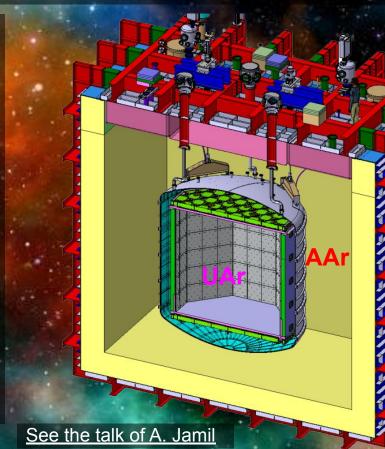

Outline

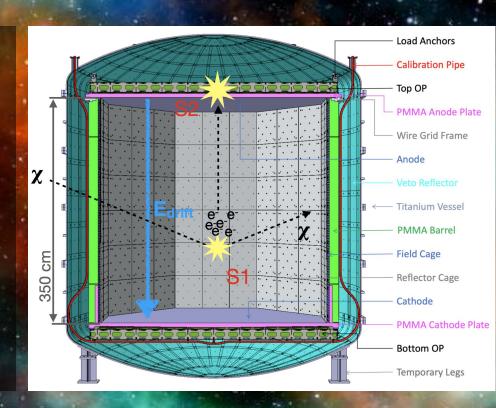
- DarkSide-20k and its optical readout
- Production of the Photo Detector Units (PDU)
- PDU testing facilities
- Tests of PDUs
- QA/QC strategy
- Conclusion

Let's start with the Dark Matter



The DarkSide-20k experiment

- Double-phase LAr detector for the Dark Matter search in the form of WIMPs
- Under construction @ LNGS hall C (3800 m w.e.)
- Outer veto: DUNE-like membrane cryostat (8×8×8 m3)
 ~650 t of liquid atmospheric argon (AAr)
- Stainless steel inner detector
 - ~100 t of ultra pure underground liquid argon (UAr)
 - ~50 t of UAr in the active volume (~ 20 t in fiducial volume)
- Gas pocket: "diving bell" technology
- Fields:
 - o clevios coated acrylic (PMMA) walls, cathode and anode
 - wire grid
- Readout:
 - Wavelength shifter: TPB in TPC; PEN foils in vetos
 - 528 (detector) + 152 (two vetoes) SiPM-based Photo Detector Units (PDU and veto vPDU)
 - Enhanced Specular Reflector film (ESR)



Two-phase TPC technology

- Liquid noble gas (Ar)
- Two signals
 - Scintillation (S1)
 - Electroluminescence (S2)
 - $\lambda = 128 \text{ nm} \rightarrow \text{wavelength shifter is needed}$
- Electric field to extract ionization electrons
- Sensitive to the single ionization electron (SE)
- Arrays of photodetectors from top and bottom
- 3D position reconstruction
- Self-shielding or "wall-less" detector

Optical readout in DarkSide-20k

DARKSIDE

TPC:

- Two optical planes
- $\sim 21 \text{ m}^2 \text{ in total}$
- ~100% coverage of cryogenic SiPMs
- 2112 channels

Vetoes:

- Same SiPM technology
- 480 (inner veto) + 128 (outer veto) channels

Dmitrii Rudik, DS-20k PDU characterization

Photo Detector Units

- 16 tiles hosted on a motherboard
- 4 readout channels (sum of 4 tiles each → quadrants of 10x10 cm²)
- Power controller allows to switch on/off each tile independently

Tile: 5x5 cm²
24 SiPMs directly mounted on a FEB
SiPM: NUV-HD-CRYO developed by FBK
and produced by LFoundry

PDU: 20x20 cm²
16 Tiles Assembled on a
Motherboard
4 readout channels

Optical planes: ~2x10 m²
Total PDUs used (TPC): 528
Readout channels: 2112

PDU production

See the talk of D. Gahan

- TPC PDUs Produced in Nuova Officina Assergi (NOA), Italy
- Including cryoprobing and dicing of SiPMs for the vPDUs
- Tiles test bench in NOA
- Tiles production and QA/QC:

https://doi.org/10.485 50/arXiv.2507.07226

 Recently accepted by EPJC

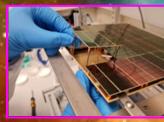
vPDU production



PCB population in Birmingham for Veto PDUs.

