

Semi-leptonic decays of Λ_c^+ at BESIII

Yangu Li

University of Chinese Academy of Sciences

Workshop on charm hadron physics at BESIII August 6, 2025

Introduction

\bullet Λ_c^+ semi-leptonic decays provide ideal probes to study weak & strong interactions

- Weak interaction determines quark flavor change
- Strong interaction isolated in initial-final hadron transition

Formalism in a nutshell

- Helicity amplitude as a product of leptonic current L_{μ} and hadronic current H^{μ}
 - L_{μ} is well understood, H^{μ} is hard to calculate due to non-perturbative QCD effect
- H^{μ} can be parameterized by form factors (FFs)
 - Six FFs $f_0, g_0, f_+, g_+, f_\perp, g_\perp$
 - At $m_l \to 0$ limit, reduced to four FFs $f_+, g_+, f_\perp, g_\perp$
 - Functions of momentum transfer q^2

$$\begin{split} &\langle \Lambda(p_{2},s_{2})|H_{\mathrm{eff}}|\Lambda_{c}(p_{1},s_{1})\rangle = \langle \Lambda(p_{2},s_{2})|(V-A)|\Lambda_{c}(p_{1},s_{1})\rangle \\ &H_{V}(\lambda)_{\mu} = \left\langle \Lambda(p_{2},s_{2})|V_{\mu}|\Lambda_{c}(p_{1},s_{1})\right\rangle = \bar{u}(p_{2},s_{2})\left[\gamma_{\mu}f_{1}(q^{2}) + i\sigma_{\mu\nu\frac{q^{\nu}}{m_{1}}}f_{2}(q^{2}) + \frac{q^{\mu}}{m_{1}}f_{3}(q^{2})\right]u(p_{1},s_{1}) \\ &H_{A}(\lambda)_{\mu} = \left\langle \Lambda(p_{2},s_{2})|A_{\mu}|\Lambda_{c}(p_{1},s_{1})\right\rangle = \bar{u}(p_{2},s_{2})\left[\gamma_{\mu}g_{1}(q^{2}) + i\sigma_{\mu\nu\frac{q^{\nu}}{m_{1}}}g_{2}(q^{2}) + \frac{q^{\mu}}{m_{1}}g_{3}(q^{2})\right]u(p_{1},s_{1}) \end{split}$$

Introduction

*Thanks to Xudong Yu (PKU)

Experimental status

lacktriangle Before 2015, knowledge for Λ_c^+ semi-leptonic decays was very limited

• Only relative BF and FFs for $\Lambda_c^+ \to \Lambda e^+ \nu_e$ reported by ARGUS & CLEO

First-round BESIII data made significant progress in 2015-2019

- 587 fb⁻¹ dataset collected at $\sqrt{s} = 4.600 \text{ GeV}$
- First absolute BF measurements for $\Lambda_c^+ \to \Lambda e^+ \nu_e \& \Lambda \mu^+ \nu_\mu$
- First inclusive BF measurement for $\Lambda_c^+ \to Xe^+\nu_e$

Second-round BESIII data aimed for a larger scope

- Precise studies on golden channel $\Lambda_c^+ \to \Lambda l^+ \nu_l$
 - BF, LFU, FFs
- Search for other Λ_c^+ semi-leptonic decays
 - $\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e)} = 80\% \sim 100\%$, much greater than D meson cases
 - Excited state $\Lambda_c^+ \to \Lambda^*$?
 - Cabibbo-suppressed $\Lambda_c^+ \to n$?

