Nuclear Physics across Energy Scales

-- Personal view from heavy ion collisions

Huichao Song Reking University

Indugural Symposium of the Central China Center for Nuclear Theory (C3NT) on Frontiers in Nuclear Theory

Wuhan May 17-18 2025

中国科学 物理学 力学 天文学《高能核-核碰撞和原子核结构专题》封面

05/17/2025

Landscape of nuclear physics

Relativistic heavy ion physics

Relativistic heavy ion collisions

- create and study QGP
- the QCD phase diagram
- the deconfinement & chiral phase transition
- the QCD vacuum

The QGP has been created in relativistic heavy ion collisions

Most Vortical Fluid

Rich collision systems

Exploring Nuclear Physics across Energy Scales -- Personal view from heavy ion collisions

Flow & QGP (signature) in large and small systems of heavy-ion / light-ion collisions

Viscous hydro & hybrid model

Conservation laws:

$$\partial_{\mu}T^{\mu\nu}(x) = 0. \qquad \partial_{\mu}N^{\mu}_{i}(x) = 0,$$

2nd order I-S equ:

$$\begin{split} \dot{\Pi} &= -\frac{1}{\tau_{\Pi}} \bigg[\Pi + \zeta \theta - l_{\Pi q} \nabla_{\mu} q^{\mu} + \Pi \zeta T \partial_{\mu} \big(\frac{\tau_{\Pi} u^{\mu}}{2\zeta T} \big) \bigg], \\ \Delta^{\mu}_{\nu} \dot{q}^{\nu} &= -\frac{1}{\tau_{q}} \bigg[q_{\mu} + \lambda \frac{nT^{2}}{e+p} \nabla^{\mu} \frac{\nu}{T} + l_{q\pi} \nabla_{\nu} \pi^{\mu\nu} + l_{q\Pi} \nabla^{\mu} \Pi - \lambda T^{2} q^{\mu} \partial_{\mu} \big(\frac{\tau_{q} u^{\mu}}{2\lambda T^{2}} \big) \bigg], \\ \Delta^{\mu\alpha} \Delta^{\nu\beta} \dot{\pi}_{\alpha\beta} &= -\frac{1}{\tau_{\pi}} \bigg[\pi^{\mu\nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle} - l_{\pi q} \nabla^{\langle \mu} q^{\nu \rangle} + \pi_{\mu\nu} \eta T \partial_{\alpha} \big(\frac{\tau_{\pi} u^{\alpha}}{2\eta T} \big) \bigg], \end{split}$$

Input: "EOS" $\varepsilon = \varepsilon(p)$ initial and final conditions

Extract the QGP viscosity

-An quantitatively extraction of the QGP viscosity with iEBE-VISHNU and the massive data evaluation $-\eta/s(T)$ is very close to the KSS bound of $1/4\pi$

J. Bernhard, S. Moreland, S.A. Bass, J. Liu, U. Heinz, PRC 2015

QGP: most perfect liquid

Powerful predictions from hydrodynamics

-Hydrodynamics can quantitatively describe / predict various flow da -perfect liquid for large systems

H. Xu, Z. Li and H. S*, Phys. Rev. C93, no. 6, 064905 (2016); W. Zhao, H. Xu and **H. S***, Eur. Phys. J. C 77, no. 9, 645 (2017); X. Zhu, Y. Zhou, H. Xu and **H. S***, Phys. Rev. C95, no. 4, 044902 (2017); W. Zhao, L. Zhu, H. Zheng, C. M. Ko and **H. S*.**, Phys. Rev. C 98, no. 5, 054905 (2018); Li, Zhao, Zhou, **H.S***, in preparation (2020)

-- How tiny the QGP droplet could be?

Small collisions systems at RHIC & LHC

System size scan:

Pb+Pb Xe+Xe O+O p-Pb p-p collisions ...

Geometry scan:

p-Au d+Au He-Au collisions ...

Other collision systems:

OBSERVABLES	A-A	p—A (high mult.)	pp (high mult.)	pp (low mult.)	UPC	ер	e⁺e⁻ (high mult.)	e+e-
Near-side ridge yield	V [1,2]	V [30,32,33]	V [30,31]	V [34]	_	X [74,75]	77]	X [76]
Anisotropic flow	V [3,4]	V [36,37,38,39]	V [35,37]	V [30]	72,73]	X [74,75]	[77]	_
Multiparticle cumulants	5]	V [40-45]	V [40,41,45]	-	—	-	-	_
Mass ordering	[6]	[47-49]	V [46,48]	_	-	_	-	_
	_							

Correlations & Flow in small systems

-Many flow-like signals have been observed in high multiplicity p-Pb collisions

Hydrodynamic calculations for small systems

Hydro-Coal-Frag Hybrid Model

Thermal hadrons (VISH2+1):

-generated by hydro.
with Cooper-Frye.
-Meson: P_T < 2P₁; baryon: P_T < 3P₁.