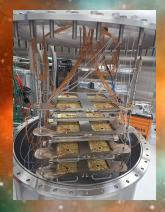
SiPM Die Attach & Wire Bonding in Liverpool and in STFC Interconnect (UK) Tile testing in Oxford and STFC Interconnect

PDU assembly in Manchester and Warwick

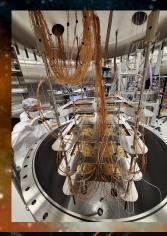


MECHATRONICA M60 pick and place

(v)PDU cryogenic testing facilities



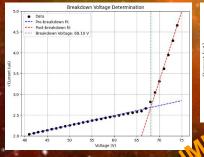
- Cryogenic tests are performed in LN and in LAr
- Several facilities for vPDU testing: Edinburgh, AstroCeNT, Liverpool
 - o Capacity: 4, 10 and 16 PDUs
- TPC PDU test facility in Naples
 - Capacity: 16 PDUs

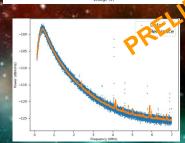


PDU testing facility (PTF) in Naples

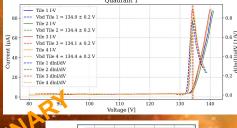
- ISO-6 clean room environment
- ~800 L cryostat
- Two external tanks 3000L each
- Fully automated filling system
 - Automatically keep the LN level above PDUs
- ~ 100 ps Hamamatsu laser $(\lambda = 403 \text{ nm})$
 - Laser splitter + 8 acrylic rods as diffusers
- 16 PDUs at 4 levels
- CAEN power boards: two A2552
 (LV) and one A1619 (HV)
- CAEN VX2740 digitizer

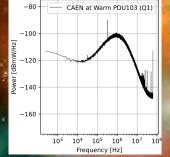
PDU testing pipeline


Visual inspection and warm/cold tests

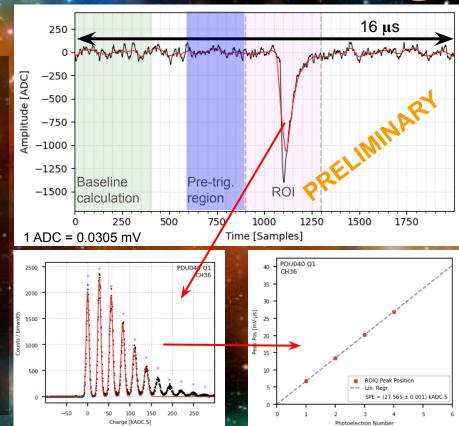

DARKSIDE

- Before the cold tests
- Visual inspection
 - Contamination and mechanical damages control
- IV curves
 - Double or late breakdown
- FFT
 - Noise condition
 - Spectral shape