BESIII experiment

Beijing Electron-Positron Collider II (BEPCII)

Beijing Spectrometer III (BESIII)

Data samples

- **Overall:** about 50 fb⁻¹ @ $\sqrt{s} = 1.8 \sim 4.95$ GeV after 15 years of data taking
- Dedicated to charmed baryon studies
 - 2014: 587 pb⁻¹ @ \sqrt{s} = 4.60 GeV
 - 2020-2021: 3.9 fb⁻¹ @ \sqrt{s} = 4.61~4.70 GeV
 - 2021-2022: 1.9 fb⁻¹ @ \sqrt{s} = 4.74~4.95 GeV
 - Totally 6.5 fb⁻¹ data from 13 energy points, about 1 million $\Lambda_c^+ \overline{\Lambda}_c^-$ events

CPC **46**, 113003 (2022)

Sample	$E_{ m cms}/{ m MeV}$	$\mathscr{L}_{ m Bhabha}/{ m pb}^{-1}$
4610	4611.86±0.12±0.30	103.65±0.05±0.55
4620	$4628.00\pm0.06\pm0.32$	$521.53\pm0.11\pm2.76$
4640	$4640.91 \pm 0.06 \pm 0.38$	551.65±0.12±2.92
4660	4661.24±0.06±0.29	529.43±0.12±2.81
4680	4681.92±0.08±0.29	$1667.39 \pm 0.21 \pm 8.84$
4700	4698.82±0.10±0.36	535.54±0.12±2.84
4740	4739.70±0.20±0.30	$163.87 \pm 0.07 \pm 0.87$
4750	4750.05±0.12±0.29	$366.55\pm0.10\pm1.94$
4780	4780.54±0.12±0.30	511.47±0.12±2.71
4840	4843.07±0.20±0.31	525.16±0.12±2.78
4920	4918.02±0.34±0.34	$207.82 \pm 0.08 \pm 1.10$
4950	4950.93±0.36±0.38	159.28±0.07±0.84

Unique abilities in Λ_c^+ study

Near-threshold pair production

- $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ without accompanying hadrons
- Clean backgrounds and well constrained kinematics

Double-tag method

- Reconstruct $\Lambda_c^+ \to \text{signal } \& \overline{\Lambda}_c^- \to \text{hadronic tag modes sequentially}$
- Allow to:
 - Measure absolute BF
 - Suppress hadronic background
 - Recoil missing neutrino
 - Cancel systematics
- Relatively low efficiency ~ 15%
 - Only 12 out of $\mathcal{O}(100)$ Λ_c^+ decays are used as tag modes
 - Deep learning methods are being explored to improve efficiency

$$\begin{split} \mathcal{B}_{\mathrm{sig}} &= \frac{\sum_{i,j} N_{\mathrm{DT}}^{i,j}}{\sum_{i,j} \left(\frac{N_{\mathrm{ST}}^{i,j}}{\epsilon_{\mathrm{ST}}^{i,j}} \cdot \epsilon_{\mathrm{DT}}^{i,j} \right)} = \frac{N_{\mathrm{DT}}}{\sum_{i,j} \left(\frac{N_{\mathrm{ST}}^{i,j}}{\epsilon_{\mathrm{ST}}^{i,j}} \cdot \epsilon_{\mathrm{DT}}^{i,j} \right)} = \frac{N_{\mathrm{DT}}}{N_{\mathrm{ST}} \cdot \epsilon^{\mathrm{sig}}}, \\ N_{\mathrm{ST}}^{i,j} &= 2N_{\Lambda_{c}^{+}\bar{\Lambda}_{c}}^{j} \mathcal{B}_{\mathrm{tag}}^{i} \epsilon_{\mathrm{ST}}^{i,j}, \qquad \epsilon^{\mathrm{sig}} = \sum_{i,j} \left(\frac{N_{\mathrm{ST}}^{i,j}}{\epsilon_{\mathrm{ST}}^{i,j}} \cdot \epsilon_{\mathrm{DT}}^{i,j} \right) / \sum_{i,j} N_{\mathrm{ST}}^{i,j}, \\ N_{\mathrm{DT}}^{i,j} &= 2N_{\Lambda_{c}^{+}\bar{\Lambda}_{c}}^{j} \mathcal{B}_{\mathrm{tag}}^{i} \mathcal{B}_{\mathrm{sig}} \epsilon_{\mathrm{DT}}^{i,j}, \qquad N_{\mathrm{ST}} = \sum_{i,j} N_{\mathrm{ST}}^{i,j} \end{split}$$

