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Nuclear lonization Efficiency

When a particle interact with a nuclei the energy splits:

E, : Nuclear collisions. (v = CoEp")

= §1 S2
E, : lonization (visible) energy [keVe.] (7). I B r:.::‘i:rr
_ ] Drifttime ~
O, O O O~ e/
“umé U @ 1 Z Electronic

‘ Recoil

Y/B  Drifttime . F
ionization energy __ f— ﬁ (S2181) < (SZ/Sl)eI” ~x
n =

deposited energy — R

@ eg—1 =V, energy lost to atomic motion
@ u is the energy to disrupt the atomic bonding.
@ This sets a cascade of slowing-down processes.

@ For TPC (S2/S1), < (S2/S1)e: fp = (etaW

R

@ Quenching =

1Using dimensionless units (Co = 16.26(1/keV)/Z1Z, (203 +233))
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CEVNS (v floor for DM searches)

Coherent elastic Neutrino Nuclear Scattering 2

@ Neutral-current process mediated v v
by the Z-boson. \/
@ Low momentum transfer. '

120
do C3%Aﬂ MT ) 2 2 //,//A\\\\\
dT ~ 4n (1 B 2E5) R [FW (q ﬂ A4
(1)
© Gr Fermiconstant, T = E, — E|, \

NR energy, F2(q?) weak Form

Factor, M target mass and " N
Q=2 (1 —4sin? 9W> —N. High Q Low Q

E< 50 MeV

2D.Z. Freedman, Coherent effects of a weak neutral current, Phys. Rev. D 9 (1974)
1389.

Y. Sarkis (ICN-UNAM) »lonization Efficiency Theory< October 23, 2025 4/27



Lindhard Integral Equation

(Tn : Nuclear kinetic energy and T,; electron kinetic energy.)

/dGn,e ‘_’<ETnZTei>+‘_’(TnU)+‘_’(E)+Z‘79(TeiUei) =0 @)
i — Y~

total cross section

Lindhard’s (five) approximations

N— ——— B

Before

@ Neglect contribution to atomic motion

coming from electrons.

taken into account)

can be treated separately.

© 6 66

Y. Sarkis (ICN-UNAM)

Neglect the binding energy, U = 0. (Now

Energy transferred to electrons is small
compared to that transferred to recoil ions.

Effects of electronic and atomic collisions

After

T, is also small compared to the energy E.
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Lindhard model

Lindhard’s first order approximation.

(t'2)
(k') / ot 2 5 /2 —t/e) +(t/e) — V(e)],
s
O'n

@ Neglects binding energy u=0. @ u# 0 implies a second order
© Only valid for € > u. solution.
@ Electronic stopping power @ Threshold expected at € = u.

assume bare ions. @ Coulomb repulsion effect for
@ ke'/2> S, for energies £ < 1. Se at low energies.

Lindhard formula2 is valid for & > 1
LXe EFX® ~ 1 MeV and EFY ~ 77 keV

3J. Lindhard, et al, Mat. Fys. Med. 33 (1963)
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Improvements for Se

@ We use Tilinin model to compute the electronic stopping power.
Se = (E6)Nmv /R Veou(VE)NedV, E = 67(R)

@ We use data for e— atom Momentum Transfer Cross Section
(hard-Sphere energy dependent potential model)

@ Valid for lower energies compare to TiIinoin semi-classical approach.
N1 4 =

1000 .

@ £
5 E s F
900F- 3 n
E 10°
800
7005 102k
6001 M RIS Y
5001 10 W e
E %
400F , Hg{,
300 Y
200 10
100
E | I | 10~ L L L
1 10 102 10° 10* 10° 10° e 10° 10° 10* 10° 107 107 1 19

Figure 1: (left) Energy dependent binding energy, (right) oy for Ar-e.

Y. Sarkis (ICN-UNAM) »lonization Efficiency Theory< October 23, 2025 7127



Simplified equation with binding energy

@ We are going to use the integro-differential equation for atomic motion
deduced in the past work for Si.4.

