

A Dedicated Detector for ³⁹Ar Characterization in Underground Argon

Sara Tullio
On behalf of the DarkSide-20k Collaboration

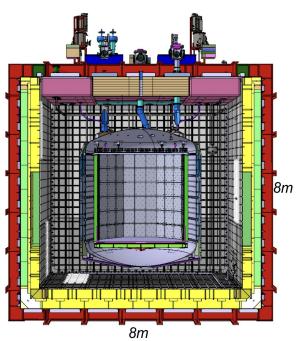
LIDINE 2025 Hong Kong, 23 October 2025

Overview


The DarkSide-20k experiment

2. The need of **Underground Argon**

- 3. Why **DArT in ArDM**
 - 4. DArT1 in test setup
 - DArT in ArDM status of the art
 - 6. Ongoing & Next steps



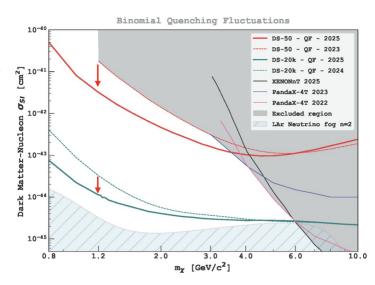
The DarkSide-20k experiment

Under construction at LNGS Hall C (3800 m w.e.)

Nested detectors structure

Outer Veto

650 tonnes of AAr, cosmogenic veto


Inner Detector:

- <u>TPC</u>

49.7 tonnes of UAr

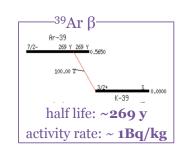
Inner Veto

32 tonnes of UAr, neutron veto

Good sensitivity also to low-mass WIMPs achieved through S2-only analysis

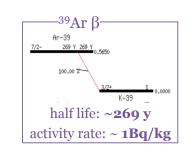
See A. Jamil's talk for more details on the DS-20k experiment overview

See D. Franco's talk for more details on the improved sensitivities

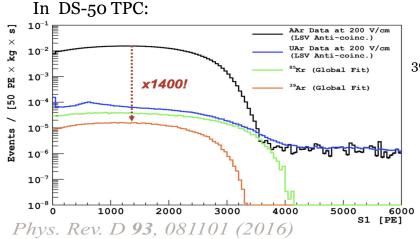

The need of Depleted Underground Argon

The need of Depleted Underground Argon

Atmospheric Argon
(AAr)


Arch in
39
Ar

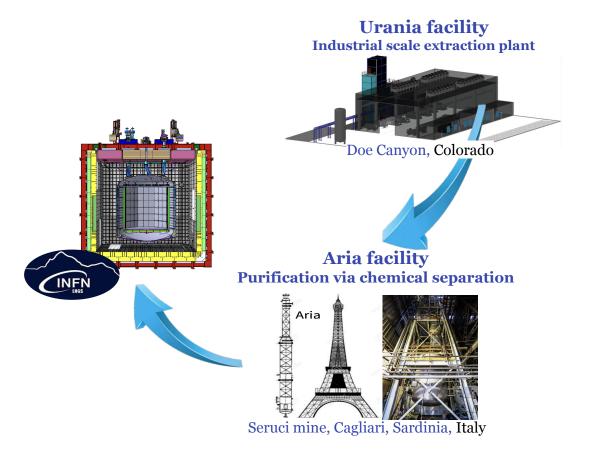
 40 Ar+n \rightarrow 2n + 39 Ar


- \rightarrow 100% dead time in DS-20k
- \rightarrow limits S2-only analysis
- \rightarrow lowers PSD reliability

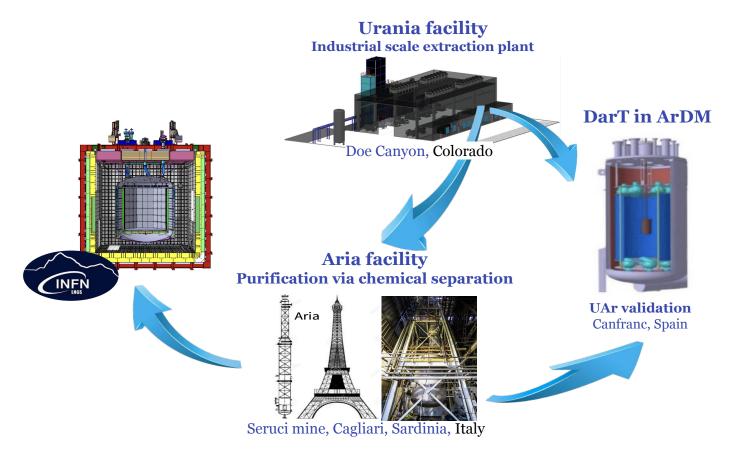
The need of Depleted Underground Argon

- \rightarrow 100% dead time in DS-20k
- \rightarrow limits S2-only analysis
- → lowers PSD reliability

$\frac{\text{Underground Argon}}{\text{(UAr)}} \rightarrow \text{poor in } ^{39}\text{Ar}$



³⁹Ar activity ~ $(1.4 \pm 0.2) \cdot 10^3$ times lower than in AAr


Upper limit!

