粲介子半轻衰变的 QCD 计算 与现象学研究

Shan Cheng (程山)

Hunan University

2025 年 BESIII 粲强子物理研讨会, Lanzhou

August 07, 2025

Overview

- I Why semileptotic $D_{(s)}$ decays
- II Opportunities in Semileptotic *D* decays

i
$$D_s \rightarrow [f_0, \cdots \rightarrow] \pi \pi e^+ \nu$$

ii
$$D o
ho l^+
u$$
 and $D_{(s)} o K^* l^+
u$

III Conclusions and Prospects

Semileptotic $D_{(s)}$ decays

play a crucial role in the precision era of particle physics

- fundamental parameters, like the CKM matrix element $|V_{cs}| = 0.975 \pm 0.006$ [PDG 2022]
- o the result measured via $D \to K l \nu$ and $D_s \to \mu \nu_{\mu}$ consist with each other ($\sim 1.5 \sigma$ derivation)
- o $\,\sim 3\sigma$ tension three years ago [PDG 2020, 2021]
- the improvement mainly due to the high precision of $D \to K$ form factor from lattice evaluation and the f_{D_S} from the BESIII

- new physical mechanism via the FCNC
- o anomalous measured in $B \to K^* \mu^+ \mu^-$, 3.6σ derivation of $d\mathcal{B}/dq^2$ in $q^2 \in [1, 6]$ GeV², 1.9σ derivation of $\rho_5' = S_5/\sqrt{F_I(1-F_I)}$ in [4, 8] GeV²
- o a plausible effect in up-type FCNC process $c \to ull$ [Bharucha 2011.12856] SM $\mathcal{B}(D \to \pi l^+ l^-) \sim \mathcal{O}(10^{-9})$, current best-world limit $\mathcal{O}(10^{-8})$
- o LCSRs prediction $\mathcal{B}(D\to\pi\mu\mu)=1.33^{+0.17}_{-0.24}\times10^{-8}$, at the same order of LHCb limit 6.7×10^{-8} [A. Bansal, A. Khodjamirian and T. Mannel 2505.21369[hep-ph]],
- o first measurement of $D^0 \to \pi^+\pi^-e^+e^-$ [LHCb 2412.09414] $(4.53 \pm 1.38) \times 10^{-7}$ in ρ/ω and $(3.84 \pm 0.96) \times 10^{-7}$ in ϕ

New physics hunter $D \rightarrow \pi \mu^+ \mu^-$

- my talk in the "超级陶粲装置研讨会" at LZU, July 8th, 2024
 - Experimental potentials

]	Experiment	Measurement	Sensitivi	ty		
	LHCb	Angular observables the Ultimate Precision in Flavo	~ 0.2% with	50fb^{-1} ,		~ 2030
\perp	[sant at Torraras		$\sim 0.08\%$ with	$300{\rm fb}^{-1}$	Run 5	~ 2038
	LHCb	Branching ratio	$\sim 10^{-8}$ with	,		
	[BARAR Collabo	ration 1107 44651	$\sim 3 \times 10^{-9}$ with			
	Belle-II	ration 1107.4465] Branching ratio	$\sim 10^{-8}$ (rescaling	ig BaBar)		

 $\mathit{N}(\mathit{D}\bar{\mathit{D}}) \sim 10^9/\mathrm{ab}^{-1}$ angular observables $\sim 0.2\%$

• BESIII Collaboration in the electron channel [BESIII Collaboration 1802.09752] $\mathcal{B}(D \to \pi^+\pi^-e^+e^-) < 0.7 \times 10^{-5}$ with $\textit{N(c\bar{c})} = 2 \times 10^7$ at 3.7 GeV

STCF $N(D\bar{D}) \sim 8 \times 10^9$		8×10^{9}	Branching ratio $\sim 10^{-8}$		
3.770	1	$D^{0}\bar{D}^{0}$ $D^{+}\bar{D}^{-}$ $D^{0}\bar{D}^{0}$ $D^{+}\bar{D}^{-}$	3.6 2.8	3.6×10^{9} 2.8×10^{9} 7.9×10^{8} 5.5×10^{8}	Single Tag Single Tag

STOF is still competitive in hunting the NP via $D \to \pi \mu^+ \mu^-, \pi \pi \mu^+ \mu^-$

