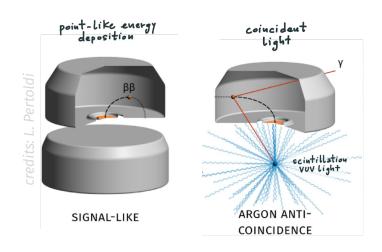
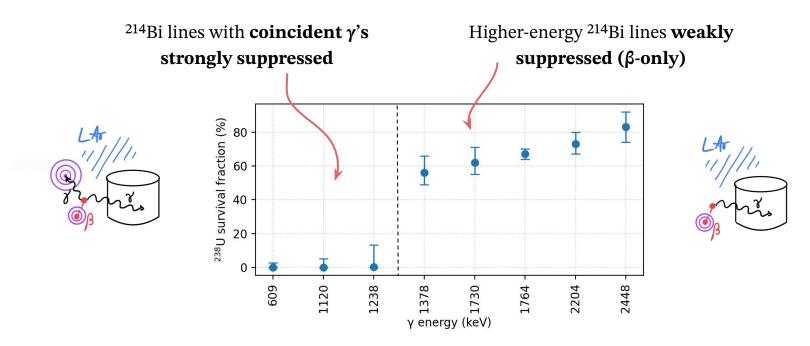
Exploiting Event Topologies in Liquid Argon Scintillation Signals for Background Identification in LEGEND -200

Rosanna Deckert | LIDINE 2025 | 23.10.2025


Background in LEGEND -200

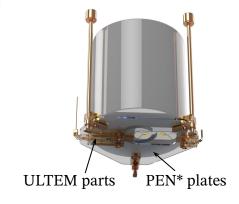
First LEGEND-200 deployment (~2023-24) [doi:10.1103/25tk-nctn]

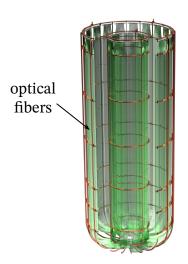

Higher background before cuts than radioassay predicted

After argon anti-coincidence

- 228Th background almost fully suppressed
- ²²⁶Ra background only partially suppressed

Background after argon anti-coincidence

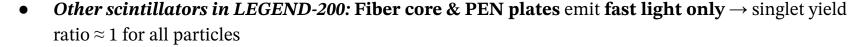


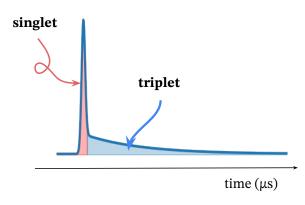

- \rightarrow Points to a ²¹⁴Bi β decay location in the **bulk** of materials, or in a argon region of **low light detection probability**!
- → Concerning for **background after cuts** and **experiment sensitivity**!

Location of ²²⁶Ra background

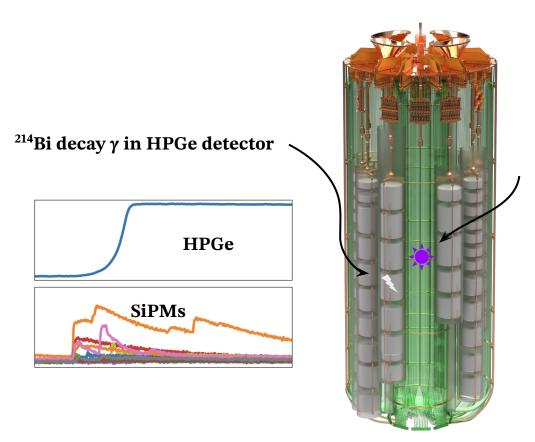
Extensive efforts to understand the location of the ²²⁶Ra contamination

- γ **screening of components** suggest main contributions from
 - detector holder assembly
 - o optical fibers
- **Special data sets** (eg. removal of outer barrel)
 - o confirm ²²⁶Ra on fibers / outer barrel copper
 - γ-assay excludes significant contamination on copper structure
- Prompt and delayed coincident LAr signals can give valuable input!