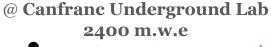
The batch was probably affected by an air leak during extraction

Underground Argon procurement chain

Underground Argon procurement chain

Expected ³⁹Ar concentration ~ 10⁻¹⁹ g/g: **beyond reach of ICP-MS**

Expected ³⁹Ar concentration ~ 10⁻¹⁹ g/g: **beyond reach of ICP-MS**

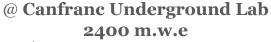

Exploit the ArDM experiment (\sim ton-scale dual-phase TPC) Turned into single-phase detector \rightarrow active veto for DArT @ Canfranc Underground Lab 2400 m.w.e

Expected ³⁹Ar concentration ~ 10⁻¹⁹ g/g: **beyond reach of ICP-MS**

plate

Exploit the ArDM experiment (~ton-scale dual-phase TPC) Turned into single-phase detector → active veto for DArT

.Depleted Argon Test detector-

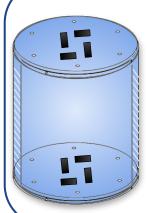


Single phase detector

- Photosensors: $8 \times 1 \text{ cm}^2 \text{ SiPMs}$
- 1.317 kg LAr active mass
- ESR reflectors
- TPB-coated acrylic

Argon Dark **M**atter active veto tank. PE shield **DArT Vessel inlet** ArDM Top Flange Pb shield ArDM Main Vessel PMT planes support **DArT Vessel** rings Reflector panels support on Teflon support

Expected ³⁹Ar concentration ~ 10⁻¹⁹ g/g: **beyond reach of ICP-MS**



Exploit the ArDM experiment (\sim ton-scale dual-phase TPC) Turned into single-phase detector \rightarrow active veto for DArT

Depleted Argon Test detector-

Single phase detector

- Photosensors: $8 \times 1 \text{ cm}^2 \text{ SiPMs}$
- 1.317 kg LAr active mass
- ESR reflectors
- TPB-coated acrylic

Argon Dark Matter active veto tank

DArT Vessel inlet
ArDM Top Flange
ArDM Main Vessel

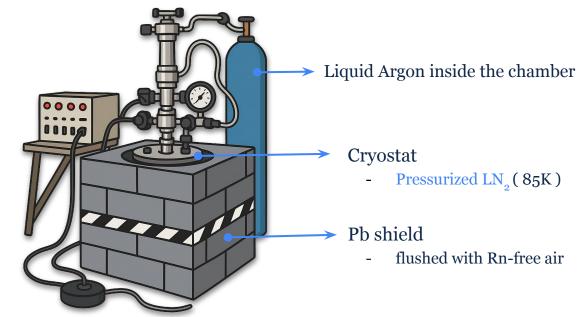
PMT planes
DArT Vessel

Reflector panels on Teflon support
plate

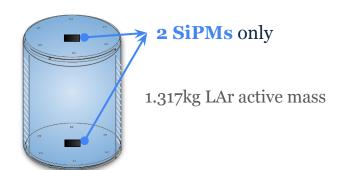
PE shield

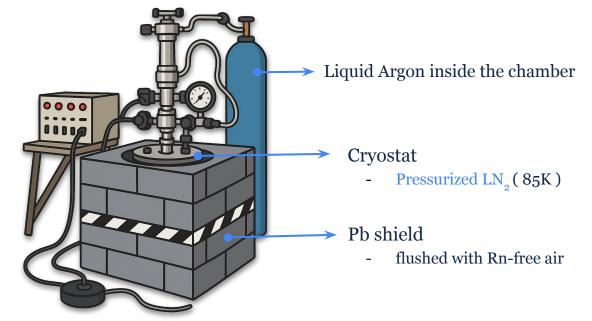
Pb shield

support
rings


support
plate

Projected Sensitivity: <1 mBq/kg , 10% statistical error in 1 week livetime

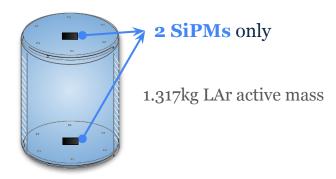

DArT1 detector



DArT1 detector

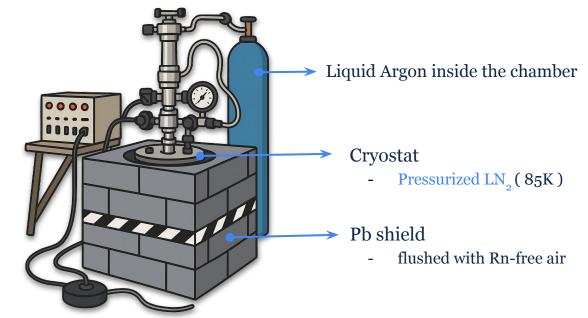
DArT SiPMs-

- NUV-HD-Cryo SiPM of the DarkSide-20k batch
- Custom SiPM readout board (1 SiPM/board)
- Arlon 55NT substrate



Goals of this setup

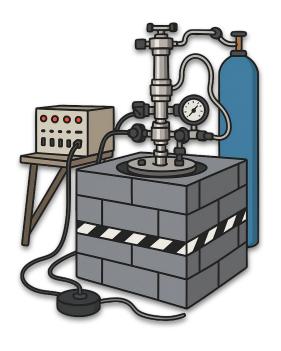
- **Continuous performance** over weeks
- **Operational conditions** for the DAQ and electronics
- **Measurement of 39Ar** activity in atmospheric Ar



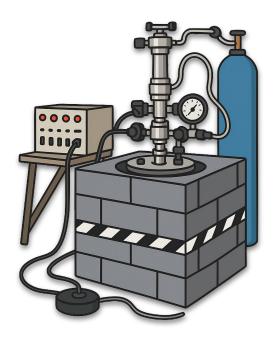
DArT1 detector

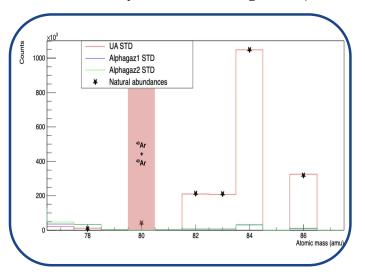
DArT1 in test setup will **operate in parallel** to the main detector DArTinArDM

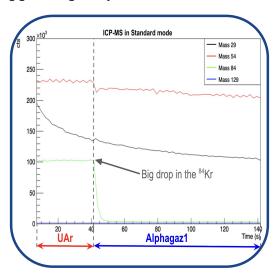
Enabling **first UAr order 0 quality check** before the filling of the main detector