10 / 2

Semileptotic $D_{(s)}$ decays

- a clean environment to study scalar mesons see En Wang and Chu-wen's talks
- o $f_0(1370), f_0(1500), a_0(1450), K_0^*(1430)$ form a SU(3) flavor nonet
- $f_0(500)/\sigma, f_0(980), a_0(980), K_0^*(700)/\kappa$ form another flavor nonet compact tetraquark and $K\bar{K}$ bound state are favored from spectral analysises, $s\bar{s}$ is dominated in B_s decay
- o how about the energetic $q\bar{q}$ picture $f_0(980)$ in D_s decays ?
- depends on the precise pertubative QCD calculation, more important is the accurate nonperturbative description of the structure
- o the signal channel is $D_{(s)} o [f_0 o] \pi \pi, K \bar{K} l \nu$ invariant mass
- o dynamics of H_{l4} is governed by $H \to \pi\pi$ form factors, a big task of the QCD methods [S. Faller, et.al., 1310.6660, X.W. Kang, et.al., 1312.1193]
- **Dipion LCDAs** are introduced in the LCSRs predictions of $B,D \to \pi\pi$ transitions
 - · [SC, A. Khodjamirian and J. Virto, 1701.01633[hep-ph]] B-meson LCSRs
 - \cdot [C. Hambrock and A. Khodjamirian, 1511.02509[hep-ph]] $2\pi DAs$ LCSRS of $F_{\parallel,\perp}$
 - · [SC, A. Khodjamirian and J. Virto, 1709.00173[hep-ph]] timelike-helicity FF F_t and F_0
 - · [SC, 1901.06071[hep-ph]] $2\pi DAs$ updates and $B \rightarrow [\pi\pi]_{S,P}$ FFs
 - · [SC and J.M Shen, 1907.08401[hep-ph]], [SC and S.L Zhang, 2307.02309[hep-ph]] $D_s \rightarrow [f_0 \rightarrow] \pi \pi h \nu$ leading twist
 - \cdot [SC, 2502.07333[hep-ph]] first study of twist-three $2\pi DAs$ and $|V_{ub}|$ extraction
 - \cdot [SC, L.Y Dai and S.L Zhang, to be appearing] $D_s o [f_0 o] \pi \pi l
 u$ sub-leading twist

Opportunities in SL $D_{(s)}$ decays (private opinions)

i
$$D_s
ightarrow [f_0, \cdots
ightarrow] \pi \pi e^+
u$$

ii $D
ightarrow
ho f^+
u$ and $D_{(s)}
ightarrow K^* f^+
u$

$D_s \rightarrow [f_0, \cdots \rightarrow] \pi \pi e^+ \nu$

$D_s \rightarrow [f_0, \cdots \rightarrow] \pi \pi e \nu$

- \star in SL B_s decays
- tetraquark contribution is suppressed doubly by strong coupling and power
- * FSI is weak too

$$|f_{0}(980)\rangle = \psi_{q\bar{q}}|q\bar{q}\rangle + \psi_{q\bar{q}g}|q\bar{q}g\rangle + \psi_{q\bar{q}q\bar{q}}|q\bar{q}q\bar{q}\rangle + \cdots$$
$$\psi_{f_{0}}^{n}(x_{i}, k_{\perp i}, \lambda_{i}) = \langle n, x_{i}, k_{\perp i}, \lambda_{i}|f_{0}\rangle$$

* physical observables are usually written in a QCD convolution

$$\frac{d\sigma}{d\Omega} = \sum_{t} \int_{0}^{1} dx_{i} \mathcal{H}^{t}(x_{i}, Q) \psi^{t}(x_{i}, \mu)$$

- \star ψ^t is universal, however H^t is process dependent, hence different observables might highlike the contributions from different components
- how about the energetic $q\bar{q}$ picture $f_0(980)$ in D_s decays ?

$D_s \rightarrow [f_0, \cdots \rightarrow] \pi \pi e \nu$

ullet Semileptonic $D_{(s)}$ decays provide a clean environment to study scalar mesons

$$\circ \quad D_s \rightarrow f_0 \, \mathrm{e}^+ \nu \text{ [CLEO '09], } D_{(s)} \rightarrow \mathsf{a}_0 \, \mathrm{e}^+ \nu \text{ [BESIII '18, '21], } D^+ \rightarrow f_0 / \sigma \mathrm{e}^+ \nu \text{[BESIII '19]}$$

$$\circ \quad \textit{D}_{\textit{s}} \rightarrow \textit{f}_{0}(\rightarrow \pi^{0}\pi^{0},\textit{K}_{\textit{s}}\textit{K}_{\textit{s}}) e^{+}\nu \text{ [BESIII 22], } \\ \textit{D}_{\textit{s}} \rightarrow \textit{f}_{0}(\rightarrow \pi^{+}\pi^{-}) e^{+}\nu \text{[BESIII 23]}$$

