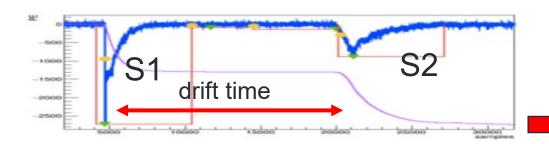
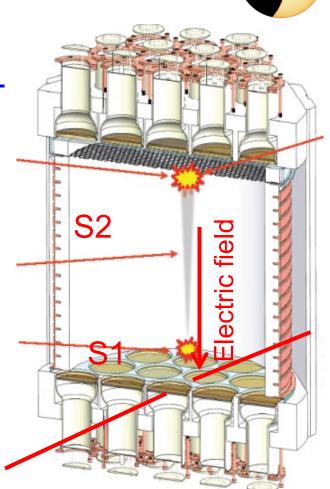


CHARACTERIZATION OF ARGON RECOILS AT THE KEV SCALE WITH RED AND RED+

L. Pandola (LNS)

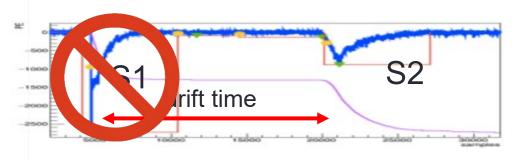
on behalf of the ReD Working Group (GADM Collaboration)

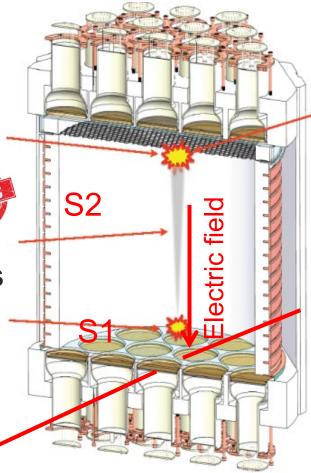

LIDINE2025, Hong Kong, SAR, China October 21st, 2025



Physics background

- DarkSide program at Gran Sasso Laboratory, WIMPs search using dualphase Time Projection Chamber with lowradioactivity LAr
 - Operated a **50 kg TPC** (DS-50)
 - In preparation: 50 ton TPC (DS-20k)
 - Novel light readout with SiPM
 - Pave way for next-generation (ARGO)

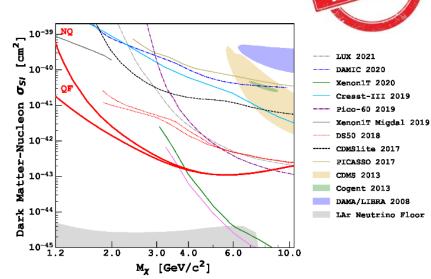



Talks by A. Jamil, M. Walczak, P. Salomone, G. Matteucci, D. Rudik, S. Tullio, ...

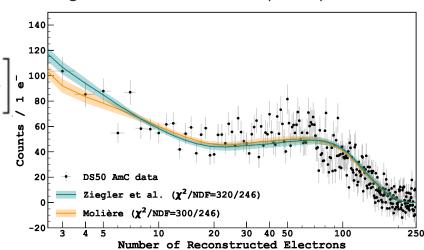
Physics background

 DarkSide program at Gran Sasso Laboratory, WIMPs search using dualphase Time Projection Chamber with lowradioactivity LAr

- Operated a 50 kg TPC (DS-50)
- In preparation: 50 ton TPC (DS-20k)
 - Novel light readout with SiPM
- Pave way for next-generation (ARGO)
- Technology sensitive to low-mass WIMPs
 - A few GeV instead of the "standard" 100's GeV
 - Slower recoil, O(1 keV) instead of 20-100 keV
 - Challenging! S1 too small, S2-only



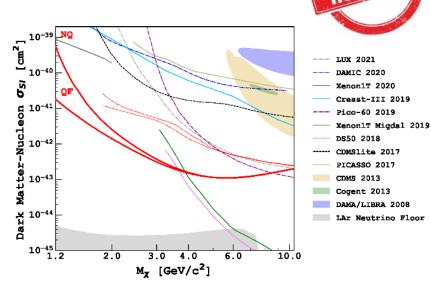
Talks by A. Jamil, M. Walczak, P. Salomone, G. Matteucci, D. Rudik, S. Tullio, ...