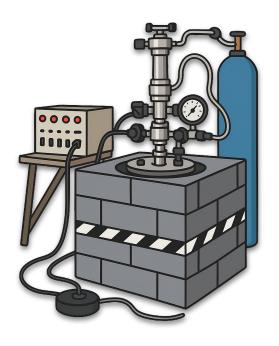


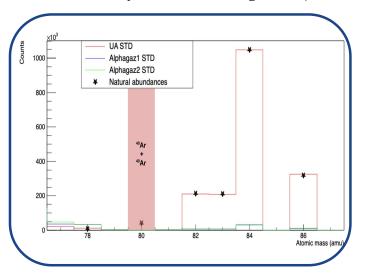
Goals of this setup

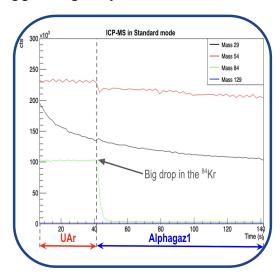

- **Continuous performance** over weeks
- Operational conditions for the DAQ and electronics
- **Measurement of 39Ar** activity in atmospheric Ar

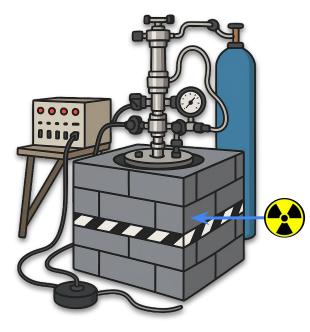



Atmospheric Argon runs (Argon 6.0, 1ppm impurity level)

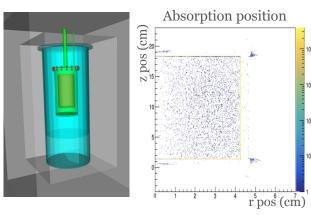

- > Atmospheric Argon runs (Argon 6.0, 1ppm impurity level)
- ➤ Underground Argon runs (from DarkSide-50) ICP-MS analysis, wrt AAr Argon 5.0/6.0 (10/1ppm impurity level):


⁸⁵Kr contamination confirmed (all the isotopes at their natural abundances)




Only in the UAr batch!

- > Atmospheric Argon runs (Argon 6.0, 1ppm impurity level)
- ➤ Underground Argon runs (from DarkSide-50) ICP-MS analysis, wrt AAr Argon 5.0/6.0 (10/1ppm impurity level):

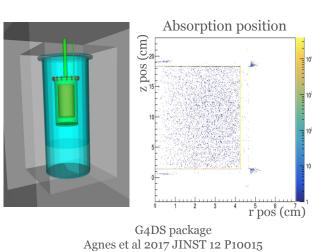

⁸⁵Kr contamination confirmed (all the isotopes at their natural abundances)

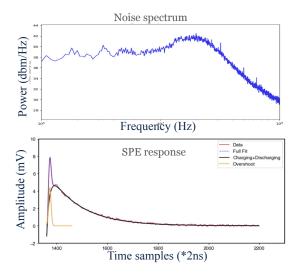
Only in the UAr batch!

> 137-Cs runs ¹³⁷Cs radioactive source (27kBq) outside the cryostat, at mid-height

Optical Simulation

- **Energy deposition** in the active volume
- Argon scintillation
- Photon tracking till absorption


G4DS package Agnes et al 2017 JINST 12 P10015

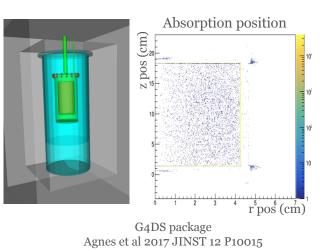

Optical Simulation

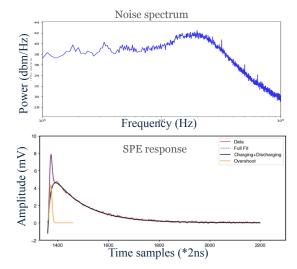
- **Energy deposition** in the active volume
- Argon scintillation
- Photon tracking till absorption

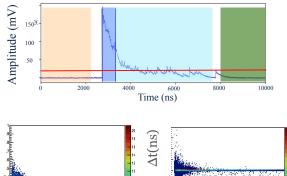
Electronic simulation

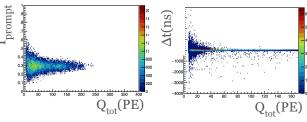
- Simulation of SiPMs electronic response
- Simulation of DAQ effect
- Waveform generation

Optical Simulation

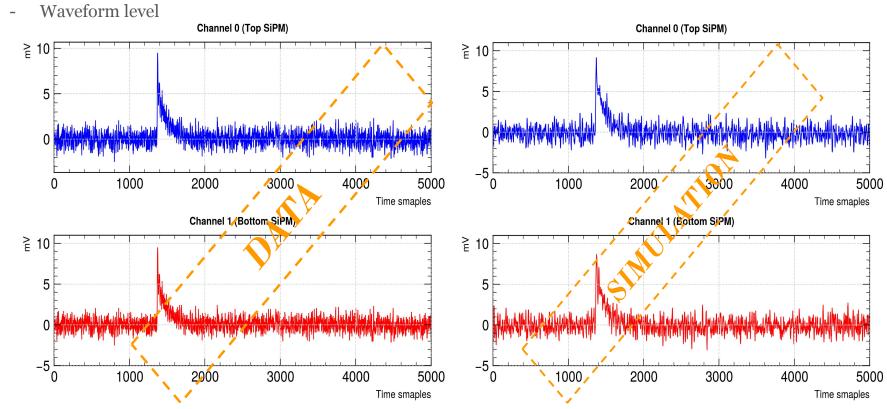

- **Energy deposition** in the active volume
- Argon scintillation
- Photon tracking till absorption