$$\mathcal{B}(D_s \to f_0(\to \pi^0 \pi^0) e^+ \nu) = (7.9 \pm 1.4 \pm 0.3) \times 10^{-4}$$

$$\mathcal{B}(D_s \to f_0(\to \pi^+ \pi^-) e^+ \nu) = (17.2 \pm 1.3 \pm 1.0) \times 10^{-4}$$

$$f_+^{f_0}(0) |V_{cs}| = 0.504 \pm 0.017 \pm 0.035$$

Theoretical considerations: single particle (narrow width limit)

$$\frac{d\Gamma(D_s^+ \to f_0 f^+ \nu)}{dq^2} = \frac{G_F^2 |V_{cs}|^2 \lambda^{3/2} (m_{D_s}^2, m_{f_0}^2, q^2)}{192 \pi^3 m_{D_s}^2} |f_+(q^2)|^2, D_s \to f_0 \text{ FF}$$

Improvement with the width effect by resonant model

$$\frac{d\Gamma(D_s^+ \to [\pi\pi]_{\rm S} f^+ \nu)}{dsdq^2} = \frac{1}{\pi} \frac{G_F^2 |V_{cs}|^2}{192\pi^3 m_{D_s}^3} |f_+(q^2)|^2 \frac{\lambda^{3/2} (m_{D_s}^2, s, q^2) g_1 \beta_\pi(s)}{|m_{\rm S}^2 - s + i (g_1 \beta_\pi(s)) + g_2 \beta_K(s))|^2}, \text{ BESIII}$$

ullet Improvement with the width effect by $\pi\pi$ invariant mass spectral

$$\frac{d^{2}\Gamma(D_{s}^{+} \to [\pi\pi]_{S} I^{+}\nu)}{dk^{2}dq^{2}} = \frac{G_{F}^{2}|V_{cs}|^{2} \beta_{\pi\pi}(k^{2})\sqrt{\lambda_{D_{s}}}q^{2}}{3(4\pi)^{5}m_{D_{s}}^{3}} \sum_{\ell=0}^{\infty} |F_{0}^{(\ell)}(q^{2}, k^{2})|^{2}, D_{s} \to \pi\pi \,\text{FF}$$

$D_s o f_0$ form factor and $D_s^+ o (f_0, [\pi\pi]_S) e^+ \nu_e$ decay

• $\{M^2, s_0\} = \{5.0 \pm 0.5, 6.0 \pm 0.5\} \text{GeV}^2$ see Hai-bing Fu's talk for the LCSRs

this work	3pSRs(07)	LFQM(09)	CLFD/DR(08)	LCSRs(10)
0.63 ± 0.04	0.96	0.87	0.86/0.90	0.30 ± 0.03

• the BESIII result in the $\pi^+\pi^-$ system $f_+(0)=0.518\pm0.018\pm0.036$ [BESIII 23]

different input of the decay constant $\tilde{t}_{f_0}=335$ MeV, much larger than 180 MeV in LCSRs(10) we add the first gegenbauer expansion terms in the LCDAs, up-to-date parameters

 $s\bar{s}$ - $n\bar{n}$ mixing scenario of f_0 with $\theta=20^{\circ}\pm10^{\circ}$

- \circ $\,$ Twist-3 LCDAs give dominate contribution in ${\it D_{\rm S}} \rightarrow {\it f_0}$ transition
 - o the uncertainty estimation is conservative
 - o without NLO correction
 - o we need a model independent calculation
 - o not only for the QCD understanding
 - o but also for the future partial-wave measurement

Differential decay width of $D_s^+ o (f_0, [\pi\pi]_S) e^+ \nu_e$

$D_s \rightarrow [\pi\pi]_{ m S}$ form factors

• Definition of $D_s o [\pi\pi]_S$ form factor

$$\begin{split} & \langle [\pi(k_1)\pi(k_2)]_{\mathrm{S}} \, |\bar{s}\gamma_{\mu}(1-\gamma_5)c|D_s^+(\textbf{p})\rangle = -iF_tk_{\mu}^t - iF_0(\textbf{q}^2,\textbf{s},\zeta)k_{\mu}^0 - iF_{\parallel}k_{\mu}^{\parallel} \\ \\ & k_{\mu}^t = \frac{q_{\mu}}{\sqrt{q^2}}, k_{\mu}^0 = \frac{2\sqrt{q^2}}{\sqrt{\lambda_{D_s}}} \left(k_{\mu} - \frac{k\cdot\textbf{q}}{\textbf{q}^2}q_{\mu}\right), k_{\mu}^{\parallel} = \frac{1}{\sqrt{k^2}} \left(\bar{k}_{\mu} - \frac{4(\textbf{q}\cdot\textbf{k})(\textbf{q}\cdot\bar{\textbf{k}})}{\lambda_{D_s}}k_{\mu} + \frac{4k^2(\textbf{q}\cdot\bar{\textbf{k}})}{\lambda_{D_s}}q_{\mu}\right) \end{split}$$