The search for low-energy WIMPs

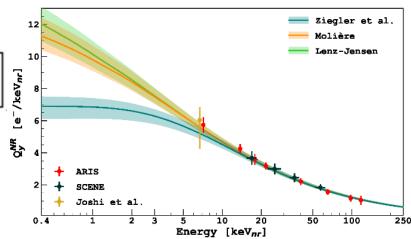
- Analysis sensitive to ionization yield for keV NRs
 - Poorly known for Ar (data at ~7 keV)
- Measurement within DS-50, with AmC and AmBe neutron sources
 - Combined fit with direct measurements (ARIS, SCENE)
 - Constraints from small low-energy sample from the AmC calibration
 - Custom 2-parameter model based on Thomas-Imel box

$$f_q(E_{nr}) = \frac{F}{E_{nr} C_{\text{box}}} \ln \left[1 + \frac{C_{\text{box}}}{F} \cdot \beta \cdot \frac{\epsilon(E_{nr}) s_e(\epsilon)}{s_e(\epsilon) + s_n(\epsilon)} \right]$$

Agnes et al. PRD **107** (2023) 063001 Agnes et al. PRD **104** (2021) 082005

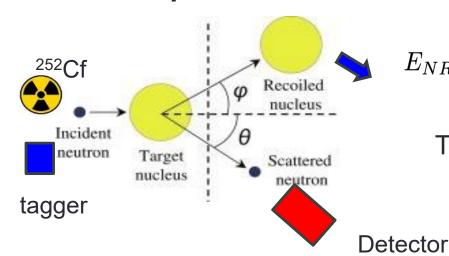

The search for low-energy WIMPs

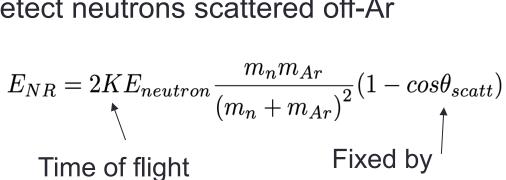
- Analysis sensitive to ionization yield for keV NRs
 - Poorly known for Ar (data at ~7 keV)
- Measurement within DS-50, with AmC and AmBe neutron sources
 - Combined fit with direct measurements (ARIS, SCENE)
 - Constraints from small low-energy sample from the AmC calibration
 - Custom 2-parameter model based on Thomas-Imel box


$$f_q(E_{nr}) = \frac{F}{E_{nr} C_{\text{box}}} \ln \left[1 + \frac{C_{\text{box}}}{F} \cdot \beta \cdot \frac{\epsilon(E_{nr}) s_e(\epsilon)}{s_e(\epsilon) + s_n(\epsilon)} \right]$$

- Different screening models for s_n
- Strong case for a LAr direct measurement at 1-5 keV