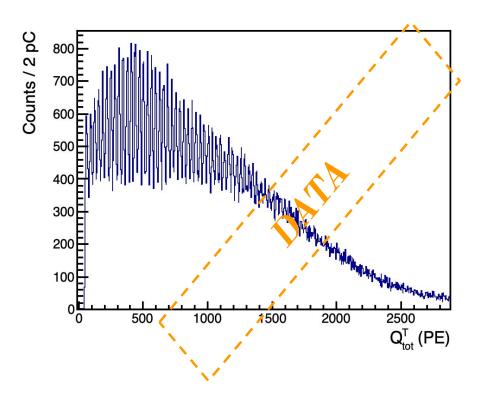

Electronic simulation

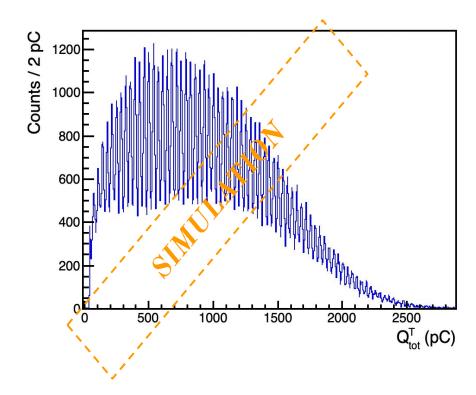

- Simulation of SiPMs electronic response
- Simulation of DAQ effect
- Waveform generation


Reconstruction

 Analysis of the simulated waveforms as for the real ones

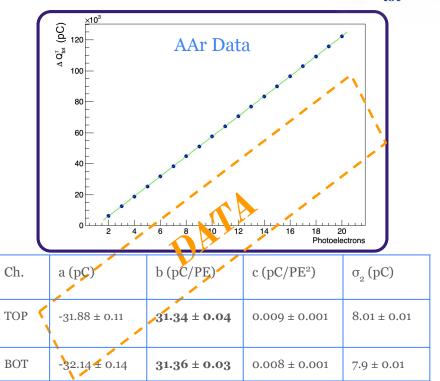


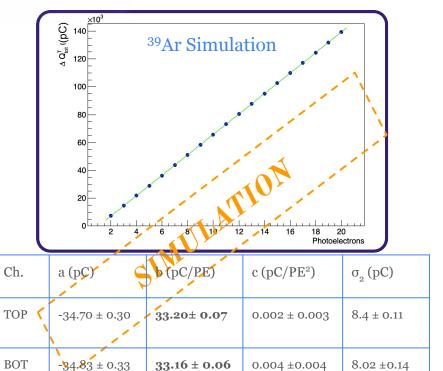



Good agreement between data and simulations

Good agreement between data and simulations

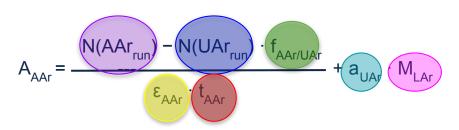
- Finger plots level

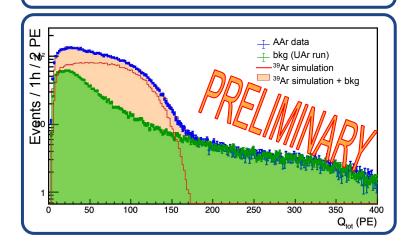




Good agreement between data and simulations

- Calibration level


$$\mathbf{Q}^{\mathrm{T,B}}_{tot} = \mathbf{a} + \mathbf{b} \times \mathbf{N} + \mathbf{c} \times \mathbf{N}^2$$


DArT1 in test setup - ³⁹Ar activity in AAr

$$a_{AAr} = A_{AAr} / M_{LAr}$$

- N(AAr_{run}): events after **cuts** of the AAr run
- N(UAr_{rup}): events after **cuts** of the UAr run
- **f**_{AAr/UAr}: ratio of AAr and UAr time acquisition
- ε_{AAr} : total ³⁹Ar efficiency from simulation
- **t**_{AAr}: AAr run time
- **a**_{UAr}: UAr specific activity
- M_{LAr}: Liquid Argon Mass in DArT1 detector

DArT1 in test setup - ³⁹Ar activity in AAr

$$A_{AAr} = \frac{N(AAr_{run}) - N(UAr_{run}) \cdot f_{AAr/UAr}}{\epsilon_{AAr} \cdot t_{AAr}} + a_{UAr} M_{LAr}$$

$$\mathbf{a}_{\mathbf{AAr}} = \mathbf{A}_{\mathbf{AAr}} / \mathbf{M}_{\mathbf{LAr}}$$

N(AAr_{run}): events after **cuts** of the AAr run

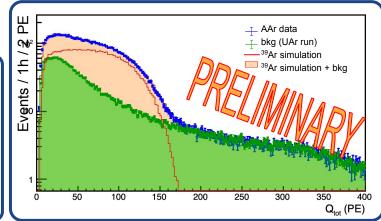
- **N(UAr**_{mun}): events after **cuts** of the UAr run
- **f**_{AAr/UAr}: ratio of AAr and UAr time acquisition
- ε_{AAr}: total ³⁹Ar efficiency from simulation
- t_{AAr}: AAr run time
- **a**_{UAr}: UAr specific activity
- M_{LAr}: Liquid Argon Mass in DArT1 detector

Other experiments outcomes

DEAP3600: aAAr= 0.96 \pm 0.03 Bq/Kg

P. Adhikari et al., Eur. Phys. J. C 83, 642 (2023).

WARP: aAAr= 1.01 \pm 0.04 Bq/Kg

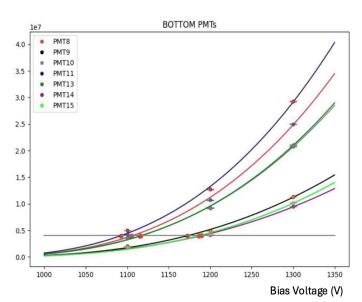

P. Benetti et al., Nucl. Instrum. Meth. A 574, 83 620 (2007).

ArDM: aAAr= 0.96 ± 0.05 Bq/Kg

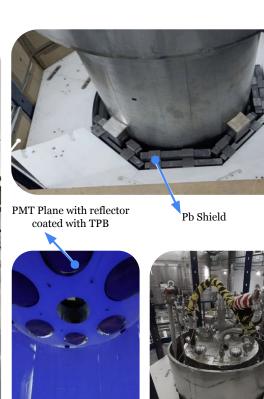
J. Calvo et al., JCAP 12, 011 (2018).

