

粲强子辐射、稀有衰变的实验测量

刘雪吟 武汉大学

BESIII粲强子研讨会(2025), 兰州

Outline

- 1 Rare charm hadron decays at BESIII
- 2 Latest results at BESIII
 - Search for weak radiative decays
 - Search for LNV decays
 - Search for dark photon
- 3 Recent highlight from LHCb
- 4 Prospect & Summary

2025/08/07 2/21

Rare charm hadron decays at BESIII

Weak radiative decays

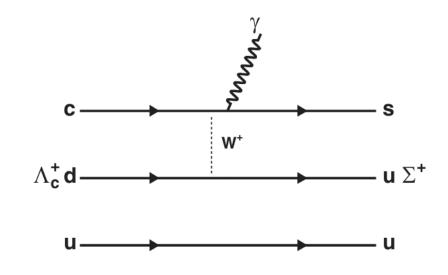
Symmetry

➤ BNV, LNV, LFV processes, ...

Very rare

> FCNC processes, other rare decays, ...

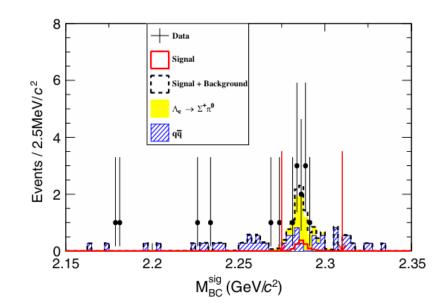
Exotic

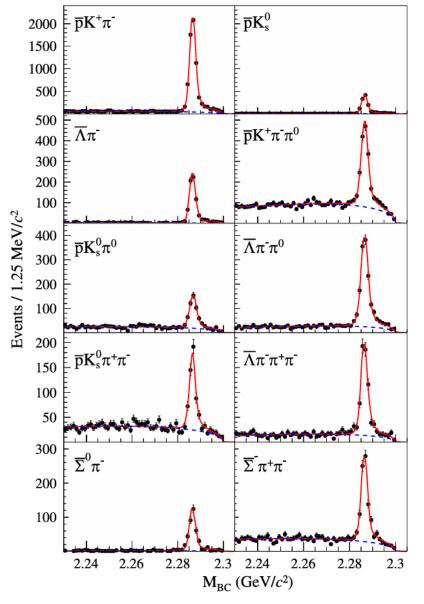

 \triangleright Dark photons, light Higgs, Z', invisible signatures, exotic resonances, ...

Search for the weak radiative decay $\Lambda_c^+ \to \Sigma^+ \gamma$ at BESIII

Weak radiative decays usually receive contributions from both the weak and electromagnetic interactions.

- Many theoretical models predict the BF of $\Lambda_c^+ \to \Sigma^+ \gamma$ to be around $10^{-5} 10^{-4}$.
- The decay proceeds predominantly through a W-exchange diagram accompanied by photon emission from the external quark.
- ► Belle reported $\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 2.6 \times 10^{-4}$.

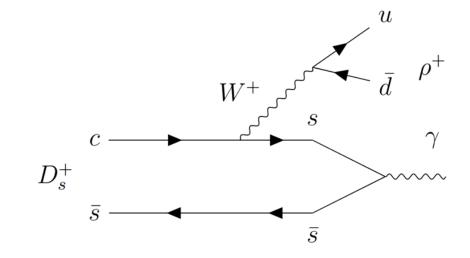

PRD 107, 052002 (2023)



Search for the weak radiative decay $\Lambda_c^+ \to \Sigma^+ \gamma$ at BESIII

PRD 107, 052002 (2023)

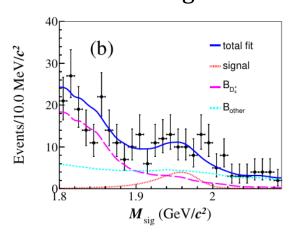
- \rightarrow data sample: 4.5 fb⁻¹@4.60 4.70 GeV
- $\triangleright \Lambda_c^+ \rightarrow \Sigma^+ \gamma \text{ with } \Sigma^+ \rightarrow p\pi^0$
- Double-tag method with $\overline{\Lambda}_c^-$ reconstructed in 10 hadronic decay modes
- $>\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 4.4 \times 10^{-4} @ 90\% \text{ C.L.}$