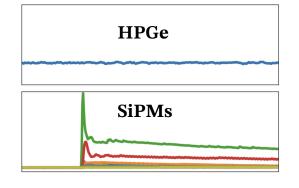



^{*}Polyethylennaphthalat

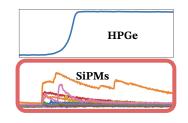
Particle discrimination

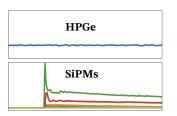

Argon scintillation time profile [doi:10.22323/1.441.0256]

- **fast singlet + slow triplet** component
- Singlet/triplet ratio depends on particle type \rightarrow separates α vs. β/γ
- Measured as singlet yield ratio = fast light / total light
 ("light" measured in photoelectrons, p.e.)
 - α -like singlet yield ratios ≈ 0.8
 - ∘ β/γ -like singlet yield ratios ≈ 0.3



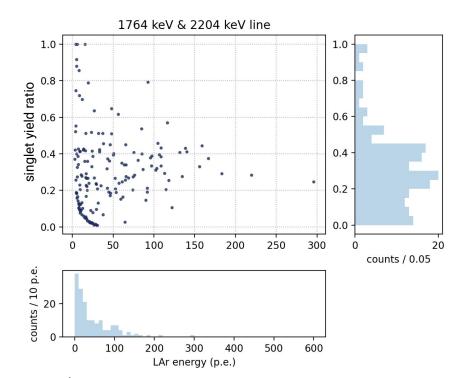
Search for ²¹⁴BiPo coincidences

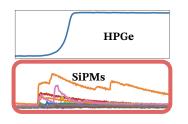


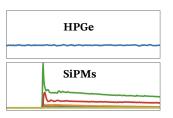

Time-delayed ²¹⁴Po α decay (T_{1/2}=164 μ s) in LAr detector system

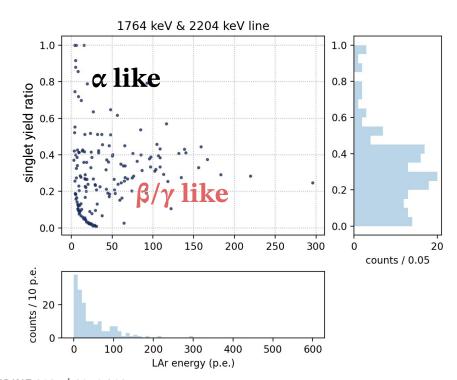
... p.e. intensities and scintillation time structure can shed light on its **origin!**

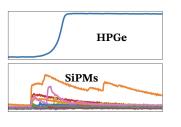
Prompt LAr coincidence

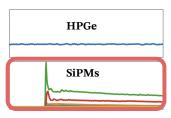



Higher energy ²¹⁴Bi lines

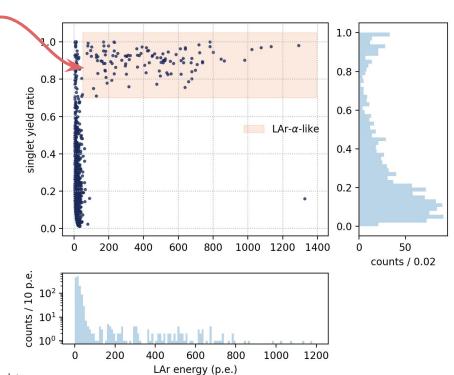

- directly populated by the β decay
- no coincident γ 's from the cascade

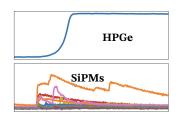

Prompt LAr coincidence

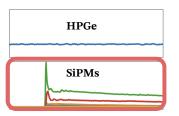



Bulk of distribution are "LAr-like" β 's!

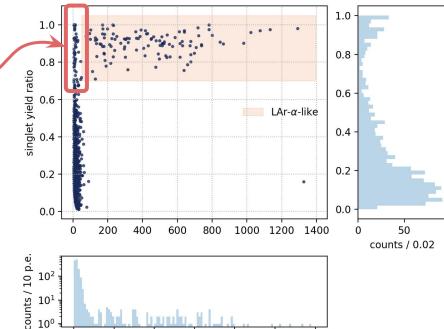
- singlet yield ratios around 0.3
- the majority of the ²¹⁴Bi contamination that we suppress with the LAr veto produces scintillation light in argon (and not in another scintillator)!

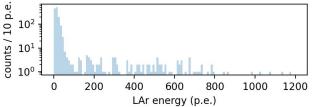

²¹⁴BiPo coincidences



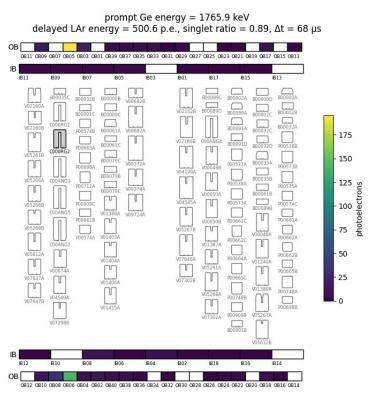

We find **delayed** ²¹⁴**Po** α 's that are "LAr-like"!