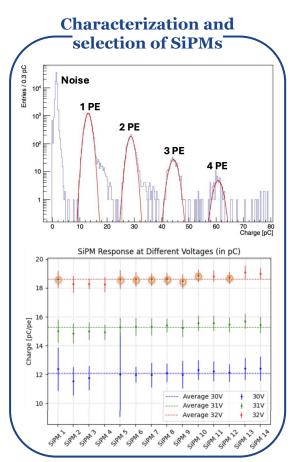
- Systema	atic uncerta	uncertainties-		
type	variation	uncertaint		

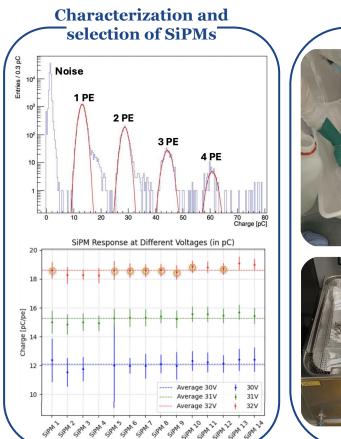
type	variation	uncertainty on a _{AAr} (%)
asymmetry factor f_B	± 0.05	0.04
threshold cut in mV	$\pm 3 \text{mV}$	1.1
threshold cut in $Q_{tot}^{T,B}(PE)$	± 0.1	0.02
cut in max $Q_{tot}(PE)$	± 20	0.01
nuclear recoil background		
$M_{ m LAr}$		1.6
total		1.94

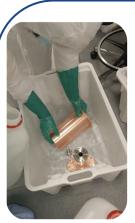


 $a_{AAr} = (xx \pm 0.025 \text{ (stat.)} \pm 0.019 \text{ (syst.)}) \text{ Bq/kg}$

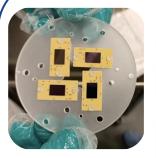

ArDM - refurbishment @LSC


Turned into a single-phase detector


- New field cage
- New Lead shield (~6t)
- PMTs gain equalization

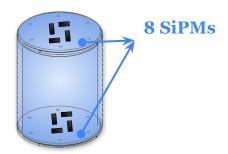


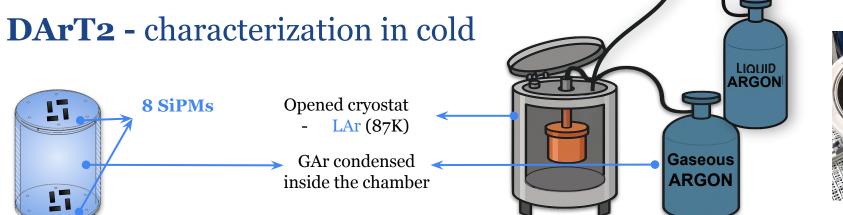
Characterization and selection of SiPMs Noise 1 PE 10³ 2 PE 3 PE 4 PE 70 80 Charge [pC] SiPM Response at Different Voltages (in pC) 16 [bC/be] 10 31V