W —// f t1/2 _ _
s ((8))> (&) + Se(e)v / dt——7~ o2 [V(e—t/e)+V(t/e —u)—V(e)],

(3)
This work have been used for Skipper CCD’s: (DAMIC) PRD 109 (2024) 6,
062007 and (CONNIE) e-Print: 2403.15976.

7%883(8) <1

E oZech

0.9 v Dougherty
£ @ Chavarria
0.8 Ev Antonella
07E0 Sattler

“"E # Gerbier
()_5 E ¢ Agnese

E — Sarkis2020

E 7Bcs‘ Fit-Model, AZ, £ =1.26
-Model AZ, £ =1.46

i e from Pauli principle, instead of
semi-empirical factor & ~ Z1/8.

23 _ 5 Jig—a E(K)KPdk
° B E(ke) iy keak

IO-’E 10! 1 1‘[| I(I)I 10° o 1 < ée < 22
R

4Sarkis, Y. and Aguilar-Arevalo, A. and D’Olivo, J. C, PRA.107.062811
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LAr and LXe

For LXe the total quanta to low, this motivates new research!
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-- f, no Biexcitonic
Lindhard
X2n,4=(1250.2)/(90)

—f, Biexcitonic
€119,k =5.6

1 11 0.6,

E + SCENE El [
09 | ARis o9 F
C . 0.5—
0.8 f, no Biexcitonic —08 r
7 ---f, Lindhard 07 [
° g 7(" Biexcitonic /;0 o4r
0.6F " ' /0.6 £
_ XN, 4= (7.4)/(11) k| o F
o 0.55— £, =134,k =4.2 —Eo.s 03
0.4 —04 r
F B 0.2
0.3— <03 r
02f Jo2 F
£ ] 0.1
01 Jo1 r
[ SR ETT! R AR TTTT R ERETI EETT ot
10t 1 10 10% 10° 10

E (keV)

s

10 1 10 10? 10°
E (keV)

Figure 2: LAr (left) and LXe (right) total quanta.
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Bates-Griffing Process (BG)

@ For two atoms collision we take for outer
electrons:y(x}, xp)+ = (v1 (X)) W2(%) = y1 (x}) w2(x))) / V2.
@ This leads to exchange electron non classical potential.
@ y(x},x5)- (triplet): Passive electrons, remains in its ground state.

@ y(x{,x5)+ (singlet): Active electrons, electrons are removed.

@ Average energy to create an electron from nuclear recoil
W = W(1+ Nex/N;) (explain W* £ W).

Y. Sarkis (ICN-UNAM) »lonization Efficiency Theory< October 23, 2025 10/27



0.6

[« Data
[ --f,no Biexcitonic
05~ . Lindhard
© X¥n,,=(243.8)/(90) ;
0.4 —f, Biexcitonic + BG d
- -BG
S04 €119,k =5.6
02
0.1-
07 1 \HHH'::‘\V'\‘HHH‘ 1 \HHH‘ 1 \\\\\\\‘\‘\i\Trk\L\
107 107 1 10 102 10°

E (keV)

Figure 3: LXe total quanta with BG active effect.
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Thomas-Imel box Model

@ Diffusion equation for ions-electrons (N_ N, ) Jaffe model, °.

N — —aN_N, M — peFe —aN,N_.  (4)
@ Where «a is the recombination factor, ue electron mobility and F
the TPC electric field.

@ Each excited or ionized atom leads to one photon or electron.
@ = Ni+Ng = Ny + Ne,

@ ne=(1—r)N;and ny = Nex +rN;.

@ Hence, the fraction of ionizations predicted is

ne_ln B :ln _ N
ﬁ,‘_il(1+§)’ 1—r §|(1+§)7 ¢

422ueF"
_ Egfn Eee
N; = W, Where 8 = Ngy/N; and f, = Eq

@ This recombination model depends on four parameters for each

noble liquid.
SAnn.Phys.IV, V42, pp.303 — 344, (1913). PRA 36, 614 (1987)
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Recombination Parameters from first principles

@ Usually 8, five to ten parameters are need.