Unique abilities in Λ_c^+ study

Neutral particle detection

- BESIII has high acceptance & performance EMC
- Reconstruction for $\gamma \& \pi^0$ is effective and precise
- Reconstruction for $n \& K_L^0$ is challenging yet possible
 - · Deep learning methods are being explored

Published results from second-round BESIII data

PRL **129**, 231803 (2022)

PRD **108**, L031105 (2023)

PRD **106**, 112010 (2022)

PLB **843**, 137933 (2023)

NatComm 16, 681 (2025)

PRD **107**, 052005 (2023)

$$\Lambda_c^+ \to \Lambda l^+ \nu_l \ (l = e, \mu)$$

Event selection

- ST dataset reconstructed from 14 $\overline{\Lambda}_c^-$ tag modes
- Select DT $\Lambda \to p\pi^-$ and e^+ in the recoiling side
- Fit to U_{miss} distribution

$$U_{\text{miss}} = E_{\text{miss}} - c |\vec{p}_{\text{miss}}|$$

$$E_{\text{miss}} = E_{\text{beam}} - E_{\Lambda} - E_{e^+},$$

$$\vec{p}_{\text{miss}} = \vec{p}_{\Lambda_e^+} - \vec{p}_{\Lambda} - \vec{p}_{e^+},$$

Precise measurement on BFs

- $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11_{\text{stat.}} \pm 0.07_{\text{syst.}})\%$
- $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) = (3.48 \pm 0.14_{\text{stat.}} \pm 0.10_{\text{syst.}})\%$

$$\Lambda_c^+ \to \Lambda l^+ \nu_l \ (l = e, \mu)$$

Test of lepton flavor universality

- Ratio of integrated BFs
 - $\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu)} = 0.98 \pm 0.05_{\text{stat.}} \pm 0.03_{\text{syst.}}$
 - Consistent with LQCD prediction 0.97
- Differential decay rates in q^2 binning

$$\Delta\Gamma_i = \int_i \frac{d\Gamma}{dq^2} dq^2 = \sum_{j=1}^{N_{\text{bins}}} (\epsilon^{-1})_{ij} N_{\text{DT}}^j / (\tau_{\Lambda_c} \times N^{\text{ST}})$$

- $\mathcal{R}^{\mu/e}$ consistent with LQCD prediction
- Forward-backward asymmetries
 - For both lepton system & $p\pi^-$ system

$$A_{\rm FB}^{\ell,p}(q^2) = \frac{\int_0^1 \frac{d^2 \Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} - \int_{-1}^0 \frac{d^2 \Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}}{\int_0^1 \frac{d^2 \Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} + \int_{-1}^0 \frac{d^2 \Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}}$$

Also consistent with LQCD prediction

Extraction of form factors

- 4-dimensional fits to differential decay width
 - $e^+\nu_e$ mass square q^2
 - $\Lambda \rightarrow p\pi^-$ helicity angle θ_n
 - $W^+ \rightarrow e^+ \nu_e$ helicity angle θ_e
 - Acoplanarity angle between $\Lambda \& W^+$ decay planes χ
- FFs parameterized with z-expansion

$$f(q^2) = \frac{a_0^f}{1 - q^2 / (m_{\text{pole}}^f)^2} \left[1 + \alpha_1^f \times z(q^2) \right]$$

- 5 independent variables in the fit
 - Normalized using BF result

Parameters	$lpha_1^{g_{\perp}}$	$lpha_1^{f_\perp}$	r_{f_+}	$r_{f_{\perp}}$	r_{g_+}
Values	$1.43 \pm 2.09 \pm 0.16$	$-8.15 \pm 1.58 \pm 0.05$	$1.75 \pm 0.32 \pm 0.01$	$3.62 \pm 0.65 \pm 0.02$	$1.13 \pm 0.13 \pm 0.01$
Coefficients	$lpha_1^{g_{\perp}}$	$lpha_1^{f_\perp}$	r_{f_+}	$r_{f_{\perp}}$	r_{g_+}
$\overline{a_0^{g_\perp}}$	-0.64	0.60	-0.66	-0.83	-0.40
$lpha_1^{\widetilde{g}_{\perp}}$		-0.63	0.62	0.53	-0.33
$lpha_1^{\hat{f}_{\perp}}$			-0.79	-0.67	-0.07
$r_{f_+}^{^1}$				0.57	-0.09
$r_{f_{\perp}}$					0.39

