMOS (1P4M)
- Sensor Size: 20.000 mm × 3.486 mm
- Strip length: 19.716 mm, pitch 75.5 μ m
 - n-well:18 μm, n+: 15 μm
 - p-well: 4 μm, p+: 2 μm
- pad area: 75 $\mu m \times$ 180 μm
- Number of channels: 40
- n-well to bias ring via well-resister
- Two n+ guard rings
- Doping concentration

IV/CV results consistent with existing data* * Diehl et. al, Characterization of passive CMOS strip sensors, NIMA 1033 (2022) 166671 31

Analog Frontend Design Status and CSC1 Submission

- Completed the design of Analog Frontend (AFE): Preamplifier, the 1st stage amplifier, shaper, discriminator, and bandgap.
 - Circuit design, layout design, pre-simulation, and post-simulation
- Completed the overall Design Rule Checking (DRC), Layout Versus Schematics (LVS) checks.

AC-LGAD Strip Sensor New R&D Design

New layout and design was done based on simulation. IHEP new AC-LGAD strip sensor prototype design for the CEPC OTK&TOF:

- Strip length: 1 cm, 2 cm, and 4 cm
- Strip pitch size: 100 μ m, 200 μ m, and 500 μ m
- Optimized isolated structure design to reduce sensor capacitance
- Process design optimized for better spatial resolution (n+ layer dose)

Designed by Mei Zhao

AC-LGAD Sensor Readout Board Preparation

Mei Zhao

- 4-channels readout boards has been fabricated for AC-LGAD testing
- 2-stage amplifiers, Gain~70
- Signal shape has significantly improved, showing no oscillations.

AC-LGAD Strip Sensor Development Plan

Short term plan: 2024.12-2025.2

Simulation: ongoing

- Simulation of Strip length and its effect (signal shape)
- Simulation to reduce capacitance (isolation structure)
- Simulation of process parameters to optimize spatial resolution (AC coupling capacitor, n+ dose)

Testing:

- Multi-channel readout board with low noise design and fabrication (2 stages of amplifier) done
- Testing of short strip connected, radiation testing(TID) ongoing

Submission 1: 2025.2 (layout design is done, process simulation ongoing)

Strip AC-LGAD with different length and pad-pitch size: [1 cm, 2 cm, 4 cm] [100um, 200 um, 500 um]

- Strip AC-LGAD with different process parameters: n+ dose, dielectric material and thickness, ...
- Strip AC-LGAD with different isolation structure \rightarrow Capacitance
- Sensors with EPI layer of different thickness (50 um, 65 um, 80 um, 300 um)

Sensor Testing:

- clarify the sensors performance and requirement (include test beam and radiation test)
- Find out how to optimize the sensor performance (structure and process)

Submission 2: 2025.10

- Based on the results from first version and more simulation
- Sensors with strip length ~4cm

Sensor Testing: basic properties and test together with ASIC and BEE

Submission 3: 2026.6

large area sensor design and fabrication

Submission 4 if needed: 2027.2

module: built sensor + ASIC module and test

OTK AC-LGAD Readout ASIC (JuLoong, 烛龙)

Xiongbo YAN

Functions:

- TOA (Time of arrival) for precise time and TOT (Time over threshold) for time walk correction and accurate position determination.
- Each channel includes preamplifier, discriminator, and Time-to-Digital Converter (TDC).
- > Requirements:
 - 128 channels, channel pitch less than 100 μm.
 - Single channel power consumption less than 20 mW.
 - Time resolution for TOA better than 30 ps.

JuLoong diagram

OTK AC-LGAD ASIC Development Progress

Several key cells are designed or verified:

- FPMROC (10 ps) chip
 - FEE: Preamplifier+Discriminator

jitter<7.8ps @ input 2.5mV, t_r=0.1ns, Cs=0 pF

(need to be test with real LGAD sensor)

- TDC core needs a new design
- PLL, Serializer, SPI is verified but need to be simplified
- > I2C Slave: ASIC parameter configuration

Xiongbo YAN

FPMROC

OTK AC-LGAD TDC Core Design

- Event driven delay line to reduce the power
- Real time Calibration for PVT (Process, Voltage, Temperature)
- LSB ~36 ps for preliminary layout post-simulation
- ➢ Power Consumption :
 - Average current for single event: 443 μA
 - Static current: < 5µA

Single-Channel Delay Chain and Quantization Block Diagram

Xiongbo YAN

Delay line layout

TOA transfer function curve (step=5 ps, TT27)

OTK AC-LGAD ASIC (JuLoong) Development Plan

- 2025.4: Design key components, including preamplifier, discriminator, and TDC, along with the design of the ASIC test system. Performance testing of the ASIC will be conducted by the end of the year, with radiation hardness testing for each component.
- 2025.7: Conduct components performance test.
- 2025.10: Refine components and complete the first version of multi-channel integration.
- 2026. 2: Performance test on the multi-channel ASIC, including radiation hardness testing.
- 2026. 6: Further refinement and integration of 128 channels.
- 2027.10: Performance testing of 128 channel ASIC will be conducted, integrated with LGAD sensor.
- 2027.12: Finalize the prototype and prepare for mass production of the chips.

Summary

- Our silicon tracker group is steadily progressing towards the Ref-TDR.
- We greatly appreciate the mechanical and thermal support from Xuedong Wu and his group at Zhengzhou University of Light Industry (郑州轻工业大学).
- After the Ref-TDR, we will focus on R&D efforts, including all sensor technologies and the supporting components, such as mechanical and thermal R&D.
- In parallel, I, along with the group members, will make significant efforts to strengthen our connections with research units and industries, including semiconductor foundries, to advance the R&D work.

5.4.5.4 Summary

Figure 5.106: Timeline for OTK, including sensor, ASIC, mechanics and so on

All the R&D mentioned above is part of a 3-year plan, as detailed in Fig. 5.106. Considering the project timeline of more than 5 years from construction, the CEPC project is flexible enough to adjust its technical approach and has sufficient backup plans for the engineering phase. For example, if the performance of the AC-LGAD strip sensor degrades significantly for large-dimension strip sensor, we may consider using conventional large-dimension sensor, with or without an external time-of-flight detector, or opt for bump bonding or monolithic AC-LGAD technology if it becomes mature.

For the OTK system, including sensor, readout ASIC, and mechanical and cooling components, we are open to both domestic collaborations with research units and industry as well as international partnerships. In light of all these factors, we are confident in delivering a high performance OTK system that meets the physics requirements in a timely manner.