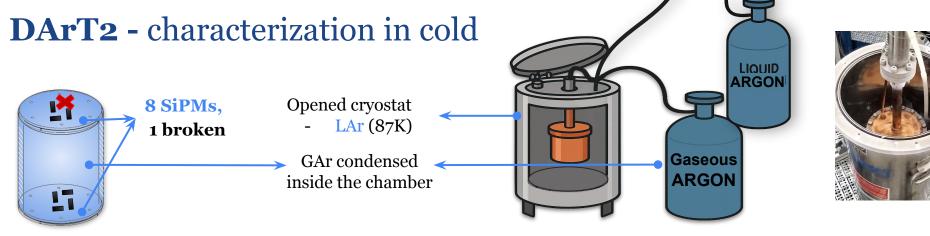


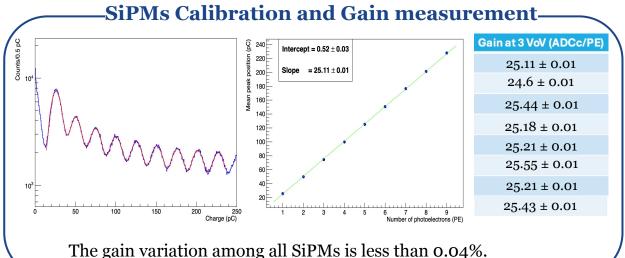
Cleaning

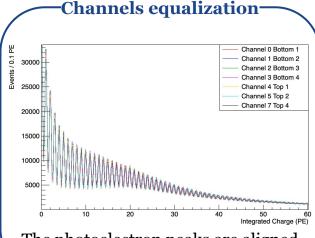
Assembly

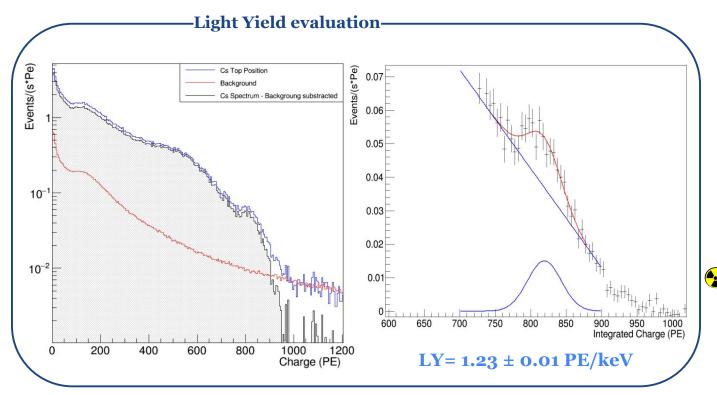


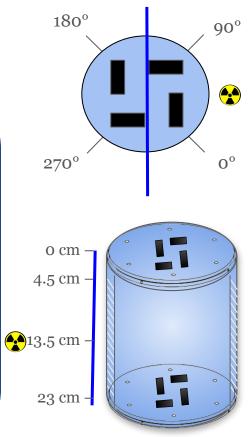


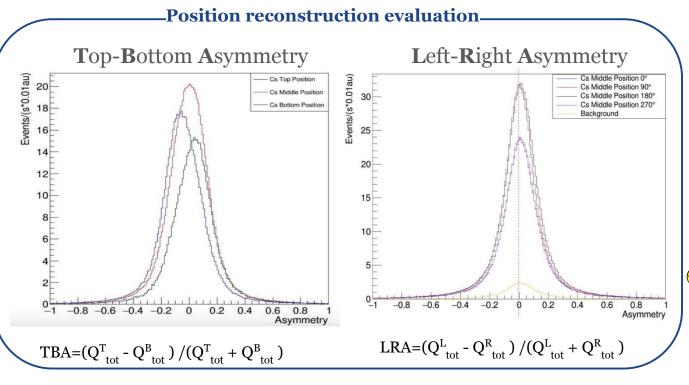


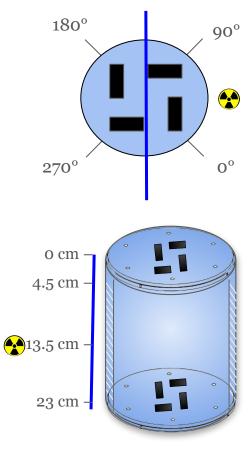

DArT2 - characterization in cold








¹³⁷Cs source Data

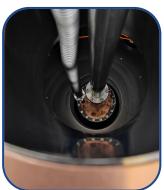


> 4× light yield increase achieved by quadrupling the number of photosensors (vs DArT1)

¹³⁷Cs source Data

Good vertical (top-bottom) position discrimination, but poor horizontal (right-left) resolution.

DArT2 - integration in the ArDM volume



DArT in ArDM is now ready to be filled and take data

Ongoing and next steps

DArT1 – Test Setup

- Finalizing the background simulation
- Finalizing the publication on DArT1 in test setup

DArT2 - Cold Test

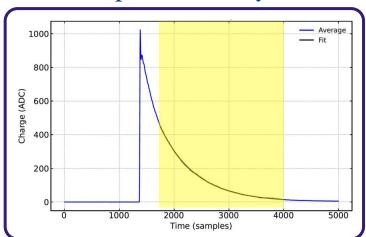
- Define detector optical plane geometry and cold test setup in Geant4
- Develop calibration simulation (evaluate possible sources)
- Electronics simulation for 7 channels

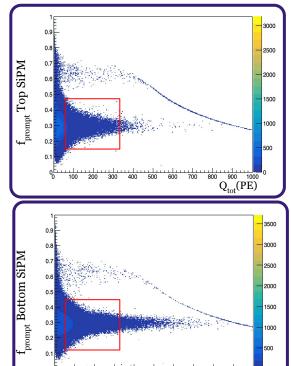
DArT in ArDM

- Cool down and filling the ArDM main volume
- First UAr (from DarkSide-50) run of DArT in ArDM
- First batch of UAr from Urania expected by the beginning of 2026

LIDINE 2025 Hong Kong, 23 October 2025

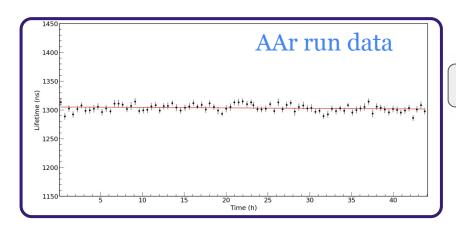
LIDINE 2025 Hong Kong, 23 October 2025

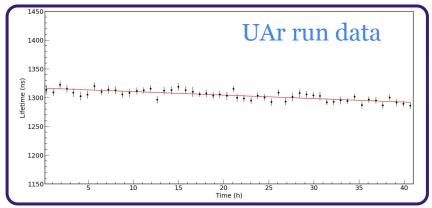

DArT1 in test setup - Purity monitoring


Triplet lifetime $(\tau_{slow}) \rightarrow purity monitor$

(any LN2 contamination shortens the slow component of argon scintillation)

Measuring τ_{slow} during a subrun:

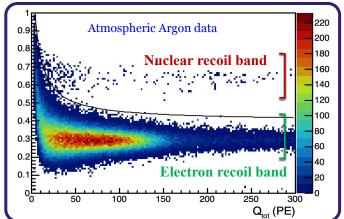

- 1. Select **beta events**.
- 2. Calculate the **average waveform**
- 3. **Fit the tail** (from 3.4 to 8 us) of the **waveform** with an **exponential decay**

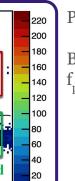


DArT1 in test setup - Purity monitoring

 $(1.31 \pm 0.01) \mu s - t(h) \cdot (0.08 \pm 0.05) ns/h$

 $\Delta \tau_{\rm slow}$ (AAr run) ~ 4.7 ns \rightarrow (0.36%)