$\frac{d^4\Gamma}{dq^2d\cos\theta_e d\cos\theta_p d\chi}$	$= \frac{G_F^2 V_{cs} ^2}{2(2\pi)^4} \cdot \frac{Pq^2}{24M_{\Lambda_c}^2} \left\{ \frac{3}{8} (1 - \cos\theta_e)^2 H_{\frac{1}{2}1} ^2 (1 + \alpha_\Lambda \cos\theta_p) + \frac{3}{8} (1 + \cos\theta_e)^2 H_{-\frac{1}{2}-1} ^2 (1 - \alpha_\Lambda \cos\theta_p) \right\}$
	$+\frac{3}{4}\sin^2\theta_e[H_{\frac{1}{2}0} ^2(1+\alpha_\Lambda\cos\theta_p)+ H_{-\frac{1}{2}0} ^2(1-\alpha_\Lambda\cos\theta_p)]+\frac{3}{2\sqrt{2}}\alpha_\Lambda\cos\chi\sin\theta_e\sin\theta_p$
	$\times \left[(1 - \cos \theta_e) H_{-\frac{1}{2}0} H_{\frac{1}{2}1} + (1 + \cos \theta_e) H_{\frac{1}{2}0} H_{-\frac{1}{2}-1} \right] \bigg\},$

$$\Lambda_c^+ \to \Lambda l^+ \nu_l \ (l = e, \mu)$$

Extraction of form factors

Show different kinematic behaviors compared to LQCD predictions

Extraction of CKM matrix element $|V_{cs}|$

- Combine measured BFs of $\Lambda_c^+ \to \Lambda e^+ \nu_e \& \Lambda \mu^+ \nu_\mu$
- * Take FFs from LQCD and au_{Λ_c} from PDG as input
- Yield $|V_{cs}| = 0.937 \pm 0.014_{\mathcal{B}} \pm 0.024_{\mathrm{LQCD}} \pm 0.007_{\tau_{\Lambda_c}}$
 - Consistent with $D \to K l^+ \nu_l$ measurement within 1.2 σ

$\Lambda_c^+ \to p K^- e^+ \nu_e$

• The second observed Λ_c^+ semi-leptonic decay

•
$$\mathcal{B}(\Lambda_c^+ \to pK^-e^+\nu_e) = (0.88 \pm 0.17 \pm 0.07) \times 10^{-3} \text{ with } 8.2\sigma$$

O Evidences found for $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$

- $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e) = (1.02 \pm 0.52 \pm 0.11) \times 10^{-3} \text{ with } 3.3\sigma$
- $\mathcal{B}(\Lambda_c^+ \to \Lambda(1405)[\to pK^-]e^+\nu_e) = (0.42 \pm 0.19 \pm 0.04) \times 10^{-3} \text{ with } 3.2\sigma$

Elusive nature,

Potential molecular state or pentaquark candidate

Comparison with quark models and LQCD

	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1520) e^+ \nu_e)$	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1405)e^+\nu_e)$
Constituent quark model [8]	1.01	3.04
Molecular state [9]	• • •	0.02
Nonrelativistic quark model [10]	0.60	2.43
Lattice QCD [12,13]	0.512 ± 0.082	
Measurement	$1.02 \pm 0.52 \pm 0.11$	$\frac{0.42\pm0.19\pm0.04}{\mathcal{B}(\Lambda(1405)\to pK^-)}$

$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e \& p K_S^0 \pi^- e^+ \nu_e$

