Software of the Silicon Trackers in CEPCSW

FU Chengdong

Silicon Tracker TDR meeting

Mar. 07, 2025

Contents

Introduction

Overview of full simulation software

- Simulation
- Digitization
- Track reconstruction
- PFA etc.
- Developing status
 - Geometry update
 - Application
 - Plan & discussion

Summary

Introduction

Physics process	Measurands	Requirement on tracker
$ZH, Z \rightarrow e^+e^-(\mu^+\mu^-), H \rightarrow \mu^+\mu^-$	$m_{H'} \sigma(ZH), BR(H \rightarrow \mu^+ \mu^-)$	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(GeV) \sin^{3/2}\theta}$

• The silicon trackers @CEPC will play an important role in detecting high momentum charged particle, be helpful for low momentum region, and unique for those tracks that can not reach TPC.

- Vertex
- ITK
- OTK
- Challenge on application of new technology
 - Stitching vertex
 - LGAD
- On software, requirement on high tracking efficiency and accurate performance of reconstruction
- Application at the TDR stage
 - Simulation to estimation background
 - Track performance for tracker optimization
 - Track objects for PFA, physical analysis

Simulation and Reconstruction Chain

- Full simulation is performed in CEPCSW, and some fast simulation tools for trackers such as LDT, Delphes, tkLayout etc. are applied in standalone.
- The standard chain of MC simulation:

Implementation and Transmit of Geometry

Sensitive Detector

■ SD in G4 simulation: G4Step → G4TrackerHit → SimTrackerHit

- step length through option
 - ✓ <detector name="VXD" ... limits="tracker_limits"...>
 - ✓ if not set, use Geant4 default
- combine steps to one hit
 - ✓ <detector name="VXD" ... combineHits="true" ...>
 - \checkmark if not set, default is false

<pre>limitset name="tracker_limits"></pre>
<pre><limit name="step_length_max" particles="*" unit="mm" value="5.0"></limit></pre>
/limitset>
<pre>limitset name="detail limits"></pre>
<pre><limit name="step length max" particles="*" unit="mm" value="0.005"></limit></pre>
/limitset>

Save the center position of start and end as the position of SimTrackerHit

Save the direction from start to end as the direction of momentum of SimTrackerHit

Digitization

Gaussian smearing on SimTrackerHit at measurement dimension (u,v)

- pixel: 2D (u,v)
- strip: 1D (u,0) or (0, v)
- Fixed spatial resolution or Parameterized spatial resolution through option
 - VXD: 5μm, ITK: 8μm (40μm), OTK: 10μm (1mm), TPC: varied with drift length
- Measurement surface at the center plane, consistent with the general simulated hit

Drop threshold

• Hit efficiency between [0,1]: current global for each sub-detector, local option for each sensor, support to make dead for whole sensor

• Deposited energy in step

v (z)

Track Finding

Tracking Options

Output

Association

MCRecoTrackParticleAssociation

- Track
- MCParticle
- weight: number of tracker hit linked between MCParticle and Track (NL), for a particle, found track (minimum requirement: NLmaximum≥4)
- help to compare to MC truth

Geometry of ITKBarrel

- Previous version: SIT_StaggeredStave_v02.xml
 - JIANG Xiaojie implemented
 - non-uniform: DC-DC, optical, cooling

Updated version: ITK	StaggeredStave	v03	01.xml	

- uniform supper layer to fix issue at low momentum as preliminary
 - ✓ support: truss frame, carbon fleece, graphite foil, cooling pipe, cooling fluid, carbon fiber plate, glue
 - \checkmark sensitive: by gaped modules (by gaped sensors with dead side)
 - \checkmark flex: FPC, other electronics, glue
- ladder radius and number: 103→102

Information about staves, modules, and sensors used for 3 ITK barrels construction								
lumber of staves	Modules per stave	Sensors per module	Total number of sensors	Sensor area [m ²]				
44	7	14	4312	1.72				
64	10	14	8960	3.58				
102	14	14	19992	8.00				
210			33264	13.31				
ľ	Information umber of staves 44 64 102 210	Information about staves, modulumber of stavesModules per stave44764101021421014	Information about staves, modules, and sensors used forumber of stavesModules per staveSensors per module4471464101410214142101414	Information about staves, modules, and sensors used for 3 ITK barrels constructionumber of stavesModules per staveSensors per moduleTotal number of sensors447144312641014896010214141999221033264				

 Table 5.4:
 Information about staves, modules, and sensors used for 3 ITK barrels construction.

