The DarkSide-20k Dark Matter Detector: Physics Goals and Data Acquisition

Marek Walczak

21-10-2025

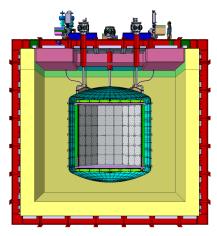
Laboratori Nazionali del Gran Sasso (LNGS)



- founded in 1987
- covered by 1400 m of rock (3800 mwe shielding)
- can be accessed by car
- one of largest underground research centers (there are around 16 deep underground labs in the world)

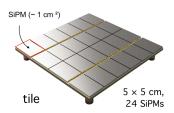
- Abruzzo region in central Italy,
 120 km from Rome
- below Gran Sasso mountain in Italy

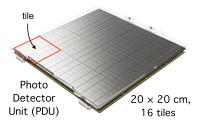
Laboratori Nazionali del Gran Sasso (LNGS)


- DarkSide-20k will be installed in LNGS in Hall-C

nominal duration of operation:
10 years

Marek Walczak


DarkSide-20k overview


more details in Ako's talk!

- Time Projection Chamber (TPC) filled with 50 t of underground Ar (UAr) (20 t fiducial)
- Inner Veto (IV): 36 t of UAr between the TPC and the vessel (neutron tagging)
- Outer Veto (OV) filled with 650 t of atmospheric Ar (AAr) (muons and their shower products)
- WLS: TPB coating in TPC,
 PolyEthylene Naphthalate (PEN)
 foils in the veto


Light detection

one channel: 4 tiles

more details in Dmitrii's and Devidutta's talks!

10 veto PDUs prepared for cryogenic test

Custom silicon photomultipliers (SiPM)

- Low noise at 88 K
- Tuned sensitivity vs light spectrum
- SNR for single tile > 13
- Photon detection efficiency: 45%
 - scintillation signal is mostly single photoelectron
- Timing resolution: 10 ns
 - important for bkg rejection (see Ako's talk)
- Dark-count rate: few-tens mHz/mm²
 - may spoil PSD / contribute to DAQ dead time
- 26 m² overall

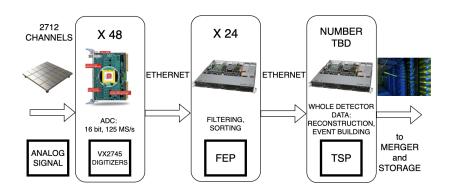
Readout channels:

	PDUs	channels
TPC	528	2112
IV	120	480
OV	30	120
total	678	2712

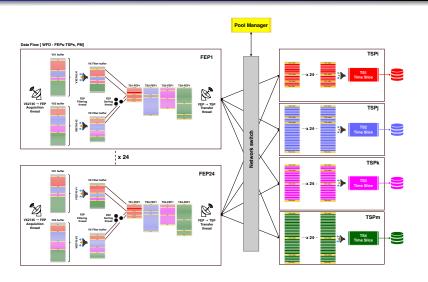
Goals of the DAQ

Expected event rate in the Inner Detector (ID: TPC and IV): **200 evnt.** / **sec** (100 evnt. / sec in the TPC)
To reduce possible sources of bias, the DAQ:

- continuously acquires signals from the TPC and vetos (triggerless operation),
 - system doesn't wait for the trigger decision,
- the waveforms are digitized and transferred for further processing,
- analysis of the signals for physics searches delegated to a computing farm.
- DAQ system is also capable of running in trigger mode if there is a need.

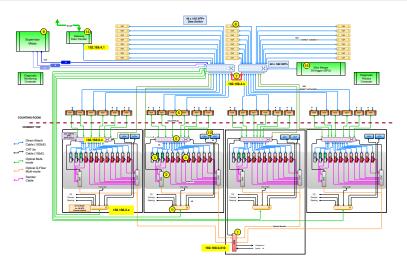

General DAQ concept

- 4 identical racks, each having:
 - 12 waveform digitizers receive analog data from PDUs
 - (48 in total)

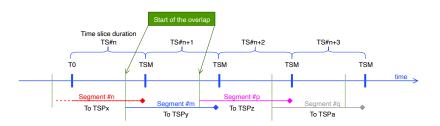

Additional racks in IT room:

- 24 Frond End Processors (FEPs) machines
 - (1 per 2 digitizers)
 - readout, filtering, sorting
- Time Slice Processors (TSPs) machines
 - number under discussion
 - receive sorted data from FEPs
 - analysis, sending data for storage