- high singlet yield ratios
- high p.e. intensities in a wide range
- indicates some ²²⁶Ra contamination near surfaces $\rightarrow \alpha$ escapes to LAr!
- Partial energy loss of α 's \rightarrow points to surface contamination

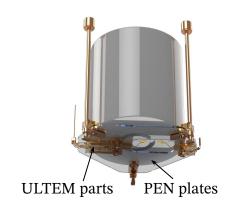

²¹⁴BiPo coincidences



No excess above random coincidences


- low p.e. intensities (poor scintillators)
- high singlet yield ratios
- No evidence of 214 Po α scintillation light signals from PEN or fiber core

Location of detected photoelectrons

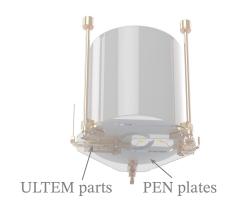

Light of 214 Po α 's often seen in **mostly** *one* **fiber module** \rightarrow Points to decays **on or near fiber modules**

Location of ²²⁶Ra background

Detector holder assembly

- ²¹⁴BiPo analysis: no prompt/delayed *fast* scintillation signals → **PEN** *plates* disfavored
- separate screening of detector holder parts in progress

Optical fibers


- 214 BiPo analysis: no prompt/delayed *fast* scintillation signals \rightarrow contamination most likely **not in fiber core**
- Simulation of a fiber in LAr to study the observed prompt/delayed LAr signatures!

Location of ²²⁶Ra background

Detector holder assembly

- 214 BiPo analysis: no prompt/delayed *fast* scintillation signals \rightarrow **PEN** *plates* **disfavored**
- separate screening of detector holder parts in progress

Optical fibers

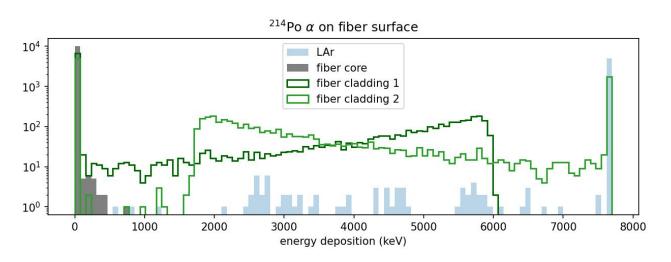
- ²¹⁴BiPo analysis: no prompt/delayed *fast* scintillation signals → contamination most likely **not in fiber core**
- Simulation of a fiber in LAr to study the observed prompt/delayed LAr signatures!

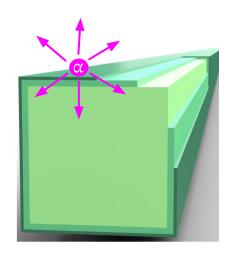

Calorimetric simulation of a single fiber

Fiber Geometry

- 1 mm polystyrene core (scintillating)
- two **PMMA cladding layers** (non-scintillating)

Simulations

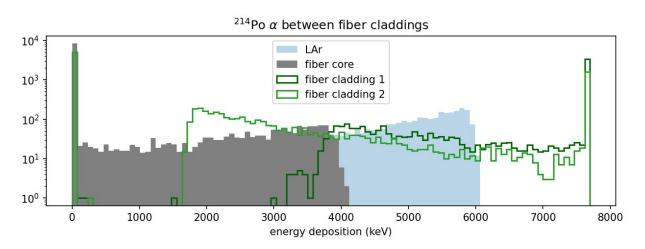

- 214 Bi β 's \rightarrow compare LAr survival of 214 Bi γ 's
- 214 Po α 's \rightarrow study 214 BiPo signatures

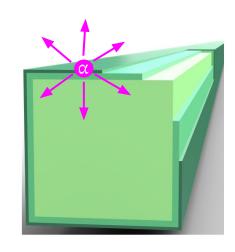


²¹⁴Po alphas on fiber surface

214 Po α 's (7.8 MeV) starting on the surface of the *outer* cladding

- Only 0.2% reach the fiber core!
- A location of the Bi contamination on the **surface of the fibers** would **explain why we only see LAr-like** α's **in data**