UK

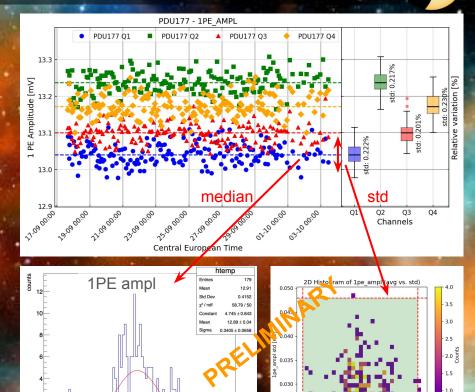


Naples



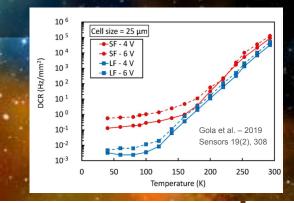
Laser calibration in cold

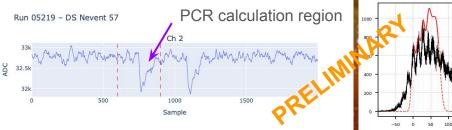
- After PDU immersed in LN
 - IV curves, FFT
- Laser calibration each 2-4 hours
 - Trigger synchronized with the laser pulse
- Reconstruction
 - \circ Baseline calculation in a first 400 samples (3.2 μ s)
 - o Integration in the trigger region (ROI)
 - Pulse finder
- Output
 - o baseline, baseline std, (+ filtered) auxiliary info
 - ROI: area, amplitude (+ filtered)
 - Pulses + pulses info (time, area, amplitude etc)
- Followed by the high-level automated analysis to get key-parameters
 - Single photoelectron charge (SPE), amplitude, signal to noise ratio (SNR), duplication factor (Kdup), resolution, pulse count rate (PCR) in the pre-trigger region

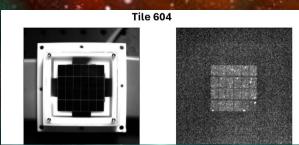


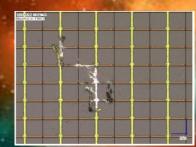
Stability test

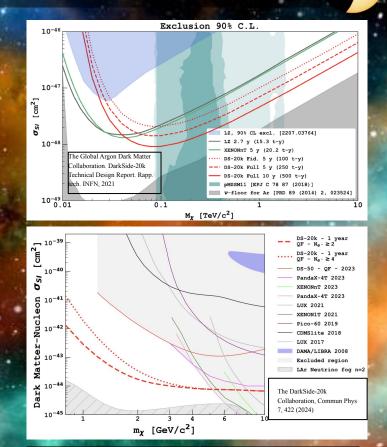
- Stability of all observables in time during the test in LN
- 2D parameter space
 - Median
 - o STD
 - For each metric
- All deviations are inspected in a single tile mode
 - o Turn on only one tile per quadrant
 - Problematic tiles are substituted in NOA





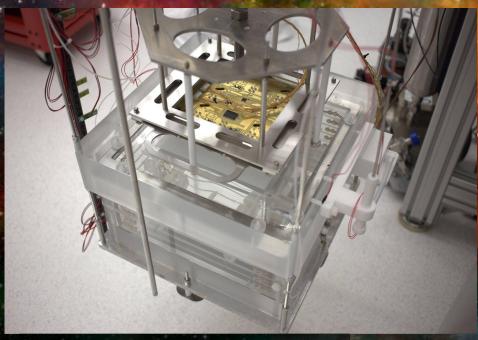

Dark count rate (DCR)

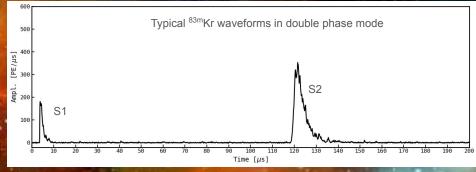

- High DCR is a potential problem
 - Can mimic low energy events
 - Influence on DAQ
 - Worsening resolution
- FBK SiPMs (NUV-HD-CRYO) developed to have low DCR
- A few SiPM can have high DCR
 - Microscopic defects
 - Hot spots
- Can be spotted by calculating the number of pulses in the pre-trigger region (only ~ 2% of tiles, passed other criteria have this problem)
- Implementing CMOS imaging at NOA to catch the problem of high DCR in advance



QA/QC strategy

- Tested ~ 15% PDUs (out of 528) and ~50%
 vPDUs (out of 120)
- Preliminary constraints defined based on the observed distributions of good PDUs
- External constraints based on physics needs and DAQ
 - More stringent for the TPC PDUs
 - Detector response uniformity
 - Influence on the sensitivity
 - o DAQ limitations
 - Work is in progress
- Most of the problems are of single tile (reworkable)





First long PDU operation in LAr TPC

- Proto-0: First fully operational test of DS20k PDUs in LAr TPC
- Stable operation during several months
- Good performance during the test

See the talk of G. Matteucci

Conclusion

- Production and characterization of the PDUs for DarkSide-20k is ongoing
- ~ 15% TPC PDU and ~50% vPDU are tested in LN
- Most of the problems are on the level of single tiles (reworkable)
- First fully operational test of DS20k PDUs in LAr TPC (Proto-0) was done