<u>Coalescence hadrons (Coal Model)</u>:

-generated by coalescences model including thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

-Hard partons generated by PYTHIA8, then suffered energy loss by LBT

UrQMD afterburner:

-All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays. Zhao, Ko, Liu, Qin & Song. Phys. Rev. Lett. 125 7 072301(2020)in

Main Parameters:

-Thermal hadrons from hydro with $P_{\rm T} < P_{\rm 1}$. -Hard partons from LBT with $P_{\rm T} > P_{\rm 2}$. Fixed by the $p_{\rm T}$ spectra $P_{\rm T1}$ = 1.6GeV and $P_{\rm T2}$ = 2.6GeV

VCQ scaling of v_2 & partonic degree of freedom

-Hydro-Coal-Frag model gives a nice description of $v_2(p_T)$ of pion, kaon and proton from 0 to 6 GeV.

-At intermediate p_T , Hydro-Coal-Frag model obtains an approximate NCQ scaling as shown by the data.

Zhao, Ko, Liu, Qin & Song. Phys. Rev. Lett. 125 7 072301(2020)

CoLBT-Hydro Model + Coal Model for Pb+Pb collisions

CoLBT-Hydro Model

Chen, Cao, Luo, Pang & Wang. Phys. Lett. B 810, 135783 (2020).

Linear Boltzmann Transport Model 3+1D hydrodynamic model

LBT CLVis -Evolve the energetic partons and the bulk medium concurrently.

-Hadronization by Hydro-Coal-Frag followed by the UrQMD.

- thermal thermal parton coal
- thermal hard parton coalescence
- hard hard parton coalescence

Zhao, Chen, Luo, Ke & Wang. Phys. Rev. Lett. 128 2 022302(2022).

Quark coalescence for Pb+Pb collisions

-CoLBT-hydro with coalescence works well for PID flow of Pb+Pb collisions from 0 to 8 GeV.

Quark coalescence is important at intermediate P_T

thermal-hard parton Coalescence & Fragmentation Breaks up the NCQ scaling of v2 in Pb+Pb collisions

Zhao, Chen, Luo, Ke & Wang. Phys. Rev. Lett. 128 2 022302(2022).

<u>Theory:</u> Hydrodynamics & hybrid approach are powerful tool to simulate the QGP fireball evolution and study its properties

-We are ready to focus on the initial state of the QGP

nuclear structure of colliding nuclei

Exploring Nuclear Physics across Energy Scales -- Personal view from heavy ion collisions

Probe nuclear structure with relativistic heavy ion collisions

- Relativistic heavy collisions start from nuclei
- -Collision time < 10⁻²⁴ s directly probe the ground state of nuclei
 -Well calibrated calculations for QGP evolution; to focus on the initial state

initial state with deformation Well calibrated calculations Initial conditions viscous hydro hadron cascade OCP Hadron Gas

Study nuclear deformation with heavy ion collisions

⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr Collisions @ RHIC isobar run

- To search the Chiral Magnetic Effect (CME)

- Obviously different early magnetic field for Ru+Ru and Zr+Zr collisions

Deformation of ⁹⁶Ru and ⁹⁶Zr

Deformation of ⁹⁶Ru & ⁹⁶Zr (nuclear structure)

Probe the deformation (mass distributions) of ⁹⁶Ru & ⁹⁶Zr

Relativistic heavy ion collisions

initial conditions: (deformation / mass distributions)

Initial conditions (TRENTO)

- Sample nucleon position in deformed nuclei with:

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}$$

$$R(\theta,\phi) = R_0 \left(1 + \frac{\beta_2 [\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}]}{+\beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m} + \beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m}} \right)$$
27

ac₂{3} for Ru+Ru and Zr+Zr collisions

ac₂{3} is sensitive to quadrupole and octupole deformations

$$ac_{2}{3} = \langle v_{2}^{2}v_{4}\cos 4(\Phi_{2} - \Phi_{4}) \rangle,$$

Imaging the deformation ²³⁸U at RHIC

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article Open access | Published: 06 November 2024

Imaging shapes of atomic nuclei in high-energy nuclear collisions

STAR Collaboration

Nature 635, 67-72 (2024) Cite this article

51k Accesses | 177 Altmetric | Metrics

$$egin{aligned} &igl\langle v_2^2 igr
angle &= a_1 + b_1 eta_2^2 \ &igl\langle (\delta p_{\mathrm{T}})^2 igr
angle &= a_2 + b_2 eta_2^2 \ &igl\langle v_2^2 \delta p_{\mathrm{T}} igr
angle &= a_3 - b_3 eta_2^3 \cos(3\gamma) \end{aligned}$$

$$egin{split} eta_{2\mathrm{U}} &= 0.297 \pm 0.015 \ \gamma_U &= 8.5^\circ \pm 4.8^\circ \end{split}$$