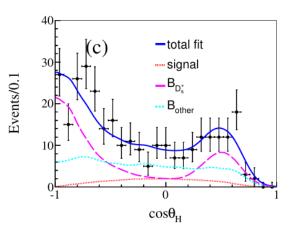


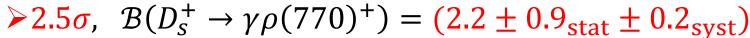
Search for the radiative decay $D_s^+ \to \gamma \rho (770)^+$

JHEP11(2024)119

- Non-perturbative processes dominate the $c \to u\gamma$ processes, potentially enhancing BFs up to 10^{-3} .
- The BF of $D_s^+ \to \gamma \rho (770)^+$ can be used to examine the predictions regarding CP asymmetry in charmed meson decays.
- Expected BF of $D_s^+ \to \gamma \rho (770)^+$ ranges from $\mathcal{O}(10^{-5})$ to $\mathcal{O}(10^{-3})$, according to different theoretical models

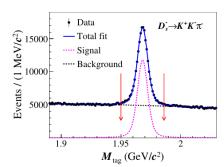


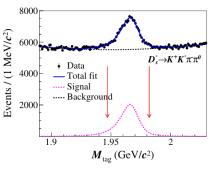

Search for the radiative decay $D_s^+ \to \gamma \rho (770)^+$

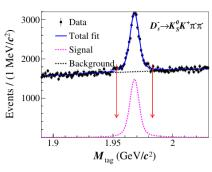

 \triangleright data sample: $e^+e^- \rightarrow D_S^{\pm}D_S^{*\mp}$, 7.33 fb⁻¹@4.128 – 4.226 GeV

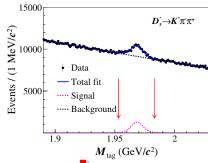
JHEP11(2024)119

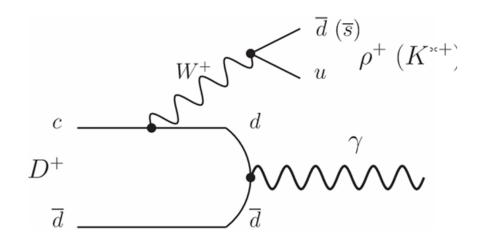
- $PD_s^+ \to \gamma \rho (770)^+ \text{ with } \rho (770)^+ \to \pi^+ \pi^0$
- Double-tag method with D_s^- reconstructed in 5 hadronic decay modes
- \geq 2D fit to the $M_{\rm sig}$ and $\cos\theta_{\rm H}$ distributions








$$\gg \mathcal{B}(D_s^+ \to \gamma \rho(770)^+) < 6.1 \times 10^{-4} @ 90\% \text{ C.L.}$$

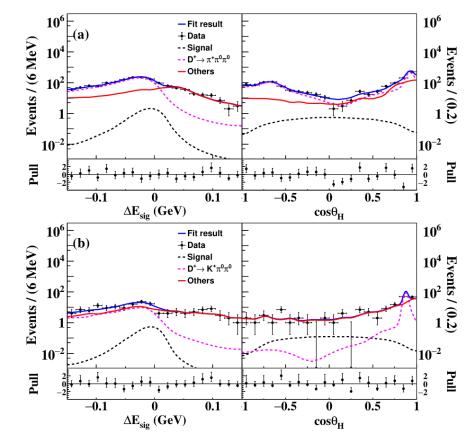


Search for the radiative decays $D^+ o \gamma \rho^+$ and $D^+ o \gamma K^{*+}$

JHEP12(2024)206

The D^+ meson can be considered "pure" with respect to long-range effects, which are not sensitive to $c \to u$ transitions, unlike the neutral mesons.

