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The Short-Baseline Neutrino Program

e The Short Baseline Near Detector (SBND) is the closest to the neutrino source of the three detectors
that integrate the Short-Baseline Neutrino Program at Fermilab.

e Three detectors based on the Liquid Argon Time Projection Chamber (LArTPC) technology to detect
neutrinos produced at the Booster Neutrino Beam (BNB).

e SBN physics goal: search for light (Am? ~ 1eV?) sterile neutrino oscillations
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Short Baseline Neutrino Detector:

e SBND has a rich physics program:

o Closest detector to the neutrino beam. It will
characterize the unoscillated neutrino flux.

o  Will record ~2M neutrino interactions per
year, allowing the study of interactions with
unprecedented precision at ~1 GeV energies.

o Other BSM searches (HNL, light dark
matter...)

o Ré&D for future LArTPC experiments
(X-Arapuca, TPB-coated foils, WLS coated
and uncoated detectors...)

e Detector operations started last year. First
physics run already completed!
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Liquid Argon Time Projection Chamber:

e Two complementary signals:
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o Jonization electrons: drifted

through an electric field and

Charged
Particle

detected at the charge readout

plane.

Neutrino Beam

................. =850 . - gy o Scintillation photons: detected by

Cathoge s the photon detection system.

e Jonization signals traditionally used for calorimetric and topological reconstruction.

e Scintillation signals traditionally used for trigger purposes.
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‘ SBND Photon Detection System:

e SBND Photon Detection System (PDS) aims at maximizing the physics output that
can be obtained from scintillation signals through an innovative design.
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e Reflected foils coated with
Tetra-PhenylButadiene (TPB)
wavelength shifter (WLS) installed at the
cathode.

o Absorbs VUV photons and re-emits
them with a visible wavelength.

e DPDS sensitive to two light components:

o Primary: VUV (main component).
o Reflected: Visible (extra
component).
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SBND Photon Detection System:

e SBND Photon Detection System (PDS) aims at maximizing the physics output that
can be obtained form scintillation signals through an innovative design.

ACTIVE COMPONENTS e Detection of VUV light is challenging: WLS
—— Coated PDS box compounds are used
AL AAUCE PMT (x4)
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SBND Photon Detection System:

e SBND Photon Detection System (PDS) aims at maximizing the physics output that
can be obtained form scintillation signals through an innovative design.

ACTIVE COMPONENTS e Detection of VUV light is challenging: WLS
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PMT Response Calibration:

PMT bipolar waveforms call for a
deconvolution-based PMT reconstruction
o requires a channel-by-channel characterization
of the Single Electron Response function.
Characterization performed using cosmic muons
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Electronic noise also characterized
channel by channel

This step is the basis of the PMT
reconstruction workflow
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https://link.springer.com/article/10.1140/epjc/s10052-024-13306-3

PMT Position Reconstruction:
® One of the unique features of SBND's PDS is the ability of performing light-only 3D
reconstruction.
e Reconstruction on the PDS plane (YZ) is performed using a barycenter-based algorithm.

o Resolution below 25 cm for YZ reconstruction
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‘ PMT Position Reconstruction:

One of the unique features of SBND's PDS is the ability of performing light-only 3D
reconstruction.
Reconstruction on the drift coordinate based on its sensitivity to two light components.

O INpypiS used as a proxy for the drift distance of a neutrino interaction
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PMT Position Reconstruction:
® One of the unique features of SBND's PDS is the ability of performing light-only 3D

reconstruction.

e Reconstruction on the drift coordinate based on its sensitivity to two light components.
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PMT Timing Reconstruction:

e Neutrino interaction time reconstruction is performed using a clustering algorithm that
groups together pulses coincident in time
o PMT to PMT alignment is paramount for precise timing reconstruction
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PMT Timing Calibration:

Relative transit time is calibrated using cosmic muons whose trajectory is tagged with the CRT

system. Exploit the linear relationship
of photon arrival time and distance
between the PMT and the track.

o Technique only used for coated

PMTs for simplicity
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PMT Timing Calibration:

Relative transit time is calibrated using cosmic muons whose trajectory is tagged with the CRT
system. Exploit the linear relationship

of photon arrival time and distance 75 SBND Preliminary =~ —— Exponential Fit
between the PMT and the track. 2 ' SBND Data
o Technique only used for coated .Gg’ 5.
PMTs for simplicity =
2}
e Differences in PMT operational S &S
voltages produce ~10 ns spread in '; 0.0
their transit time. -% '
® Exponential fit is used to extrapolate @ 5 g
the correction for uncoated PMTs
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PMT Timing Calibration:

system. Exploit the linear relationship 50
of photon arrival time and distance
between the PMT and the track.
Technique only used for coated

PMTs for simplicity

Differences in PMT operational
voltages produce ~10 ns spread in
their transit time.