Probe the shape phase transition with Xe +Xe collisions

The Phase Transition

<u>Relativistic heavy ion collisions</u> -mainly aim to explore QCD Phase Transition

¹²⁹Xe+¹²⁹ Xe collision

-explore the second-order shape phase transition occurring in the vicinity of ¹²⁸⁻¹³⁰Xe

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th]

Shape phase transition for Xe isotopes

The shape phase transition:

-rapid structural change along certain isotope or isotone chains -the dynamic interplay between the spherical-driving pairing interaction and the deformation-driving proton-neutron interaction

The shape phase transition for the Xe isotopes:

-Within the the framework of the interacting boson model (IBM), the Xe isotopes undergo a shape phase transition from a γ -soft rotor to a spherical vibrator

R. F. Casten, Nucl. Phys. A 439, 289 (1985). G. Puddu, O. Scholten, and T. Otsuka, Nucl. Phys. A 348, 109 (1980). R. F. Casten and P. Von Brentano, Phys. Lett. B 152, 22 (1985).

-Exp data and model calculations: $^{128-130}$ Xe: *E*(5) symmetry, associated with a 2nd order shape phase transition

F. Iachello, Phys. Rev. Lett. 87, 052502 (2001);Phys. Rev. Lett. 85, 3580 (2000); R. M. Clark, et. al. Phys. Rev. C 69, 064322 (2004); R. Rodriguez-Guzman, et. al. Phys. Rev. C 76, 064303 (2007); L.M.Robledo, et. al. Phys. Rev.C 78 (2008) 034314

Probe the γ-soft deformation of ¹²⁹Xe

Relativistic heavy ion collisions

Initial conditions (TRENTO)

 Sample nucleon position in deformed nuclei with:

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi))/a_0}}$$

 $R(\theta, \phi) = R_0 (1 + \beta_2 [\cos \gamma Y_{2,0}(\theta, \phi) + \sin \gamma Y_{2,2}(\theta, \phi)]).$

initial conditions: (deformation / mass distributions)

β 0.3

0.2

0.1

Rigid triaxial deformation $(\gamma = 30^{\circ})$

Bally et. al. Eur.Phys.J. A 58 (2022) 9, 187,

128 Xe 0.0 0.1 0.2 0.3 0.4

γ-soft (flat distribution in 0≤γ≤60°)

Z. P. Li, et. al. Phys. Rev. C 81, 034316 (2010),

6-particle correlations-Theoretical Predictions

The γ -soft deformation of ¹²⁹Xe lead to a clear enhancement of 6-particle correlations $\rho_{4,2}$ in ultra-central Xe+Xe collisions

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song Phys. Rev. Lett. 133, 192301(2024)

ALCE Measurements & Bayesian Analysis

Posterior distributions and parameter correlations from Bayesian framework

TOL

Probe nuclear structure with heavy ion collisions at RHIC & LHC

Physics opportunities from light ion collisions at the LHC

Also refer to the exp. talk of N. Triantafyllou (LHCP 2025)

Probe cluster structure with light ion collisions

Probe the structure of ¹⁶O with O+O collisions

Li, Zhang &Ma, Phys. Rev. C **102**,054907 (2020) Wang, Zhao, Cao, Xu and Song. *Phys.Rev.C* 109 5, L051904 (2024)

Probe the Bowling pin structure of ²⁰Ne with Ne+Ne collisions

Giaclaone, Bally, Nijs, Shen, et al, arXiv: 2402.05995 Li, Zhou and Ma, arXiv:2504.04688 [nucl-th].

Probe the cluster structure Pb+Ne/Pb+O run at LHCb (SMOG)

Giaclaone,Zhao, et al, Phys. Rev. Lett.134 082301 (2025) Lu, Zhao, Nielsen, Li and Zhou, arXiv:2501.14852 [nucl-th]

Collectivities in small systems with light ion collisions

Key questions: Origin of collective flow in small systems

* Pb-Pb & Xe-Xe

- -> geometry
- * pp & p-Pb -> fluctuation (challenging!)
- * Light-ions collisions -> unique geometry & fluctuations

-"We strongly argue that short light ion runs should become part of the full exploitation of the scientific opportunities arising from HL-LHC" — Summary report for Light ion collisions at the LHC CERN Nov2024 Exploring Nuclear Physics across Energy Scales -- Personal view from heavy ion collisions

Rich collision systems

Light Nuclei

deuteron

³He⁵,He...