Agnes et al. PRD **107** (2023) 063001 Agnes et al. PRD **104** (2021) 082005

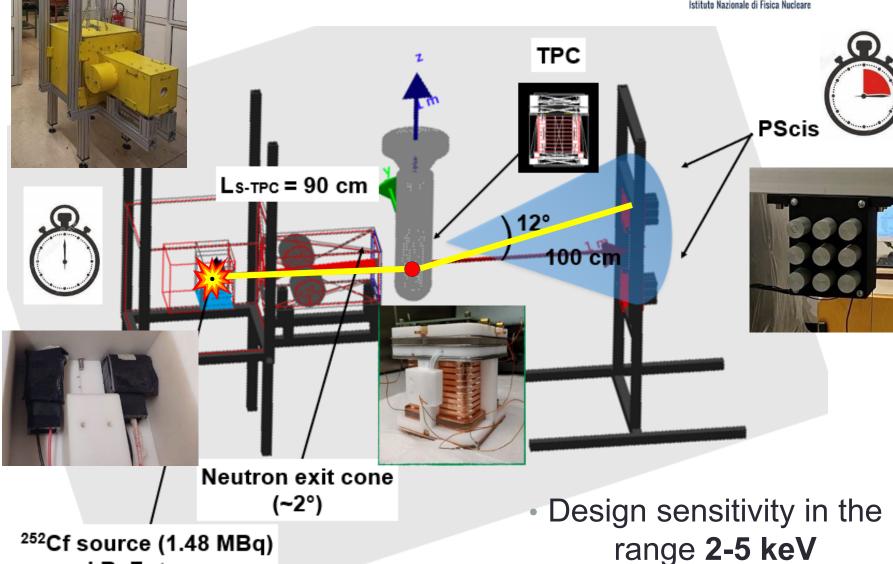



 $N(E) \propto exp[-0.88E(MeV)]sinh[2.0E(MeV)]^{1/2}$

 $RE_{coil}D_{irectionality}$

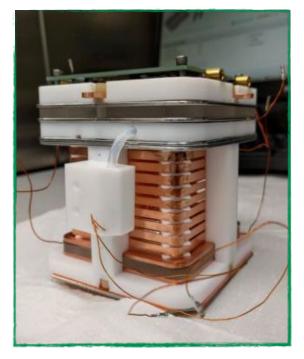
The ReD project

- Measurement within the ReD project
 - Activity within DarkSide
 - Operates a small dual-phase LAr TPC with SiPM readout
- Strategy: Produce Ar recoils of known energy in the TPC by (n,n')
- Neutrons from a ²⁵²Cf fission source
 - Neutrons O(2 MeV) and up to 10 MeV
 - Appropriate to produce recoils of a few keV
- Close detectors (BaF₂) to tag fission events
- Neutron spectrometer to detect neutrons scattered off-Ar

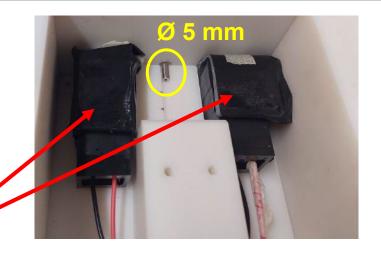

Two-body kinematics!

geometry

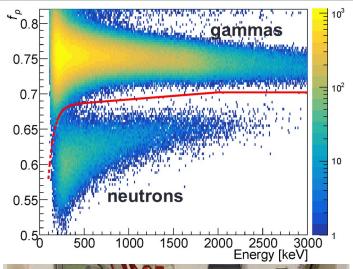
The ReD conceptual layout

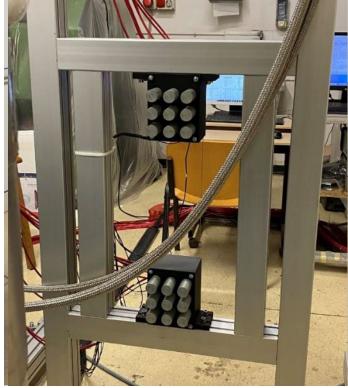

and BaF2 taggers

The TPC ...

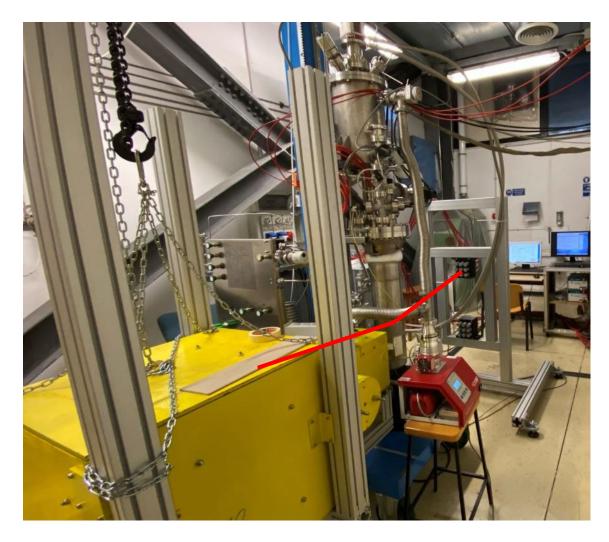

- Miniaturized version of the DS-20k TPC
 - Active volume: 5(L) x 5 (W) x 6 (H) cm
 - Gas pocket: 7 mm thick
 - TPB coating for wavelength shifting
- DS-20k light readout: 5x5 cm² SiPM, 24x1cm² SiPM
 - 24 ch readout (top), for increased (x,y) resolution
 - 24x1cm² SiPM, 4 ch readout (bottom)
- Front End from the DS-20k R&D
- 3D event reconstruction:
 - (x,y) from S2 pattern on the top SiPMs
 - z from drift time (up to ~54 μs)
- In this campaign:
 - $g_2 = \sim 19 \text{ PE/e-} (E_{drift} = 200 \text{ V/cm}, E_{el} = 5.79 \text{ kV/cm})$
 - Electron lifetime > 1 ms

... and all the rest

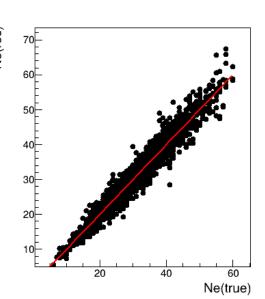

- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle 2.6°
 - Shines the entire TPC at 1 m distance
- Two BaF₂ detectors to tag fission products
 - Fast (high source rate, pile-up)
 - START for time of flight