LCSRs calculations start with the correlation functions

$$\Pi_{\mu}^{ab}(q,k_1,k_2) = i \int d^4x e^{iq\cdot x} \langle \pi^a(k_1) \pi^b(k_2) | T\{j_{1,\mu}(x),j_2(0)\} | 0 \rangle$$

 The chiral even two quark isoscalar 2πDAs leading twist, twist-three LCDAs are available now [SC, arXiv: 2502.07333]

$$\begin{split} & \left\{ \left[\pi^{a}(k_{1}) \pi^{b}(k_{2}) \right]_{S} | \bar{s}(xn) \gamma_{\mu} s(0) | 0 \right\} = 2 \delta^{ab} k_{\mu} \int du e^{iux(k \cdot n)} \Phi^{l=0}_{\parallel, [\pi \pi]_{S}}(u, \zeta, k^{2}) \\ & \Phi^{l=0}_{\parallel, [\pi \pi]_{S}} = 6 u (1-u) \sum_{n=1. \text{ odd}}^{\infty} \sum_{l=0. \text{ odd}}^{n+1} B^{l=0}_{\parallel, nl}(k^{2}, \mu) C_{n}^{3/2}(2u-1) C_{l}^{1/2}(2\zeta-1) \end{split}$$

• Do the LCSRs QCD calculations and consider the partial-wave expansion

$$F_0(q^2, k^2, \zeta) = \sum_{\ell=0}^{\infty} \sqrt{2\ell+1} \, F_{0,t}^{(\ell)}(q^2, k^2) P_{\ell}^{(0)}(\cos \theta_{\pi})$$

$D_s \rightarrow [\pi\pi]_{\rm S}$ form factor and $D_s \rightarrow [\pi\pi]_{\rm S} e^+ \nu$ decay

• The LCSRs ℓ' -wave $D_s o [\pi\pi]_S$ form factors $(\ell' = \mathrm{even} \ \& \ \ell' \leqslant \mathit{n} + 1)$

$$\sqrt{q^2} F_0^{(\ell')}(q^2,k^2) = \frac{m_c(m_c+m_s)\sqrt{q^2}\sqrt{\lambda_{Ds}}}{m_{Ds}^2 f_{Ds}} \sum_{n=1,\mathrm{odd}}^{\infty} \frac{\beta_{\pi}(k^2)}{\sqrt{2\ell'+1}} \, J_n^0(q^2,k^2,M^2,s_0) \, B_{n\ell,\parallel}^{I=0}(k^2) \, I_{\ell\ell'}$$

- Near threshold, B_{nl} can be determined from the low-energy effective theory of pions interacting with massive "constituent" quarks, based on the instanton model of the QCD vacuum
- For the resonant regions, Watson's theorem yields the k²-dependence via Omnés solutions with the phase shifts mplemented through subtracted dispersion relations

 \bullet S- and D-wave FFs: $\sqrt{q^2}|F_0^{(l=0)}(\sqrt{\rm s},q^2)|$ and $\sqrt{q^2}|F_0^{(l=2)}(\sqrt{\rm s},q^2)|$

$D_s ightarrow [\pi\pi]_{ m S}$ form factor and $D_s ightarrow [\pi\pi]_{ m S} \, { m e}^+ u$ decay

• The q^2 -dependence of FFs obtained by adopting the phase shifts from $\pi^- p \to \pi^0 \pi^0 n$ reaction (peak) and $\pi\pi$ scattering (dip)

- ullet Differential widths $d\Gamma/dq^2$ is two-order in magnitude smaller than the data
- the FFs at the two-particle level are one-order lower than the required
- ullet the conventional qar q is not the dominate component in the charm decays
- we have to go further to multi-particle DiPion LCDAs in CHARM $(q\bar{q}g, q\bar{q}q\bar{q})$
- much different in B decays leading twist dominated [SC, arXiv: 2502.07333]