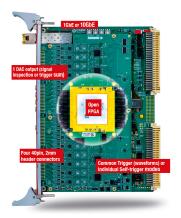
Data Flow (simplified)



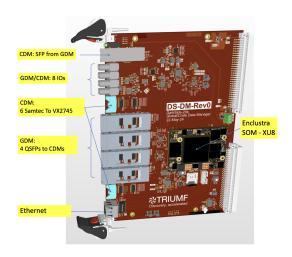
Data Flow


Digitized data is read by **FEPs**, sorted, processed and transferred to the **TSPs** for further processing -> storage

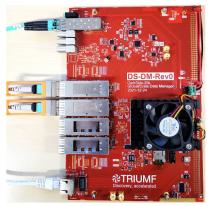
DS-20k DAQ architecture


Global / Crate Data Manager (G/CDM, 1, 2), Digitizers (3, 4), network switches (5, 7,12), FEPs (6), TSPs (8), Midas Supervisor (9), Slow Control processors (SCP, 13), Getaway (14) and Merger (15)

Time Slice concept


- data written to disk after the signals from the whole detector are gathered as a Time Slice (TS)
- each TS is assigned to a dedicated TSP
- part of TS is duplicated to include boundary events

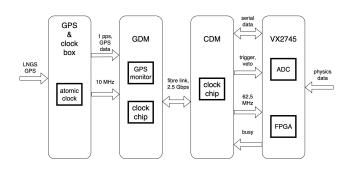
CAEN VX2745 digitizer


- 16 bit @ 125 MS/s ADC
- 64 analog inputs, differential
- programmable gain, 4 Vpp ÷ 0.04 Vpp
- Open FPGA allows custom firmware implementation:
- FW: identify segments containing at least one "peak"
- uses Finite Impulse Response (FIR) filter

Global / Crate Data Manager board

Data Manager boards ensure clock distribution and segment assembly

GDM-CDM board



Global Data Manager (GDM)

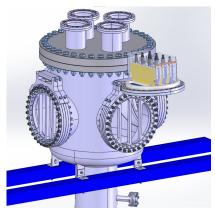
Crate Data Manager (CDM)

I/Os	Specification	Purpose
1 RJ45 port	1Gbit Ethernet	Configuration
4 QSFP +	2.5Gb/s communication to CDM	Clock Trigger
4 NIM inputs	IRIG-B, 10MHz Ref clock, Ext TrgIN-1, Ext TrgIN-II	GPS, Triggers
4 NIM outputs	1PPS, Ext TrgOUT-1	GPS, Trigger

GPS signal decoded in GDM

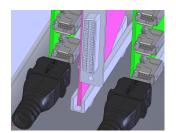
- atomic clock runs from GPS receiver 1 pps signal
 - provides 10MHz ext. clock to GDM.
 - GPS irig-b datestamp is decoded in GDM

Atomic clock



- Stanford Research Sytem PRS10 Rubidium clock (1),
- optical/electrical and electrical/optical converters (2),
- custom input-output GPS Clock board (IOGC, 3) developed in TRIUMF,
 - power supply (4)

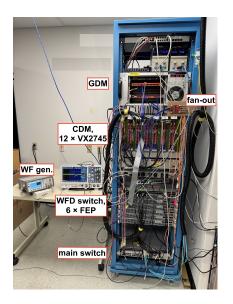
Hall-C



- IT rooms in Hall-C
- 8 chimneys on the rooftop of the cryostat:
- 4 for ID, 4 for OV

- ID chimney: 4 flanges
- steering, PDU ID, LV, HV, signal
- 640 channels per ID chimney

Flange


Ethernet IX Industrial Connector

Tests: Vacuum, Lightproof, Cross talk

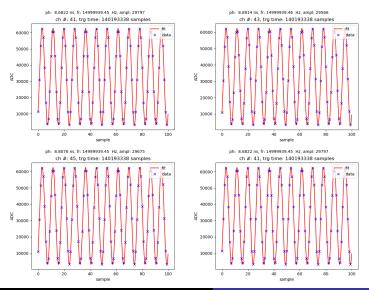
Quadrant setup in TRIUMF, Canada

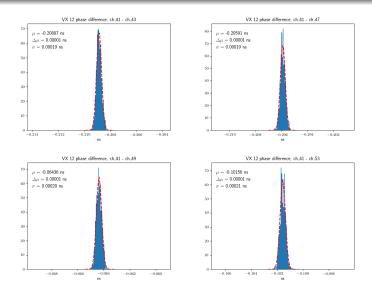
Quadrant setup:

- one of four identical racks of the final system
- 12 waveform digitizers (WFDs)
- 6 FrontEnd Processors (FEPs)
- 2 network switches
- Time Slice Processors (TSPs) (located in a separate rack in next room)

synchronization test - waveform generator signal

12 ch. connected to single digitizer


one channel per VX


- WG: sine,
- 15 MHz,
- 150 mVpp
- CDM trigger: 50 Hz
- DAQ: 16k samples, 8k events (WFs)

collected WFs with a fit (single digitizer shown here)

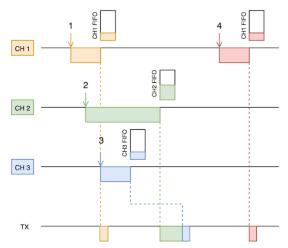
only 100 first samples shown here

phase difference (single digitizer shown here)

result: phase shift between channels is below 500 ps

data rate & stability tests of the Quadrant system

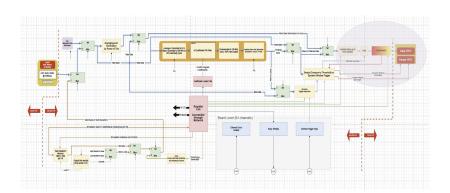
Data: simultaneous trigger on all 768 channels (i.e. the worst case scenario)

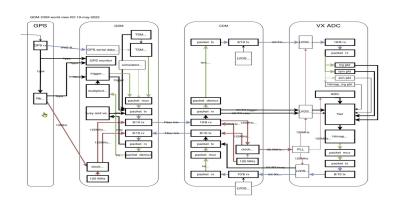

- Data rate 250 MB/s per board (VX -> FEP)
- FEP -> TSP rates are 8 MB/s per FEP
- Hardware is stable, can run for days 1 week run completed

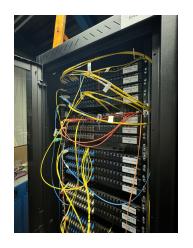
Acuisition sequences are managed by Maximum Integrated Data Acquisition System (MIDAS)

Possible challenge: VX2745 BUSY logic

- readout: 16 bits per 8 ns
- transmission to the sorting buffer is 8 times faster
- Busy->Pause Run->Resume run cycle when the buffer is full

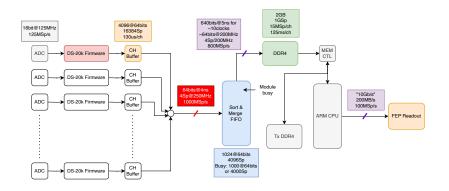


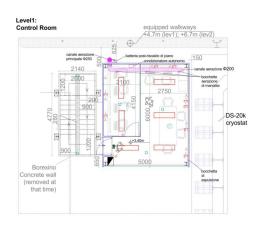

Next steps

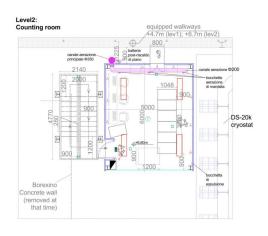

- Compression in the digitizer helps with the potential busy issue
- Lossless compression implemented in VHDL by Warsaw Tech. Uni.
 - compression factor 2.1 2.6
 - software implementation of compression and decompression tested on the FEP
 - 230 MB/s decompression data rate / core
 - ongoing: implementation in VX and FEP
- Quadrant setup will be shipped to LNGS this year
- Remaining HW (additional 3 racks) is beeing ordered

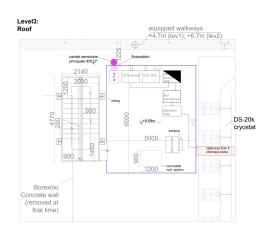
Summary

- DarkSide-20k experiment under construction in LNGS
- Developed DAQ system allows continuous acquisition from 2712 channels
- DAQ based on commercially available CAEN's VX2745 digitizers
- Multi-board synchronization of 48 modules provided by custom Data Manager boards
- Biggest direct Dark Matter experiment, commissioning expected in 2028









- signal measured it in GS1 LOC.
- TD. TEL room
- about 100 m from Hall C



DarkSide Wiki page

- system description

- additional information will be accesible from MIDAS page