- **Search for** $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ **via** $\Lambda^* \to \Lambda \pi^+ \pi^- \& p K_S^0 \pi^-$
 - $\mathcal{B}(\Lambda(1520) \to \Lambda \pi^+ \pi^-) = (10 \pm 1)\%$
 - Higher Λ^* excited states may decay to $pK^*(892)^-[\to K_S^0\pi^-]$
- Upper limits set @ 90% C.L.
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e) < 3.9 \times 10^{-4}$
 - $\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e) < 3.3 \times 10^{-4}$
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e) < 4.3 \times 10^{-3}$
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda(1600)e^+\nu_e) < 9.0 \times 10^{-3}$
 - Limited sensitivity to examine theoretical calculations

The BFs for $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ predicted by different theoretical models, in units of 10^{-4} .

Λ^* state	CQM [8]	NRQM [9]	LFQM [10]	LQCD [11]
Λ(1520)	10.00	5.94		5.12 ± 0.82
$\Lambda(1600)$	4.00	1.26	(0.7 ± 0.2)	
$\Lambda(1890)$		3.16×10^{-2}		
Λ(1820)		1.32×10^{-2}		

$\Lambda_c^+ \rightarrow ne^+ \nu_e$

lacktriangle Cabibbo-suppressed c o d transition must exist

- $\frac{|V_{cd}|}{|V_{cs}|} \sim 0.2 \rightarrow \frac{\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e)}{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)} \sim \mathcal{O}(10^{-1})$
- Dozens of theoretical predications with zero experimental result

Experimental study is very challenging

- Co-existence of "missing particles" $n \& v_e$
- Dominant background from $\Lambda_c^+ \to \Lambda(n\pi^0)e^+\nu_e$
- Need very powerful tool to identify n from $\pi^0 \to \gamma \gamma$ on EMC

Distinction in n/Λ EMC patterns can be noticed from eyes.

Deep learning may recognize such distinctions in a smart & flexible way.

• Use Graph Neural Network (GNN) to identify between n/Λ EMC shower maps

- A task parallels jet tagging in LHC experiments but at a new energy scale
- Inspired from the successful graph-based architecture ParticleNet

PRD **101**, 056019 (2020)

• The interpretability & robustness of neural networks is concerning in HEP experiments

- Establish a data-driven pipeline for GNN training, calibration, validation and uncertainty quantification
- Extensively utilize control samples from 10 billion J/ψ events at BESIII

$\Lambda_c^+ \rightarrow ne^+ \nu_e$

lacktriangle First observation of $\Lambda_c^+ o n e^+ u_e$ with over 10σ significance

•
$$\mathcal{B} = (0.357 \pm 0.334_{\text{stat.}} \pm 0.014_{\text{syst.}})\%$$

lacktriangle First determination of $|V_{cd}|$ from charmed baryon decays

- Take FFs from LQCD as input
- $|V_{cd}| = 0.208 \pm 0.011_{\text{exp.}} \pm 0.007_{\text{LQCD}} \pm 0.011_{\tau_{\Lambda_c^+}}$

- **(a)** Improved measurement of inclusive Λ_c^+ semi-leptonic decays
 - $\mathcal{B}(\Lambda_c^+ \to Xe^+\nu_e) = (4.06 \pm 0.10_{\text{stat.}} \pm 0.09_{\text{syst.}})\%$
- Ratio between charmed meson/baryon decay widths

•
$$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu_e)}{\overline{\Gamma}(D \to X e^+ \nu_e)} = 1.28 \pm 0.05$$