Figure 5.48: ITK barrel mechanics and cooling

Geometry of ITKEndcap

- Previous version: FTD_SkewRing_v01_07.xml
 - 16 trapezoid petals with sensitive layer and support layer
- Updated version: ITK_EndCap_v01.xml (MultiRingsZDisk)
 - support (disk): carbon fiber facesheet, cooling tube wall, cooling fluid, graphite foam+Honeycomb, carbon fiber plate facesheet
 - sensor: petal
 - ✓ glue: glue
 - ✓ sensitive: silicon
 - \checkmark service: glue, FPC, other electronics

The Module and Sensor Layout of a Single Face of Each ITK Endcap								
Endcap	Number of module rings	Number of modules per module ring	Number of sensors per module	Total sensors				
ITKE1	2	13,20	8,8	264				
ITKE2	3	16,24,28	8,8,8	544				
ITKE3	3	24,36,44	12,14,14	1408				
ITKE4	3	24,36,44	8,14,12	1224				
Total				3440				

 Table 5.5:
 The Module and Sensor Layout of a Single Face of Each ITK Endcap

Geometry of OTK

- Previous versions:
 - OTKB: backup (YU Dian implemented)
 - OTKE: 16 trapezoid petals, backup in patch
- Updated versions: baseline (LI Zhihao implemented)
 - OTKB: OTKBarrel v02.xml
 - OTKE: OTKEndcap v02.xml

Material

<	flex le	ngth="]	ITKBarrel_ladde	r_length_1"	width="	ITKBarrel_module_width"	terial="Air" vis="Se	eThrough">
	<slice< th=""><th>name=</th><th></th><th>thickness="</th><th>100*um"</th><th><pre>material="CER_ITK"</pre></th><th><pre>vis="YellowVis"/></pre></th><th></th></slice<>	name=		thickness="	100*um"	<pre>material="CER_ITK"</pre>	<pre>vis="YellowVis"/></pre>	
	<slice< th=""><th>name=</th><th>"FPCInsulating"</th><th>thickness="</th><th>100*um"</th><th><pre>material="Polyimide_ITK"</pre></th><th><pre>vis="YellowVis"/></pre></th><th></th></slice<>	name=	"FPCInsulating"	thickness="	100*um"	<pre>material="Polyimide_ITK"</pre>	<pre>vis="YellowVis"/></pre>	
	<slice< th=""><th>name='</th><th>"FPCMetal"</th><th>thickness="</th><th>100*um"</th><th><pre>material="G4_Al"</pre></th><th><pre>vis="GrayVis"/></pre></th><th></th></slice<>	name='	"FPCMetal"	thickness="	100*um"	<pre>material="G4_Al"</pre>	<pre>vis="GrayVis"/></pre>	
	<slice< th=""><th>name='</th><th>"OEComponent1"</th><th>thickness="</th><th>25*um"</th><th><pre>material="Kapton"</pre></th><th><pre>vis="YellowVis"/></pre></th><th></th></slice<>	name='	"OEComponent1"	thickness="	25*um"	<pre>material="Kapton"</pre>	<pre>vis="YellowVis"/></pre>	
	<slice< th=""><th>name=</th><th>"OEComponent2"</th><th>thickness="</th><th>56*um"</th><th><pre>material="G4_POLYETHYLENE</pre></th><th>" vis="GreenVis"/></th><th></th></slice<>	name=	"OEComponent2"	thickness="	56*um"	<pre>material="G4_POLYETHYLENE</pre>	" vis="GreenVis"/>	
	<slice< th=""><th>name='</th><th>"OEComponent3"</th><th>thickness="</th><th>3*um"</th><th><pre>material="G4_Cu"</pre></th><th><pre>vis="RedVis"/></pre></th><th></th></slice<>	name='	"OEComponent3"	thickness="	3*um"	<pre>material="G4_Cu"</pre>	<pre>vis="RedVis"/></pre>	
<	/flex>							