- ▶ Predicted BF of the Cabibbo-suppressed process $D^+ \to \gamma \rho^+$ is up to 10^{-5} .
- Expected BF of the doubly Cabibbo-suppressed process $D^+ \to \gamma K^{*+}$ is one order of magnitude lower than that of $D^+ \to \gamma \rho^+$

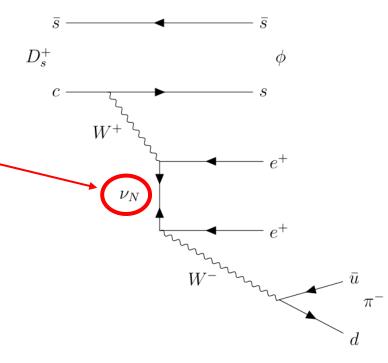

Search for the radiative decays $D^+ o \gamma \rho^+$ and $D^+ o \gamma K^{*+}$

 \triangleright data sample: 20.3 fb⁻¹@3.773 GeV

JHEP12(2024)206

- $\triangleright D^+ \rightarrow \gamma \rho^+$ with $\rho^+ \rightarrow \pi^+ \pi^0$ and $D^+ \rightarrow \gamma K^{*+}$ with $K^{*+} \rightarrow K^+ \pi^0$
- ➤ Doublt-tag method with D^- reconstructed in 6 hadronic decay modes
- \geq 2D fit to the $\Delta E_{\rm sig}$ and $\cos \theta_{\rm H}$ distributions

Result	$D^+ \to \gamma \rho^+ \ (\times 10^{-5})$	$D^+ \to \gamma K^{*+} \ (\times 10^{-5})$
PoleDiagram and VMD [1]	2 - 6	0.1 - 0.3
SM [8]	5.0 ± 0.9	_
QCD SM [9]	0.46	_
Hybrid [10]	0.017 - 2.33	0.048 - 0.76
FS [11]	1.8 - 4.1	0.25 - 0.5
Factorization [12]	0.4 - 6.3	0.03 - 0.44
This work	< 1.3	< 1.8


3.6 deviation

First search

Search for lepton number violating decays of $D_s^+ o h^- h^0 e^+ e^+$

JHEP01(2025)109

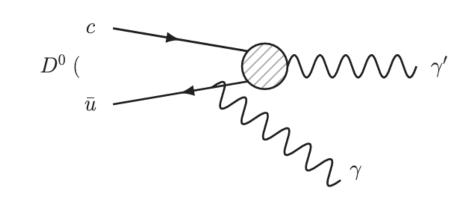
- \triangleright Lepton Number Violation ($\Delta L \neq 0$) is forbidden in SM.
- \triangleright Neutrino oscillation $\rightarrow m_{\nu} \neq 0 \rightarrow$ New Physics
- ➤ Nature of neutrino still unknown: Dirac or Majorana?
- \triangleright A heave Majorana neutrino can lead to $\Delta L = 2$ LNV processes
- LNV is introduced in many NP models: >4th quark generation, SO(10) SUSY GUT, exotic Higgs...

Search for lepton number violating decays of $D_s^+ \rightarrow h^- h^0 e^+ e^+$

- Adata sample: $e^+e^- \to D_s^{\pm}D_s^{*\mp}$, 7.33 fb⁻¹@4.128 – 4.226 GeV
- ➤ Single-tag method
- Fit to the $M(D_s^+)$ distributions
- The Majorana neutrino is searched for in $D_s^+ \to \phi e^+ \nu_m (\to \pi^- e^+)$ based on different m_{ν_m} hypotheses
- >ULs as a function of m_{ν_m} obtained using a frequentist method

First search

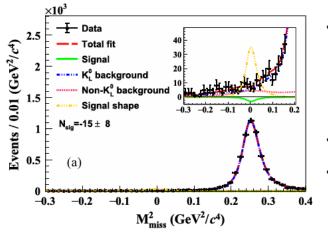
JHEP01(2025)109 $D_s^+ \rightarrow \phi \pi^- e^+ e^+$ Events / (12 MeV/ c^2) Events / (12 MeV/ c^2) $M(\phi \pi^{-}e^{+}e^{+})$ (GeV/c²) $M(\phi K^{-}e^{+}e^{+})$ (GeV/c²) $M(K_S^0\pi^-e^+e^+)$ (GeV/c²) $D_s^+ \rightarrow K_s^0 K^- e^+ e^+$ Events / (12 MeV/ c^2) $M(\pi^{-}\pi^{0}e^{+}e^{+})$ (GeV/c²) $M(K^-\pi^0e^+e^+)$ (GeV/c²) $M(K_s^0K^-e^+e^+)$ (GeV/c2) Decay channel $\mathcal{B}_{\mathrm{UL}}$ OF DE AT 10⁻² Not 10⁻³ 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁶ 6.9×10^{-5} $D_s^+ \rightarrow \phi \pi^- e^+ e^+$ $D_s^+ \rightarrow \phi K^- e^+ e^+$ 9.9×10^{-5} $D_{s}^{+} \to K_{S}^{0} \pi^{-} e^{+} e^{+}$ $D_{s}^{+} \to K_{S}^{0} K^{-} e^{+} e^{+}$ 1.3×10^{-5} 2.9×10^{-5} $D_s^+ \to \pi^- \pi^0 e^+ e^+$ 2.9×10^{-5} $D_s^+ \rightarrow K^- \pi^0 e^+ e^+$ 3.4×10^{-5} 0.5 0.6 $m_{\nu_{-}}$ (GeV/ c^2)