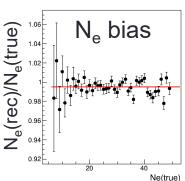


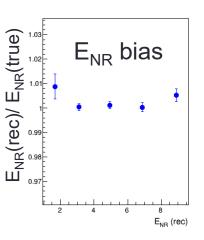
... and all the rest


- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle 2.6°
 - Shines the entire TPC at 1 m distance
- Two BaF₂ detectors to tag fission products
 - Fast (high source rate, pile-up)
 - START for time of flight
- Neutron spectrometer: two 3x3 arrays of EJ276 plastic scintillators («PSci»)
 - STOP for time of flight
 - 1 m downstream the TPC
 - Symmetric deployment
 - Features n/γ discrimination
 - θ ~ 12°-17° in order to avoid direct neutrons from the source
- Tag Ar recoils down to ~1-2 keV

The real thing at

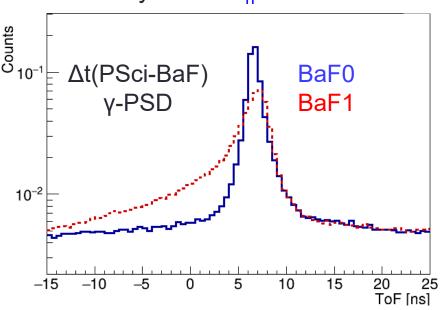


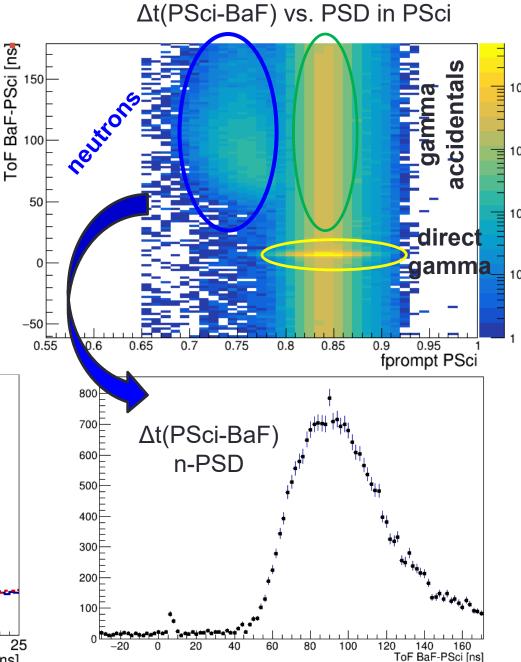




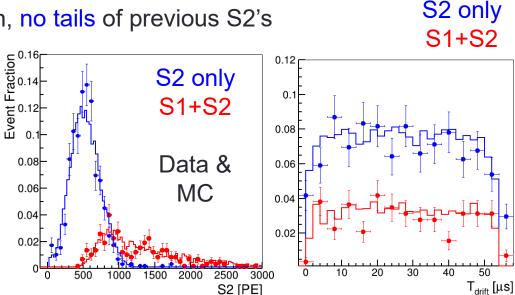
Data taking

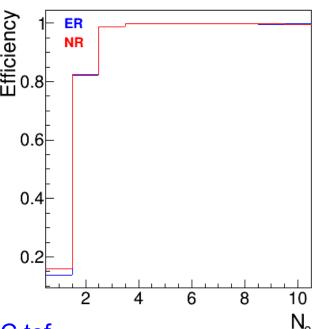
- Data taking with ²⁵²Cf for about 75 days (Jan-Mar, 2023)
- Trigger logic: "any BaF" ∧ "any PSci"
 - Tagging ~60% of SF events (from MC)
 - TPC acquired in follower mode (may fail to trigger in S1)
- Weekly calibration with laser and ¹³⁷Cs/²⁴¹Am
 - Calibrations and background runs used to determine and correct for non-homogeneity in the TPC response
- Detailed end-to-end MC simulation available
 - Produce synthetic data → same analysis flow than real data
 - Tuned and validated on calibrations
 - Check reconstruction algorithms!
 - Reconstruction of N_e and E_{NR} unbiased (bias < 1%)





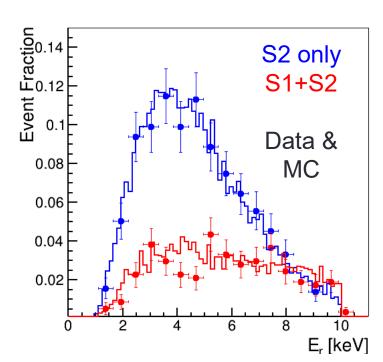
Finding neutrons.