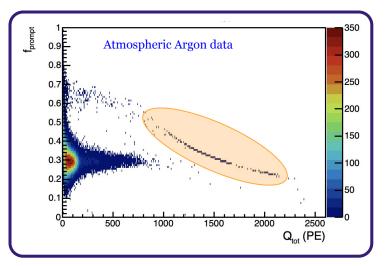


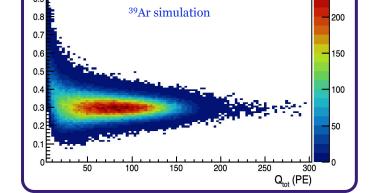

 $(1.32 \pm 0.01) \mu s - t(h) \cdot (0.60 \pm 0.07) ns/h$

 $\Delta \tau_{\rm slow}$ (UAr run) ~ 21.7 ns \rightarrow (1.7%),

→ LN2 contamination below the ppm level

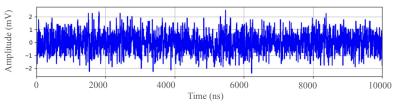
DArT1 in test setup - Pulse Shape Discrimination





Beta-events cut:

$$f_{\text{prompt}} < (0.4 + 0.95 / (1 + Q_{\text{tot}}(PE)/6))$$

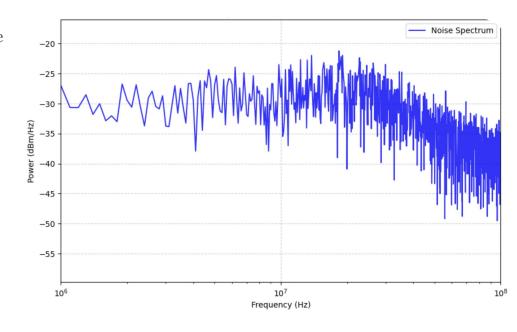


 $Q_{tot} > 400-500$ PE in the NR band The f_{prompt} distribution for nuclear recoils becomes **distorted** due to **electronic saturation** effects.

DArT1 in test setup - Noise spectrum

Selection of noise waveforms:

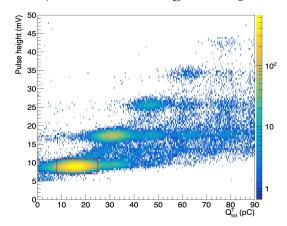
- set a **threshold below the RMS** of the noise
- waveforms Pulse Height < threshold selected as noise



Noise power spectrum estimation:

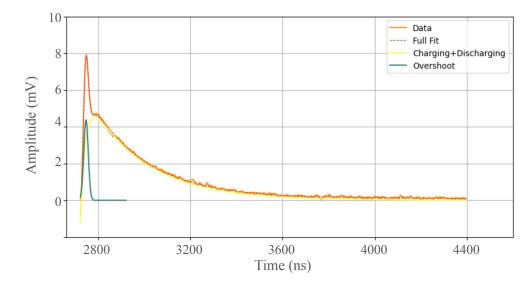
- selection of a sample of noise waveforms
- calculation corresponding noise power spectra

$$P(v) = \log_{10}(|FFT_{norm}(wf)|^2)$$


→ average noise power spectrum obtained

DArT1 in test setup - SinglePhotoElectron response

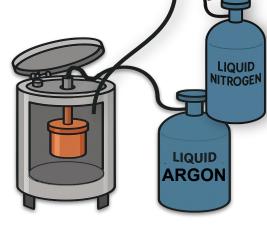
Selection of SPE waveforms:


- $Q_{tot}^{T,B} < 25 pC$
- 7 mV < Pulse Height < 10.5 mV

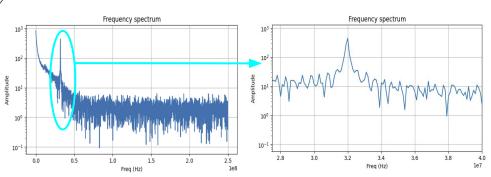
SinglePhotoElectron template estimation:

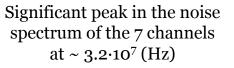
- Average of a sample of SPE wfs from data
- Fit of the SPE function:

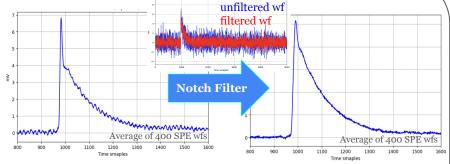
$$SPE(t) = A_{SPE} \underbrace{\begin{pmatrix} \underbrace{(t_0 - t)} \\ e^{-t_2} \end{pmatrix} - e^{\underbrace{(t_0 - t)} \\ t_1} \end{pmatrix}}_{Discharging} + \underbrace{A_1 e^{\underbrace{(t - m)^2}{2\sigma^2}}}_{Gaussian}$$
overshoot


- start time of the pulse: $t_0 = 2700 \text{ ns}$
- charging time of the SiPM: $t_1 = (18 \pm 4)$ ns
- discharging time of the SiPM: $t_2 = (242 \pm 10)$ ns
- position of the overshoot: $m = (18 \pm 4) \text{ ns}$
- width of the overshoot: $\sigma = (4.780 \pm 0.008)$ ns

Experimental apparatus-


- DArT2 detector (8 SiPMs, 1 broken)
- Cryostat filled with LN₂ (87 K)
- No veto or shielding system