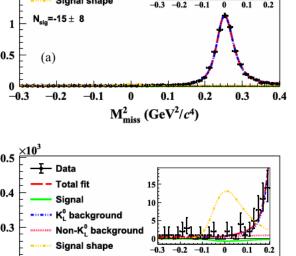

Search for a massless dark photon in $c \rightarrow u\gamma'$ decays

- The dark photon γ' serves as a portal between the SM matter and dark sector.
- The massless dark photon can be searched for in the FCNC $c \rightarrow u\gamma'$ decays.
- A dimension-six operator provides a connection between SM fermions and the massless dark photon:

$$\mathcal{L}_{ ext{NP}} = rac{1}{\Lambda_{ ext{NP}}^2} (C^U_{jk} ar{q}_j \sigma^{\mu
u} u_k ilde{H} + C^D_{jk} ar{q}_j \sigma^{\mu
u} d_k H \ + C^L_{jk} ar{l}_j \sigma^{\mu
u} e_k H + ext{H.c.}) F'_{\mu
u},$$

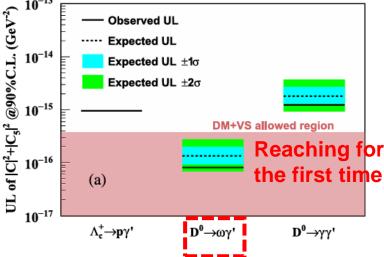
PRD 111, L011103 (2025)

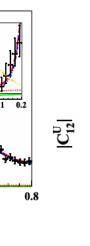

Search for a massless dark photon in $c \rightarrow u \gamma'$ decays

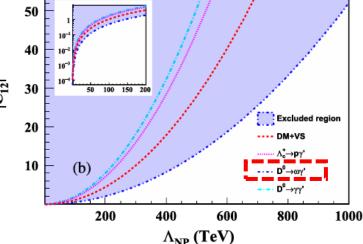

- \rightarrow data sample: 7.9 fb⁻¹@3.773 GeV
- \triangleright Double-tag method with $\overline{D}^0 \to K^+\pi^-$, $K^{+}\pi^{-}\pi^{0}, K^{+}\pi^{-}\pi^{+}\pi^{-}$
- Fit to the $M_{\rm miss}^2$ distribution

$$M_{\text{miss}}^2 = |p_{\text{c.m.s.}} - p_{\bar{D}^0} - p_{\omega(\gamma)}|^2 / c^4$$

- ➤ Upper limits @ 90% C.L. are set for the first time:
 - $\triangleright \mathcal{B}(D^0 \to \omega \gamma') < 1.1 \times 10^{-5}$
 - $\triangleright \mathcal{B}(D^0 \rightarrow \gamma \gamma') < 2.0 \times 10^{-6}$
- ➤ Most stringent constraint on NP energy scale associated with $c \rightarrow u \gamma'$ coupling:

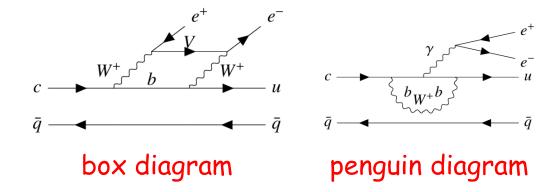

$$|\mathbb{C}|^2 + |\mathbb{C}_5|^2 < 8.2 \times 10^{-17} \text{ GeV}^{-2}$$

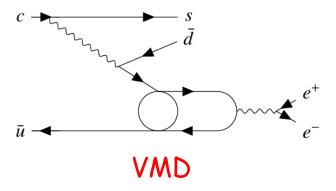




0.2

 M_{miss}^2 (GeV²/ c^4)