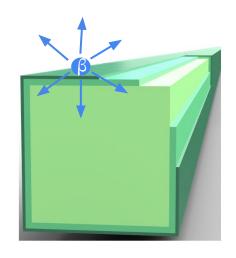




²¹⁴Po alphas below the fiber surface

 $^{214}Po~\alpha ^{\prime }s$ (7.8 MeV) starting on the surface of the *inner* cladding, i.e. $21\mu m$ below the fiber surface

- 17% reach the fiber core!
- **contamination more likely in the first few μm below the fiber** surface



²¹⁴Bi betas on fiber surface

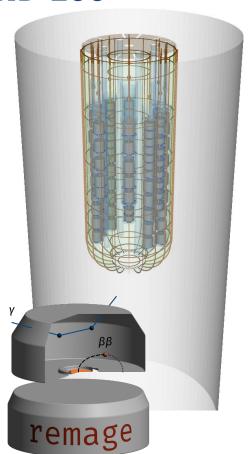
Survival fraction of 214 Bi in the first few μm of the fibers...

- Survival fractions can only be *estimated* from calorimetric fiber simulation
- needs **modeling of light propagation** from origin to photodetectors

Only optical simulations of the *full* LEGEND-200 setup can model 214 Bi γ line survival fractions quantitatively!

Simulation of backgrounds in LEGEND-200

Simulations performed with <u>remage</u>


- LEGEND-200 geometry fully implemented
- Including optical properties

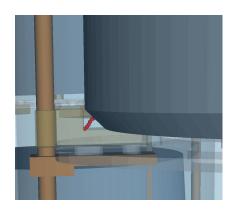
Simulate ²¹⁴Bi decays in...

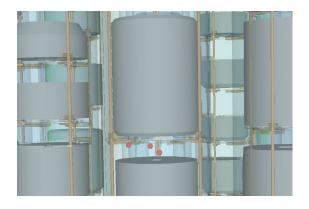
- Outer cladding layer of **optical fibers**
- ULTEM parts from **detector holder assembly**

Post-processing:

- **model the argon anti-coincidence cut** (validation with special calibration data in progress)
- **visualize the topology of events** of interest (eg. passing the argon cut)

²¹⁴Bi survival fractions


Survival fractions (%)	1764 keV line	very low survival fraction from ²¹⁴ Bi background in fibers
Outer fiber cladding	10.6 ± 0.3 %	
ULTEM parts	79.1 ± 0.1 %	high survival fractions from ²¹⁴ Bi background in the ULTEM parts → visualizing surviving events
L200 data	67 ± 3 %	


The survival fraction in data comes from multiple contributions!

²¹⁴Bi in ULTEM parts - Events surviving LAr veto

Energy depositions in regions of large "shadowing"

Summary of background study with argon signals

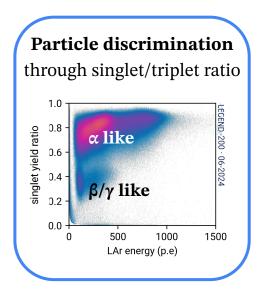
Key observations:

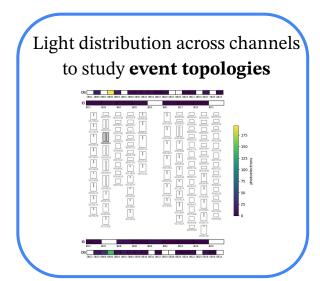
- **Weak LAr-suppression** of high energy ²²⁶Ra γ lines
- γ assay measurements point to **optical fibers** and **detector holder components** as dominant sources

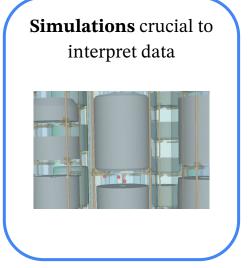
Insights from ²¹⁴BiPo analysis:

- "LAr-like" signals only
- No evidence for *fast* scintillation signals \rightarrow PEN plates and fiber core disfavored as major origins
- Simulation of fiber in argon indicates background consistent with activity in fiber claddings, not core

L200 optical simulations:


- crucial to **interpret survival fractions** observed in data
- Visualization of events to gain intuition about signals from different background origins


Background reduction efforts & next steps


- Detector holder assembly parts cleaned
- Fibers can't be cleaned further but low survival fraction after argon veto
- 2nd LEGEND-200 deployment (this year): ~2 months of data. **Effectiveness of cleaning campaign** promising, yet under study!
- \rightarrow LAr suppression of γ lines & event topology analysis of LAr signals as powerful tools to understand background location

LAr signals "toolbox"

LAr signals crucial for background rejection & identification!