@ We are just going to use &, and the scale recombination
probability o (universal) as fit parameters.

aoN;iZ(2rw)?vo
4uq (a8°F)

a=aZ(2ry)’ve, &=

@ The same inter-atomic potential used for f, will explain:

* Energy and field dependence of the ratio Nex/N;.

Biexcitonic quenching.

Box model length a, as function of external field.

Field dependence of Thomas-Imel Box model parameter: & o< F~9 .
Sar ~ (0.4 —0.6) and Oxe ~ (0.04 —0.12).

SPRD 1 00,032002(2019),PRD 91,092007(2015)
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Stark Effect for lons

Stark Effect for ions inside the Box
@ Electric field F applied to a TPC.
@ During recombination we have plasma formed by ions-electrons.
@ The polarizability increase significantly e(k) > ¢
@ We can compute the energy correction §; to the potential
epz(X,8e) =<y |V |y >,

81 =< | Vext | >, Vext = £((Ee)?PaxzeF ) = +((£6)?/2axeF)cos(6).

@ Where Vet < 07(x,Ee) and r =~ ry + dcos(0).

@ We define the new electron-atom disturbed potential,
02(x.8e,Z, F) = 95(X,8¢,Z,0) — &1.
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Figure 4: Ngx/N; for LXe and LAr as function of the electric field. In LAr
predict a breakdown voltage of 60kV /cm
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Box size

@ Using the screen atom potential for
ions,
—e05(¢' &0 N) = 22 [ (M) (z00) - 1)+ 1
— Box-Size:a — Box-Size:a z el bx’ Z z ’
— BoxSizei(a = 1F") (50-4000) Vicm, 1,=0.453 — (@ = 1F}) (50-10%) Viem, n=0.24 .
, ‘ . . L o @ We can use Dahl electrostatic
! v nolf ' Fo v interpretation for Box size
o determination,
— oo G 10 _bZF: (¢§(27567N))sc7
. @ Box size, depends weakly
‘ e of electric field for high Z.
s R @ For LNe, LAr, LKr and LXe we
| have 16 parameters reduced to 1!
102 L L 102 - .,
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Conclusions

@ We present a first principles approach study based on an integral
equation.

@ We give a physical interpretation of &, that allow to describe the
Nex/N; ratio as function of energy and field.

@ With just one parameter, og to describe data in LAr and LXe.
Usufull for phenomenology studies.

@ The model for Charge yield have a better match with data at high
energies.

@ The publications will be available soon with a software to produce
outputs too.
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Lindhard QF and Other Works

@ Lindhard used a primitive computer(DASK).
@ His formula just solved approximately Eq. (3).

| Ihs-rhs |
| lhs+rhs |

@ Other authors 7, try to include binding energy.

@ But fail to realize in changing the integration limit, reporting
nonphysical results.

@ One of the achievements of this work is to include in a consistent
mathematical and physical way the binding energy.

"PHYSICAL REVIEW D 91, 083509 (2015)
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Simplified Integral Equation With Constant Binding

Energy with no Straggling

A previous work? fail the to defined correctly the lower limit of
integration (v(t/e — u)). We take this into account,

1 Y L (L i} _
ke (e) +%fv(£)_dt S [V(e—t/e)+¥(t/e—[a) - ¥(e)

e

dop

(6)
This equation can be solved numerically from € > u. The equation

predicts a threshold energy of u (gffreshold = 2y).

The equation admits a solution featuring a "kink" at € = u Lower limit of
integration eu < t, predicts channeling (no atomic movement),

SinB/2 = sin Yjgp = 1/ %
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LIDINE20228 (Constant Binding Model and

Y. Sarkis et al 2023 JINST 18 C03006
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Figure 5: Total quanta for LXe and LAr as a function of the recoil energy.
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