Recent highlight from LHCb

- Short-distance (SD) FCNC transitions via $c \to u$ processes are highly suppressed by the GIM mechanism, leading to BFs of $D \to Xl^+l^-$ decays as low as $\mathcal{O}(10^{-9})$.
- ➤ Long-distance (LD) process such as $D \rightarrow XY(\rightarrow l^+ l^-)$ have BFs up to $\mathcal{O}(10^{-6})$.
- > Sensitive to NP!

The Euclidean E

PRD 111, L091101 (2025)

Search for D^0 meson decays to $\pi^+\pi^-e^+e^-$ and $K^+K^-e^+e^-$ final states

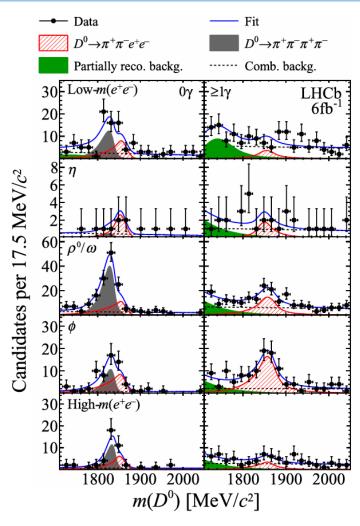


FIG. 1. Mass distributions of selected $D^0 \to \pi^+\pi^-e^+e^-$ candidates in the low- $m(e^+e^-)$, η , ρ^0/ω , ϕ and high- $m(e^+e^-)$ regions in the (left, 0γ) no-brem and (right, $\geq 1\gamma$) with-brem categories. Fit projections are also shown.

➤data sample: 6 fb⁻¹@13 TeV

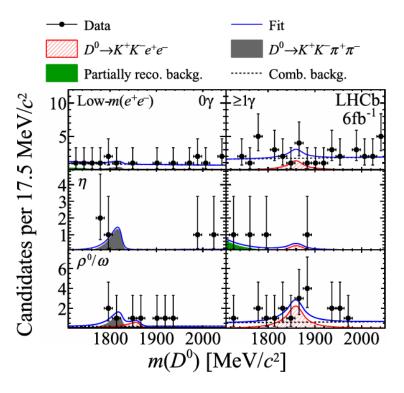


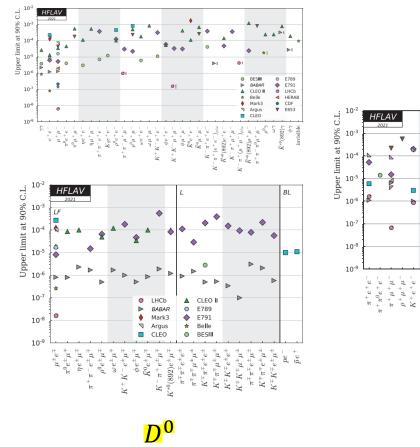
FIG. 2. Mass distributions of selected $D^0 \to K^+K^-e^+e^-$ candidates in the low- $m(e^+e^-)$, η and ρ^0/ω regions in the (left) nobrem (0 γ) and (right) with-brem ($\geq 1\gamma$) categories. Fit projections are also shown.

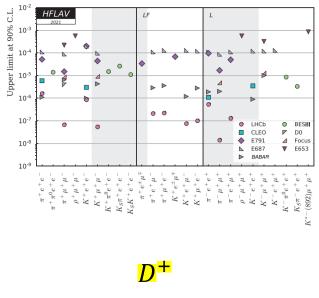
Search for D^0 meson decays to $\pi^+\pi^-e^+e^-$ and $K^+K^-e^+e^-$ final states