- Event rate dominated by γrays and accidentals
- Selection of candidate neutrons by time of flight and PSD
 - About 0.4% of total triggers
- ToF resolution 0.6-1.3 ns rms
 - Event-by-event E_n at <5%

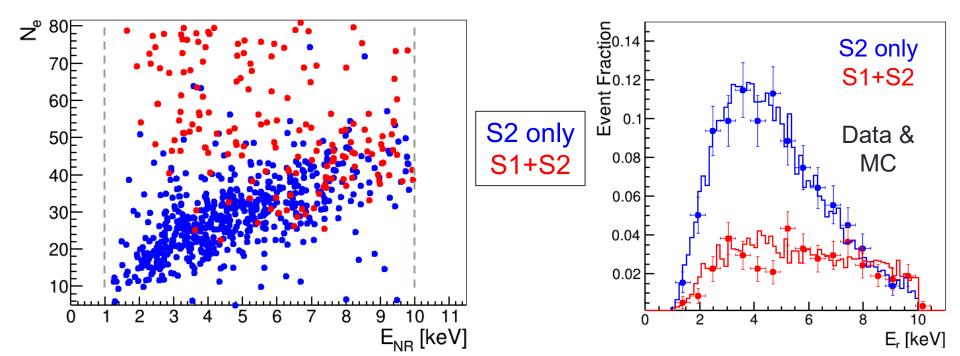


... interacting in the TPC

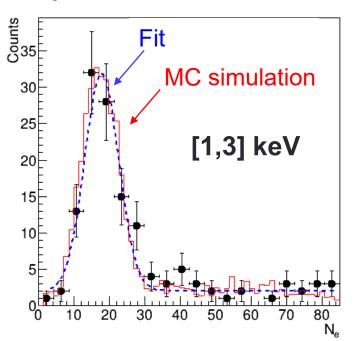
- Look for TPC events offline
 - Analysis flow: de-convolution of SiPM response function, TPC pulse finder
- From MC: pulse finder **fully efficient** for S1 > 25 PE, **S2 > 4 e-**
- Selection cuts based on topology:
 - One S2 within 65 μs from BaF₂
 - Optionally, an S1 (< 100 PE) w/ consistent BaF-TPC tof
 - (x,y) in the central 4x4 cm region, no tails of previous S2's
- Final sample: 806 passing all cuts, out of 2258 candidate neutron events w/ TPC signal
 - 71% are S2-only (~ as in MC)
 - From MC, most S1+S2 are expected to be multiple neutron scattering (→ no kinematic correlation)

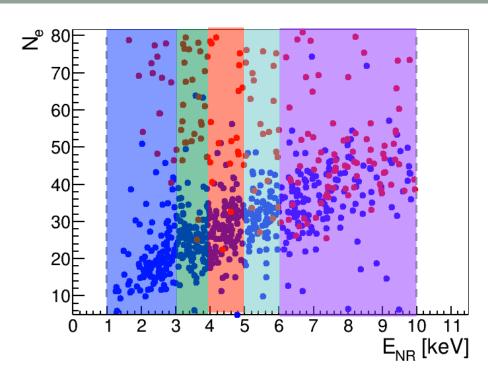


The sample of low-energy recoils


- Get E_{NR} from time of flight (and geometry) down to 1-2 keV
 - Select 1-10 keV due to kinematics
 - ²⁴¹Am calibration to constrain TPC vertical alignment $\Delta z = (0.23 \pm 0.95)$ cm
 - Uncertainty 9% @ 2 keV (6% @8 keV), driven by PSci solid angle

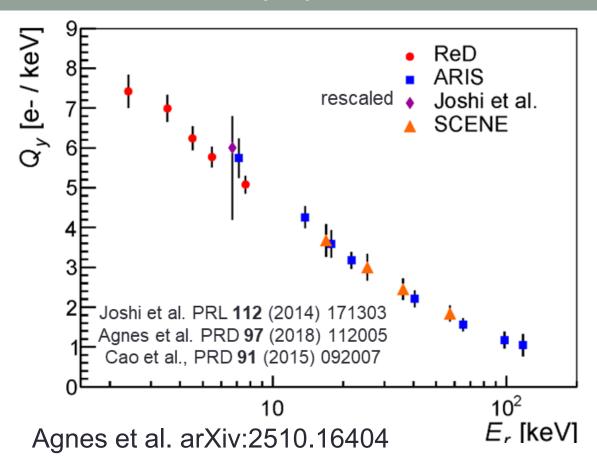
$$E_{NR} = 2KE_{neutron} \frac{m_n m_{Ar}}{(m_n + m_{Ar})^2} (1 - \cos\theta_{scatt})$$