Exponential fit is used to extrapolate

the correction for uncoated PMTs

Final timing inter-calibration
below 1 ns

Relative transit time is calibrated using cosmic muons whose trajectory is tagged with the CRT
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BNB Timing Reconstruction:

e The Booster Neutrino Beam (BNB) delivers proton pulses to the target. Each ~1.6 us pulse
contains 81 bunches with a spread of 1.3 ns.
o Neutrinos inherit the time profile of the proton bunches.
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BNB Timing Reconstruction:

The Booster Neutrino Beam (BNB) delivers proton pulses to the target. Each ~1.6 us pulse
contains 81 bunches with a spread of 1.3 ns.
o  Neutrinos inherit the time profile of the proton bunches.

Reconstructing the neutrino BNB bucket structure
requires correcting for
o neutrino propagation time inside the detector ™G

drift

Z reconstruction ————up to 17 ns

AT
>/
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‘ BNB Timing Reconstruction:

The Booster Neutrino Beam (BNB) delivers proton pulses to the target. Each ~1.6 us pulse
contains 81 bunches with a spread of 1.3 ns.
o  Neutrinos inherit the time profile of the proton bunches.

Reconstructing the neutrino BNB bucket structure

drift

requires correcting for
o neutrino propagation time inside the detector ™3
Z reconstruction ————— up to 17 ns

o light propagation time from the interaction AT,
point to the photon detectors o —
X reconstruction ———— up to 15 ns
\AT
v
74
Ak a a Al 4O T
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Light-only BNB Timing Reconstruction:

e Using light-only information the obtained resolution is 6=2.71+0.02 ns.
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Light-only BNB Timing Reconstruction:

e Using light-only information the obtained resolution is 6=2.71+0.02 ns.

[We can go even further!]
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Enhanced BNB Timing Reconstruction:

e One way of improving time resolution is to use the finer position reconstruction capabilities
of the TPC system (~mm position resolution).
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Enhanced BNB Timing Reconstruction:

e One way of improving time resolution is to use the finer position reconstruction capabilities
of the TPC system (~mm position resolution).

e Channel by channel correction computed by taking into account:

o Neutrino time of flight

AT,
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Enhanced BNB Timing Reconstruction:

e One way of improving time resolution is to use the finer position reconstruction capabilities
of the TPC system (~mm position resolution).

e Channel by channel correction computed by taking into account:
o Neutrino time of flight
o Daughter particle propagation from the

interaction point to the emission point

Alejandro Sanchez Castillo — Universidad de Granada 23



Enhanced BNB Timing Reconstruction:

e One way of improving time resolution is to use the finer position reconstruction capabilities
of the TPC system (~mm position resolution).

e Channel by channel correction computed by taking into account:
o Neutrino time of flight
o Daughter particle propagation from the
interaction point to the emission point
o Light propagation from the emission AT

point to the PMT
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Enhanced BNB Timing Reconstruction:

e One way of improving time resolution is to use the finer position reconstruction capabilities

of the TPC system (~mm position resolution).

e Channel by channel correction computed by taking into account:

@)

@)

Neutrino time of flight

Daughter particle propagation from the

interaction point to the emission point

Light propagation from the emission
point to the PMT

Each channel is corrected by the space

point that minimises:
AT = ATv + Apo + ATy

AT

AT,
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Enhanced BNB Timing Reconstruction:

e One way of improving time resolution is to use the finer position reconstruction capabilities
of the TPC system (~mm position resolution).

e Channel by channel correction computed by taking into account:

o Neutrino time of flight 20.0

o Daughter particle propagation from the _ SBND Preliminary
Sy v "> SBND Data
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Enhanced BNB Timing Reconstruction:

e Neutrino time resolution is significantly improved after including TPC-based propagation
time corrections yielding a resolution 6=2.15+0.02 ns

e TPC used for neutrino event selection: cosmic background pedestal disappears

Charge + Light Reconstruction
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Enhanced BNB Timing Reconstruction:

e Neutrino time resolution is significantly improved after including TPC-based propagation

time corrections yielding a resolution 6=2.15+0.02 ns

e This level of resolution enables 5000, 0= 2.15% 0.03 [ns] SBND Preliminary
" _
leveraging BNB inner structure for: 2 SBND Data
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Summary:

SBND is the LArTPC detector using the most advanced Photon Detection
System so far.
Reconstruction capabilities of such an advanced detection system have been
shown in terms of

o 3D position reconstruction (o, 6, <25 cm ; o, <11 cm)

o Timing reconstruction O(2ns)
Combining TPC and PMT information timing resolution is improved allowing
for

o powerful background rejection

o enhanced sensitivity for BSM searches

First physics results coming soon!
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Gracias!







PMT Gain Equalisation:

SBND Preliminary Data
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PMT Position Reconstruction:
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PMT Timing Reconstruction:

SBND Simulation
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Light Propagation Time:
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Charge-light matching:
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Light Yield:

SBND Preliminary 4 coated + uncoated PMTs
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