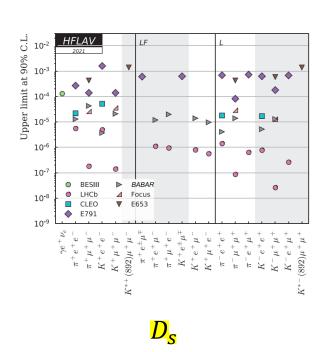
$m(e^+e^-)$ region	$[\mathrm{MeV}/c^2]$	Yield	\mathcal{S}
	$D^0 \rightarrow \pi^+\pi^-e^+$	e^-	
Low mass	$2m_{\mu}$ -525	37 ± 13	2.8σ
η	525–565	10 ± 7	1.6σ
$ ho^0/\omega$	565-950	97 ± 21	5.5σ
ϕ	950-1100	100 ± 18	8.1σ
High mass	> 1100	30 ± 11	2.9σ
	$D^0 \to K^+ K^- e^+$	e^{-}	
Low mass	$2m_{\mu}$ -525	4 ± 8	1.2σ
η	525–565	1 ± 2	1.1σ
$ ho^0/\omega$	> 565	12 ± 7	2.2σ

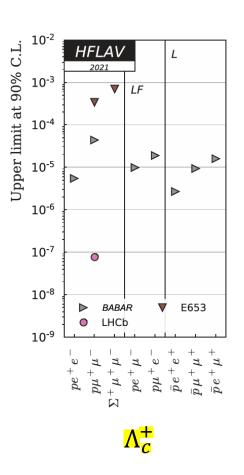
PRD 111, L091101 (2025)

First observation of


$$D^0
ightarrow \pi^+\pi^-[e^+e^-]_{\phi,\,
ho^0/\omega}$$


$m(\ell^+\ell^-)$ region	$[\mathrm{MeV}/c^2]$	\mathcal{B}	G [10 ⁻⁷]
		$D^0 o\pi^+\pi^-e^+e^-$	$D^0 \to \pi^+ \pi^- \mu^+ \mu^- [20]$
Low mass	$2m_{\mu}$ -525	<4.8(5.4)	$0.78 \pm 0.19 \pm 0.05 \pm 0.08$
η	525–565	< 2.3(2.7)	< 0.24(0.28)
ρ^0/ω	565-950	$4.5 \pm 1.0 \pm 0.7 \pm 0.6$	$4.06 \pm 0.33 \pm 0.21 \pm 0.41$
ϕ	950-1100	$3.8 \pm 0.7 \pm 0.4 \pm 0.5$	$4.54 \pm 0.29 \pm 0.25 \pm 0.45$
High mass	>1100	< 2.0(2.2)	< 0.28(0.33)
		$D^0 \to K^+ K^- e^+ e^-$	$D^0 \to K^+ K^- \mu^+ \mu^-$ [20]
Low mass	$2m_{\mu}$ -525	< 1.0(1.1)	$0.26 \pm 0.12 \pm 0.02 \pm 0.03$
η	525–565	< 0.4(0.5)	< 0.07(0.08)
$ ho^0/\omega$	> 565	<2.2(2.5)	$1.20 \pm 0.23 \pm 0.07 \pm 0.12$


First lepton universality tests with such decays


► Belle also reported the search of $D^0 \to \pi^+\pi^-e^+e^-$ decay recently, but with no significant signal observed. [arXiv:2507.05050 [hep-ex]]

Averages of b-hadron, c-hadron, and τ -lepton properties as of 2021. (HFLAV Collaboration). Phys. Rev. D. 107, 052008 (2023)

Still lots of unexplored decays...

2025/08/07 17/21

BESIII Collaboration, Future physics programme of BESIII, Chin. Phys. C 44 (2020), 040001

Table 6.2. The latest experimental upper limits on the branching fractions (in units of 10^{-6}) of the rare D and D_s decays into $h(h')e^+e^-$. The expected BESIII sensitivities with the expected final charm data set listed in Sec. 7 are also shown in the last column.