$D \to \rho I^+ \nu$ and $D_{(s)} \to K^* I^+ \nu$

$D \rightarrow \rho I^+ \nu$ and $D_{(s)} \rightarrow K^* I^+ \nu$

• motived by the recent BESIII measurements

Decay Mode	Collaboration	Year	Reference
$D^0 \to K^{*-} \mu^+ \nu_\mu$	BESIII	2025	PRL 134(2025)1,011803
$D^0 \to \rho^- e^+ \nu_e$	BESIII	2024	PRD 110(2024)11,112018
$D_s^+ o K^{*0} e^+ \nu_e$	BESIII	2019	PRL 122 (2019) 6, 061801
$D^+ o ho^0 e^+ \nu_e$	CLEO	2013	PRL 110(2013)13,131802
$D^+ o K^{*0} \mu^+ \nu_\mu$	FOCUS	2006	PLB 637(2006)32-38

- \bullet state-of-the-art LCSRs calculation of $D \to \mathit{V}$ form factors with high twist LCDAs
- to examine the width effects and the non-resonant QCD backgrounds in the D_H decays $(D_{(s)} o V[o P_1P_2]l\nu)$

$D^0 o ho^-$ form factors from different twist (power) contributions

- both the three-particle LCDAs and the power correction from the heavy quark expansion at O(1/m_c) contribute significantly to the form factors A₁ and A₂.
- The OPE expansion exhibits good convergence: while two-particle twist-three LCDAs contribute sizeably or
 even dominantly in the axial-vector transition, the higher-twist effects remain well under control

$D^0 \to \rho^-$ form factors

• LCSRs predictions in comparing to the results obtained from other approaches

$D ightarrow ho l^+ u$ and $D_{(s)} ightarrow \emph{K}^* l^+ u$

- Differential decay widths $d\Gamma/dq^2$ of $D o
 ho l^+
 u$ and $D_{(s)} o K^* l^+
 u$ decays
- the lepton mass effect is mostly prominent in the large-recoil region of the semileptonic charm to vector meson decays

$D \to \rho I^+ \nu$ and $D_{(s)} \to K^* I^+ \nu$

ullet branching ratios of semileptonic charm decays (in unit of 10^{-6})

	$D^+\to \rho^0\ell^+\nu_\ell$	$D_s^+ \to K^{*0} \ell^+ \nu_\ell$	$D^0 \to K^{*-} \ell^+ \nu_\ell$	$D^+ \to \bar K^{*0} \ell^+ \nu_\ell$
This work	$2.30^{+0.32}_{-0.25}$	$1.55^{+0.30}_{-0.20}$	$17.6^{+2.4}_{-1.9}$	$45.2^{+6.2}_{-5.0}$
	$2.20^{+0.30}_{-0.23}$	$1.48^{+0.29}_{-0.19}$	$16.6^{+2.2}_{-1.8}$	$42.7^{+5.7}_{-4.5}$
LCSR2006 [21]	$2.29^{+0.23}_{-0.16}$	$2.33^{+0.29}_{-0.30}$	21.2 ± 0.9	$53.7^{+2.4}_{-2.3}$
EC51(2000 [21]	$2.20^{+0.21}_{-0.16}$	$2.24^{+0.27}_{-0.29}$	20.1 ± 0.9	$51.0^{+2.3}_{-2.1}$
CLFQM [51]	2.32	1.90	_	73.2
Xian-wei Kang's	talk ^{2.22}	1.82		69.3
HChPT [32]	2.50	2.20	22.0	56.0
PDG [2]	1.90 ± 0.10	2.15 ± 0.28	21.5 ± 1.60	54.0 ± 1.00
FDG [2]	2.40 ± 0.40	_	18.9 ± 2.40	52.7 ± 1.50

- $\bullet~10\%\mbox{-}20\%$ discrepancy when confronting our LCSR predictions with experimental measurements
- ullet a sizable SU(3) flavor-breaking effect is observed in $D_{(s)} o K^* l
 u$ decays
- the necessity to further implement the effects of vector meson widths and non-resonant QCD background

Conclusions and Prospects

- The introduction of DiPion LCDAs provides an opportunity to study the width effects and the structures of nonstable mesons in H_{i4} processes
- o a new booster on the accurate calculation in flavor physics
- o improvement study in the CKM determinations and the flavor anomalies
- The studies of $2\pi DAs$ and H_{I4} decays are now at two-particle component
- o universal phase shift in $\pi\pi$ scattering and heavy decay ?
- Go further to high twist LCDAs associated to multi-particle components
- \circ $B \to \pi\pi l\nu$, $B \to [\rho\rho \to] \to 4\pi$, $D_s \to \pi\pi l\nu$, $D \to K\pi\mu\nu$, $D \to \pi\pi e^+e^-$ et al.

Thank you for your patience.