Use unfolding method to calibrate particle misidentification

$$\begin{bmatrix} N_e^{\text{obs}} \\ N_\pi^{\text{obs}} \\ N_K^{\text{obs}} \\ N_p^{\text{obs}} \end{bmatrix} = \begin{bmatrix} P_{e \to e} & P_{\pi \to e} & P_{K \to e} & P_{p \to e} \\ P_{e \to \pi} & P_{\pi \to \pi} & P_{K \to \pi} & P_{p \to \pi} \\ P_{e \to K} & P_{\pi \to K} & P_{K \to K} & P_{p \to K} \\ P_{e \to p} & P_{\pi \to p} & P_{K \to p} & P_{p \to p} \end{bmatrix} \begin{bmatrix} N_e^{\text{true}} \\ N_\pi^{\text{true}} \\ N_K^{\text{true}} \\ N_p^{\text{true}} \end{bmatrix}$$

Constraint on unobserved Λ_c^+ semi-leptonic decays

• Combine inclusive & exclusive measurements, assume all uncertainties are uncorrelated:

$$\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e)_{X \neq \Lambda, n, pK^-} = (0.55 \pm 1.53_{\text{stat.}} \pm 1.15_{\text{syst.}}) \times 10^{-3}$$

The majority of experimental gap has been filled.

Ongoing physics analyses at BESIII

- $\Lambda_c^+ \to \Sigma^{\pm} \pi^{\mp} e^+ \nu_e$
 - $\Lambda(1405)$ behaves differently in $\Sigma\pi$ and NK channels
- $\Lambda_c^+ \to n K_S^0 e^+ \nu_e$
 - Isospin-symmetric channel to pK^-
 - Similar challenge with ne^+v_e
- $\Lambda_c^+ \to \Lambda(1405/1520)[\to pK^-]e^+\nu_e$
 - Aim for a decisive observation
- lacktriangle $\Lambda_c^+ o N^*$ transition
 - $\Lambda_c^+ \to p \pi^- e^+ \nu_e$ (non- Λ component)
 - $\mathcal{B}(\Lambda_c^+ \to N^*(1535)e^+\nu_e)$ predictions vary in $4.03 \times 10^{-5} \sim 6.4 \times 10^{-3}$

Prospect

BEPCII(-U) & BESIII just finished a major machine upgrade.

- Triple the luminosity @ 4.7 GeV \rightarrow more Λ_c^+ data
- Extend c.m. energy up to 5.6 GeV \rightarrow near-threshold pair production for $\Sigma_c, \Xi_c, \Omega_c$
- Replace inner MDC with CGEM detector

• According to latest time schedule:

- New Λ_c^+ data taking will start in 2026
- Above-5-GeV data taking will start in 2028

Wishlist

lacksquare Extraction of FFs for $\Lambda_c^+ ightarrow n e^+ u_e$

- Require 4-momentum of neutron to calculate q^2
- New deep learning methods are being explored
- Estimated signal yield under 15 fb $^{-1}$ dataset: \sim 750

arXiv: 2408.10599
"Vision calorimeter"
Analyze EMC hits with computer vision models

Output Decisive observation for $\Lambda_c^+ \to \Lambda(1405/1520)e^+\nu_e$

- With higher statistics and lower BKG, a partial wave analysis can address both Λ^* interference and FFs
- New deep learning methods are being explored
- Estimated signal yields under 15 fb⁻¹ dataset: \sim 500 for $\Lambda(1405/1520)$ each

PRD **111**, L051101 (2025)

Observation of $\Lambda_c^+ \to p\pi^0$ High-sensitivity Λ_c^+ tagging with Transformer model

Summary

- Λ_c^+ semi-leptonic decays provide good opportunities to study charmed baryon dynamics and test SM.
- BESIII made significant experimental contributions in recent years, including
 - Most precise measurements of $\Lambda_c^+ \to \Lambda l^+ \nu_l$
 - First observation of Cabibbo-suppressed $\Lambda_c^+ \to ne^+\nu_e$
 - Active searches for $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ via $pK^-, \Lambda \pi^+ \pi^-, pK_S^0 \pi^-$
 - Closed gaps between inclusive & exclusive BFs
- **Deep learning methods** can bring impressive and reliable physics results in these investigations.
- **BEPCII(-U) & BESIII machine upgrade** will provide more opportunities for charm baryon physics.

Thanks for your attention!