Decay	Upper limit	Experiment	Year	Ref.	BESIII Expected
$D^0 \to \pi^0 e^+ e^-$	0.4	BESIII	2018	[35]	0.1
$D^0 \to \eta e^+ e^-$	0.3	BESIII	2018	[35]	0.1
$D^0 \to \omega e^+ e^-$	0.6	BESIII	2018	[35]	0.2
$D^0 \to K_S^0 e^+ e^-$	1.2	BESIII	2018	[35]	0.5
$D^0 \to \rho e^+ e^-$	124.0	E791	2001	[36]	0.5
$D^0 \to \phi e^+ e^-$	59.0	E791	2001	[36]	0.5
$D^0 \to \bar{K}^{*0} e^+ e^-$	47.0	E791	2001	[36]	0.5
$D^0\to\pi^+\pi^-e^+e^-$	0.7	BESIII	2018	[35]	0.3
$D^0 \to K^+ K^- e^+ e^-$	1.1	BESIII	2018	[35]	0.4
$D^0 \to K^- \pi^+ e^+ e^-$	4.1	BESIII	2018	[35]	1.6
$D^+ \to \pi^+ e^+ e^-$	1.1	BaBar	2011	[37]	0.12
$D^+ \to K^+ e^+ e^-$	1.0	BaBar	2011	[37]	0.46
$D^+\to\pi^+\pi^0e^+e^-$	1.4	BESIII	2018	[35]	0.5
$D^+ \to \pi^+ K_S^0 e^+ e^-$	2.6	BESIII	2018	[35]	1.0
$D^+ \to K_S^0 K^+ e^+ e^-$	1.1	BESIII	2018	[35]	0.4
$D^+ \to K^+ \pi^0 e^+ e^-$	1.5	BESIII	2018	[35]	0.6
$D_s^+ \to \pi^+ e^+ e^-$	13.0	BaBar	2011	[37]	70.0
$D_s^+ \to K^+ e^+ e^-$	3.7	BaBar	2011	[37]	1.7

[•] For LNV processes of *D* mesons: could improve the best upper limit to 4.6×10^{-7} and 2.3×10^{-7} for $D^+ \to \pi^- e^+ e^+$ and $D^+ \to K^- e^+ e^+$.

- Works about rare charm hadron decays ongoing:
 - Absolute measurements of the branching fractions of $D^0 \to \gamma \overline{K}^{*0}$ and $D^0 \to \gamma \phi$ [BAM-592]
 - Search for the radiative decay $D^0 \rightarrow \gamma \omega$ [BAM-708]
 - Search for the radiative decays $D^0 \to \gamma \overline{K}_1^0(1270)$ and $D^+ \to \gamma K_1^+(1270)$ [BAM-837]
 - Search for the radiative decays $D_s^+ \to \gamma K^*(892)^+$ [BAM-928]
 - Search for the radiative decays $D_s^+ \to \gamma K_1^+(1270)$ [early stage]
 - Study of $D^0 \to \gamma \rho^0$ with deep learning [early stage]
 - Search for rare decay of $\Lambda_c^+ \to p\gamma$ [early stage]
 - Search for rare decays of $D \rightarrow h(h^{(\prime)})e^+e^-$ [BAM-1018]
 - Search for FCNC process $D^+ \rightarrow h^+ e^+ e^-$ and LNV process $D^+ \rightarrow h^- e^+ e^+$ [doc-1431]

- Works about rare charm hadron decays ongoing:
 - Search for baryon- and lepton-number-violating D^{\pm} decays [doc-1629]
 - Search for baryon- and lepton-number-violating D_s^+ decays [doc-1706]
 - Search for four-body LFV D_s^+ decays [early stage]
 - Search the CLFV process $D^0/\overline{D}^0 \to e\tau$ [doc-1614]
 - Search for the rare decays $D_s^+ \to K^+ \nu \bar{\nu}$ [early stage]
 - Search for massless particle beyond the SM in $D^+ \rightarrow \pi^+ + \text{invisible decay [BAM-993]}$
 - Search the light neutralino $\tilde{\chi}_1^0$ with $D^0 \to \bar{\Xi}^0 \tilde{\chi}_1^0 + c.c.$ [early stage]
 - Search the light neutralino $\tilde{\chi}_1^0$ with $D^0 \to \Lambda \tilde{\chi}_1^0 + c.c.$ [early stage]
 - Search the light neutralino $\tilde{\chi}_1^0$ with $D^+ \to p \tilde{\chi}_1^0 + c.c.$ [early stage]

Summary

- ➤ BESIII has performed wide range studies of rare charm hadron decays, with many first searches or best limits.
- ►BESIII has collected the 20.3 fb⁻¹ ψ (3773) data samples, and there will be more data of $\Lambda_c \bar{\Lambda}_c$ in the near future. BESIII possesses great potentials in searches for rare charm hadron decays.
- The application of new techniques (e.g., deep learning, novel charm meson tagging method) enhances search sensitivity.