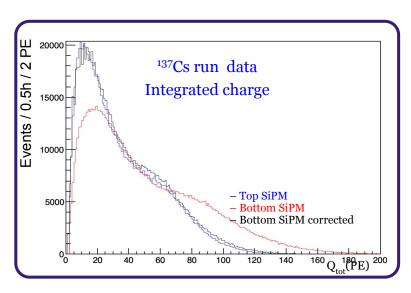


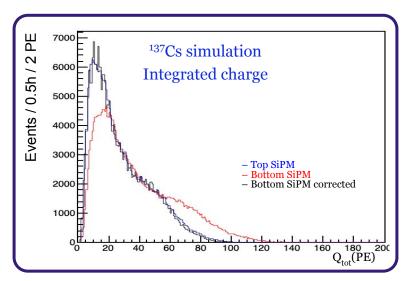
-Noise studies and Single PhotoElectron response-

Notch Filter defined by:

 $f_0 \rightarrow$ Frequency to remove (~32 MHz here)

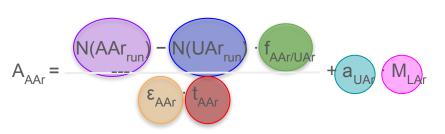

 $\mathbf{Q} \rightarrow \text{Controls the bandwidth } (\Delta f = f_0/Q = 0.4 \text{ MHz here})$

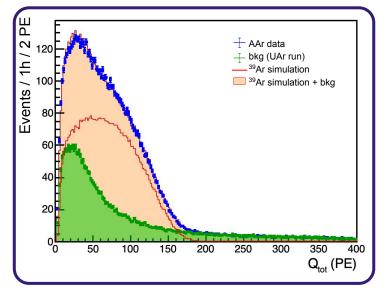



DArT1 in test setup - Top Bottom Asymmetry

Offline correction factor

- **applied to Q^{B}_{tot} to equalize the 2 channels**
- determined via χ^2 minimization over a range of correction factors

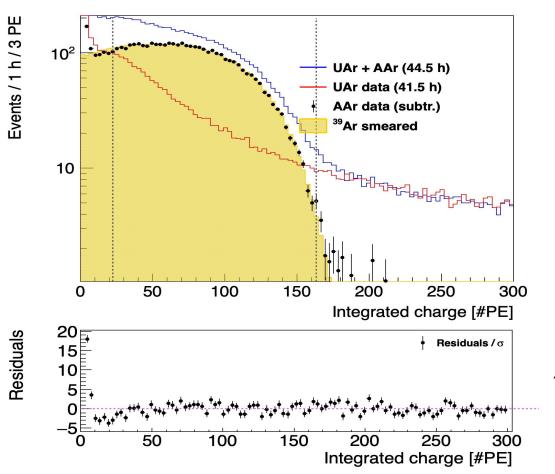



$$Q_{tot} = Q_{tot}^{T} + Q_{tot}^{B} \times \mathbf{f_{B}}$$

Total /prompt integrated charge

$$Q_{prompt} = Q^{T}_{prompt} + Q^{B}_{prompt} \times \mathbf{f}_{\mathbf{B}}$$

DArT1 in test setup - ³⁹Ar Activity in AAr



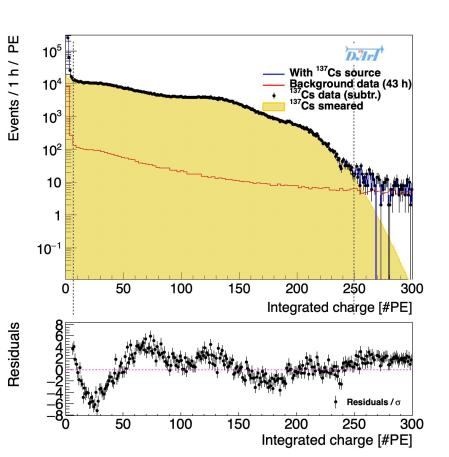
- N(AAr_{rin}): events after **cuts** of the AAr run
- N(UAr_{run}): events after **cuts** of the UAr run
- **f**_{AAr/UAr}: ratio of AAr and UAr time acquisition
- ε_{AAr} : total ³⁹Ar efficiency from simulation
- t_{AAr}: AAr run time
- **a**_{HAr}: UAr specific activity
- M_{LAr}: Liquid Argon Mass in DArT1 detector

Analysis cuts

Beta events	$f_{\text{prompt}} < (0.4 + 0.95 / (1 + Q_{\text{tot}}(PE)/6))$
Signal Amplitude	$Max(wf^{T,B}) > 10mV$
Integrated charge	$Q^{T,B}_{tot} > 1.5 \text{ PE}$
End point	Q _{tot} <250

AAr run - 3 parameters smearing algorithm

$$ext{GammaPDF}(x_i; lpha, eta) = rac{x_i^{lpha-1} e^{-x_i/eta}}{eta^{lpha} \Gamma(lpha)}.$$


- $\beta = \text{ResFactor}$
- $\alpha = \frac{x_j}{\text{ResFactor}}$

Best fit parameters:

Light Yield = 0.291 +/- 0.007 Resolution Factor = 0.92 +/- 0.21 Activity = 1.275 +/- 0.002 fit range : (12PEs - 153PEs) $\chi^2/\text{ndf}=1.68$

Cs137 run - 5 parameters smearing algorithm

Cs - AAr run

$$ext{GammaPDF}(x_i; lpha, eta) = rac{x_i^{lpha-1} e^{-x_i/eta}}{eta^{lpha} \Gamma(lpha)}.$$

$$\mathrm{Var}(x_j) = RF1 \cdot x_j + RF2 + RF3 \cdot x_j^2$$

•
$$lpha = rac{x_j^2}{ ext{Var}}$$

•
$$\beta = \frac{\operatorname{Var}}{x_j}$$

Fit Range: (12PEs-240PEs)

Best fit parameters:

$$LY = 0.298 + /-0.0022$$

RF1 =
$$1.81 + /-0.04$$

$$RF2 = 0.04 + / -1.26$$

RF3 =
$$6e-10 + /- 6e-10$$

$$\chi^2/\text{ndf}=4.3$$