	Esti	mation of ITK stave m	naterial contribution	18	
Functional unit	Component	Material	Thickness [µm]	X ₀ [cm]	Radiation Length [% X ₀]
Sensor Module	FPC metal layers	Aluminium	100	8.896	0.112
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Sensor	Silicon	150	9.369	0.160
	Glue		100	44.37	0.023
	Other electronics				0.050
Cooling Plate	Carbon fleece layers	Carbon fleece	40	106.80	0.004
	Carbon fiber plate	Carbon fiber	150	26.08	0.057
	Cooling tube wall	Polyimide	64	28.41	0.013
	Cooling fluid	Water		35.76	0.105
	Graphite foil	Graphite	30	26.56	0.011
	Glue	Cyanate ester resin	100	44.37	0.023
Truss Frame	Carbon rowing				0.080
Total					0.673

\ Num. Layer	Material \ Name \	Ator Number/Z	mic Mass/A [g/mole]	Density [g/cm3]	Radiation Length [cm]	Thickness [cm]	Integrated X0 [cm]
1	Air	7	14.801	0.0012	30392.1242	3.418	0.000112
2	CF ITK	6	11.956	1.6088	26.0800	0.021	0.000910
3	CarbonFleece IT	6	12.011	0.3998	106.8000	0.002	0.000929
4	Graphite ITK	6	12.011	1.6076	26.5600	0.003	0.001042
5	Polyimide ITK	6	12.701	1.4282	28.4100	0.006	0.001267
6	G4 WATER	7	14.322	1.0000	36.0830	0.038	0.002317
7	CFITK	6	11.956	1.6088	26.0800	0.015	0.002892
8	CarbonFleece IT	ς 6	12.011	0.3998	106.8000	0.002	0.002911
9	CER ITK -	7	13.326	0.8809	44.3700	0.010	0.003137
10	G4 Si	14	28.085	2.3300	9.3661	0.015	0.004738
11	CER ITK	7	13.326	0.8809	44.3700	0.010	0.004963
12	Polyimide ITK	6	12.701	1.4282	28.4100	0.010	0.005315
13	G4_Al	13	26.982	2.6990	8.8963	0.010	0.006440
14	Kapton	6	12.701	1.2430	32.6437	0.003	0.006516
15	G4_POLYETHYLENE	5	10.429	0.9400	47.6314	0.006	0.006634
16	<u>64</u> Cu	20	62 546	0 0600	1 1256	0 000	0 006913