The sample of low-energy recoils


- Get E_{NR} from time of flight (and geometry) down to 1-2 keV
 - Select 1-10 keV due to kinematics
 - ²⁴¹Am calibration to constrain TPC vertical alignment $\Delta z = (0.23 \pm 0.95)$ cm
 - Uncertainty 9% @ 2 keV (6% @8 keV), driven by PSci solid angle
- S2 converted into N_e via ionization gain $g_2 = (18.6 \pm 0.7)$ PE/e-
 - From ²⁴¹Am calibration, checked with «echo» events
 - N_e resolution 12% at N_e =10 (7% for N_e >40)

Statistical analysis

- Slice data in 5 E_{NR} intervals
- For each slice, unbinned maximum likelihood fit
 - gaussian + constant
 - Constant term accounts for multiscattering background
 - N_e: mean value of the gaussian



$$\cdot Q_v = N_e / < E_{NR} >$$

- Procedure validated with the MCgenerated data sets
 - Unbiased, provided S1+S2 events kept
 - MC nicely describes N_e distribution → potential sensitivity to fluctuations

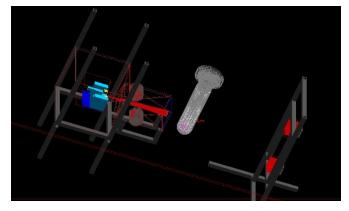
Qy results

- ReD in agreement with existing data above 7 keV
- Trend of increasing
 Qy at lower energy
- Total Q_y uncertainty
 4.5% 6%
 - Mostly systematic, driven by Δg₂ (3.8%)
 - Smaller effect from Δz
 - Statistical uncertainty
 1.9%-3.6%
 - Comparable to syst only in the [1,3] keV interval

 Next step: use ReD data points in a global fit with DS-50, ARIS and SCENE to constrain models

See next talk by D. Franco

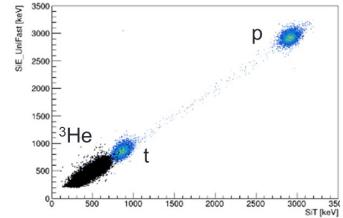
ReD+

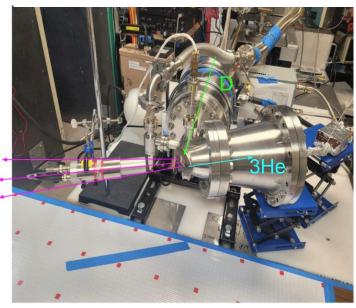




- Future project ReD+, funded as a PRIN project at INFN, Laboratori Nazionali del Sud
- Goal: improve down to 0.5 keV (and study fluctuations) with the same approach and optimized components
 - Redesigned TPC, larger spectrometer
 - Use the lesson learnt from ReD
 - Pilot run in winter 2025

ReD+




Future project ReD+, funded as a PRIN project at INFN, Laboratori

Nazionali del Sud

 Goal: improve down to 0.5 keV (and study fluctuations) with the same approach and optimized components

- Redesigned TPC, larger spectrometer
- Use the lesson learnt from ReD
- Pilot run in winter 2025
- After that, aim at 0.2 keV by using 2.4-MeV mono-energetic neutrons from a commercial DD generator (10⁷ n/s)
 - Joint project with University of Sao Paulo (PFAPESP grant)
 - Being commissioned now at USP
 - Neutron tagging capability (by detecting ³He)

Conclusions & perspectives

- ReD measured the ionization yield of Ar down to 1-2 keV using a miniaturized LAr dual-phase TPC @INFN Catania
 - Two-body kinematics approach: tagged ²⁵²Cf fission source + neutron spectrometer to detect neutrons scattered off the TPC
- First direct measurement below 6.7 keV

arXiv:2510.16404

Data being used to constrain fluctuation models

Follow-up: global fit to constrain screening functions

- Future: ReD+ @ LNS, to cover down to 0.2 keV with ²⁵²Cf (Italian PRIN funding) and DD neutron generator (Brazilian FAPESP grant)
 - Staged approach, first pilot run in winter 2025
- Information crucial for "low-mass WIMP" analysis