Table 5.9: Estimation of ITK stave material contributions

■ total 0.006843-0.000112=0.006731 of X0

<support< th=""><th><pre>length="ITKBarrel_lagence")</pre></th><th>adder_length_1" wid</th><th>th="ITKBarrel_module_width"</th><th>erial="Air" vis="SeeThrough"></th><th>></th></support<>	<pre>length="ITKBarrel_lagence")</pre>	adder_length_1" wid	th="ITKBarrel_module_width"	erial="Air" vis="SeeThrough">	>
<slice< th=""><th><pre>name="TrussFrame"</pre></th><th>thickness="208*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CF_ITK"</pre></th><th><pre>vis="LightGrayVis"/></pre></th></slice<>	<pre>name="TrussFrame"</pre>	thickness="208*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CF_ITK"</pre>	<pre>vis="LightGrayVis"/></pre>
<slice< th=""><th><pre>name="CarbonFleece"</pre></th><th>thickness=" 20*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CarbonFleece_ITK"</pre></th><th><pre>vis="LightGrayVis"/></pre></th></slice<>	<pre>name="CarbonFleece"</pre>	thickness=" 20*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CarbonFleece_ITK"</pre>	<pre>vis="LightGrayVis"/></pre>
<slice< th=""><th><pre>name="GraphiteFoil"</pre></th><th>thickness=" 30*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="Graphite_ITK"</pre></th><th><pre>vis="GrayVis"/></pre></th></slice<>	<pre>name="GraphiteFoil"</pre>	thickness=" 30*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="Graphite_ITK"</pre>	<pre>vis="GrayVis"/></pre>
<slice< th=""><th><pre>name="CoolingTube"</pre></th><th>thickness=" 64*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="Polyimide_ITK"</pre></th><th><pre>vis="SeeThrough"/></pre></th></slice<>	<pre>name="CoolingTube"</pre>	thickness=" 64*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="Polyimide_ITK"</pre>	<pre>vis="SeeThrough"/></pre>
<slice< th=""><th><pre>name="CoolingFluid"</pre></th><th>thickness="379*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="G4_WATER"</pre></th><th><pre>vis="SeeThrough"/></pre></th></slice<>	<pre>name="CoolingFluid"</pre>	thickness="379*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="G4_WATER"</pre>	<pre>vis="SeeThrough"/></pre>
<slice< th=""><th><pre>name="CFPlate"</pre></th><th>thickness="150*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CF_ITK"</pre></th><th><pre>vis="GrayVis"/></pre></th></slice<>	<pre>name="CFPlate"</pre>	thickness="150*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CF_ITK"</pre>	<pre>vis="GrayVis"/></pre>
<slice< th=""><th><pre>name="CarbonFleece"</pre></th><th>thickness=" 20*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CarbonFleece_ITK"</pre></th><th><pre>vis="LightGrayVis"/></pre></th></slice<>	<pre>name="CarbonFleece"</pre>	thickness=" 20*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CarbonFleece_ITK"</pre>	<pre>vis="LightGrayVis"/></pre>
<slice< th=""><th><pre>name="Glue"</pre></th><th>thickness="100*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CER_ITK"</pre></th><th><pre>vis="GrayVis"/></pre></th></slice<>	<pre>name="Glue"</pre>	thickness="100*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CER_ITK"</pre>	<pre>vis="GrayVis"/></pre>
<th>></th> <th></th> <th></th> <th></th> <th></th>	>				

Positions of Hits of Silicon Trackers

Application on the Vertex Detector

- Perform performance comparison on different case in CEPCSW (ZHANG Tianyuan)
 - Different schemes
 - Hit number
 - Dead sensors, even whole layer

Resolution

Issues and Plan

Hit efficiency

- Not perform threshold now
- To find out threshold about 99%?
- Effective thickness?

Software development

- Efficiency at low momentum and small polar angle
- Help tools
- Alignment
- Performance estimation on special case
 - Dead sensor
 - $\checkmark\,$ Hit drop according to deposited energy or efficiency
 - $\checkmark\,$ Hit drop in whole sensors
 - Background mixing

Fast Digitization

- To create a fast digitization similar with ATLAS
- For vertex detector
 - Without charge amplitude
 - ongoing: by LU Hancen
- For CMOS pixel/strip
 - Charge deposited
- For AC-LGAD
 - Charge deposited
- Estimate hit rate on merged hits while simulation
- Effective thickness?
 - Charge collected

Fast Digitization: Silicon Tracker

F. Fabbri - LPCC, FastChain

Simplified digitization of the signal based on simply geometry projection.

- Local entry and exit point in the detector module from the detector simulation.
- Evaluate the step in each sensor.

27/06/17

- Charge deposited in each pixel proportional to the step.
- Project the charge on the surface taking into account the Lorentz shift (θ_L).

- Create the clusters directly in digitization step merging all the pixels crossed by a single track
- Set a threshold to path length
- Propagate the truth informations to the reconstruction.

12

Summary

Full simulation chain for tracker has been created in CEPCSW

- Output edm4hep SimTrackerHit, TrackerHit, Track and association
- Helix tool to obtain momentum
- Apply on performance study and PFA, muon ID ongoing
- Baseline silicon trackers has been implemented: ITKB, ITKE, OTKB, OTKE
 - TDR baseline detector geometry TDR_o1_v01 close to forezen

Towards TDR

- Tracking under dead sensors
- Tracking under background

Future

- Fast digitization
- Alignment