probe critical fluctuations & hadronic flow

Hyper Nuclei

Exotic hadrons

Probing exotic hadrons in relativistic heavy ion collisions

Predicted yield Stat. ratio at RHIC PHYSICAL REVIEW LETTERS K^{bar}KN(Mol.) K^{bar}NN(Mol.) D^{bar}NN(Mol.) X(3872)(Mol. N(1405)(Mol D^{bar}N(Mol.) 0,a0(Mol.) 10^{2} 10^{1} N^{coal}/N^{stat} 10^{0} 10^{-1} 10^{-2} Normal 1405)(5q) - $(0, a_0(4q))$ D_s(2317)(4q) ^{bar}KN(5q) ^{ar}NN(8q) 2q/3q/6q 4q/5q/8q Mol 2 0 1 3 uss (GeV) **CMS** observation 1.7 nb⁻¹ (PbPb 5.02 TeV) CMS Inclusive 100 $\sigma_{X(3872)} = 4.7 \text{ MeV/c}$ 50 < p_ < 50 GeV/c 35 b-enriched (lxy > 0.1 mm) data (5 MeV/c²) total fit 30 background A. M. Sirunyan *et al.* **CMS** Collaboration The first evidence for X(3872) production in relativistic heavy ion collisions is re

3.65

37

3.8

 $m_{J/\psi\pi\pi}$ (GeV/c²)

3.75

3.85

3.9

3.95

PRL 106, 212001 (2011)

Identifying Multiquark Hadrons from Heavy Ion Colli

Sungtae Cho,¹ Takenori Furumoto,^{2,3} Tetsuo Hyodo,⁴ Daisuke Jido,² Che Ming K Marina Nielsen,⁶ Akira Ohnishi,² Takayasu Sekihara,^{2,7} Shigehiro Yasui,⁸ and

PHYSICAL REVIEW LETTERS 126, 012301 (2021)

Deciphering the Nature of X(3872) in Heavy Ion Collision

Hui Zhang,^{1,2,*} Jinfeng Liao,^{3,†} Enke Wang,^{1,2,‡} Qian Wang,^{1,2,4,§} and Hongxi X multiphase transport model (AMPT) for describing such collisions and production mechanism of either molecule or tetraquark picture, we compute servables for X(3872) in Pb-Pb collisions at the Large Hadron Collider. We find crucial role, leading to a 2-order-of-magnitude difference in the X(3872) yield entrality dependence between hadronic molecules and compact tetraquarks, thus

PHYSICAL REVIEW LETTERS 128, 032001 (2022)

Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at $\sqrt{s_{NN}} = 5.02$ TeV

A. M. Sirunyan et al.*

production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of $\sqrt{}$ nucleon pair, using the decay chain $X(3872) \rightarrow J/\psi \pi^+\pi^- \rightarrow \mu^+\mu^-\pi^+\pi^-$. The data w

Advantage to study exotic hadrons in heavy ion collisions?

f₀(980)

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV} [i]$ Mass (Breit-Wigner) = 990 ± 20 MeV [i] Full width (Breit-Wigner) = 10 to 100 MeV [i]

f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	476
KK	seen	36
$\gamma \gamma$	seen	495

$$I^{G}(J^{PC}) = 1^{-}(0^{+}+)$$

See the review on "Scalar Mesons below 1 GeV." T-matrix pole $\sqrt{s} = (970-1020) - i (30-70) \text{ MeV} {[i]}$ Mass $m = 980 \pm 20 \text{ MeV} {[i]}$ Full width $\Gamma = 50$ to 100 MeV ${[i]}$

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	seen	319
KK	seen	†

High energy nuclear physics

A large amount of particles produced → momentum distributions

-particle yield \rightarrow - p_T spectra

- flow anisotropy

More info

Advantage: provide complimentary information to constrain properties of hadrons <u>disadvantage</u>: background is huge →small systems

Probing the exotic hadron $f_0(980)$ in p-Pb collisions

particle yield

Multiplicity class (V0A)	dN/dy
0–20%	$0.206 {\pm} 0.005 {\pm} 0.014$
20-40%	$0.153{\pm}0.004{\pm}0.010$
40-60%	$0.113{\pm}0.002{\pm}0.008$
60–100%	$0.064{\pm}0.001{\pm}0.005$

p_T spectra

Coalescence calculations for $f_0(980)$ in p-Pb collisions

 $f_0(980)$: (*K* \overline{K} molecule) produced at kinetic freezeout by coalescence of *K* & \overline{K} probe hadronic flow of kaons

$$\frac{d^{3}N_{A}}{d\mathbf{P}_{A}^{3}} = \frac{g_{A}}{Z! \cdot N!} \int \Pi_{i=1}^{A} p_{i}^{\mu} d^{3} \sigma_{i\mu} \frac{d^{3}\mathbf{p}_{i}}{E_{i}} f(\mathbf{x}_{i}, \mathbf{p}_{i}, t) \times f_{A}(\mathbf{x}_{1}', ..., \mathbf{x}_{A}'; \mathbf{p}_{1}', ..., \mathbf{p}_{A}'; t') \delta^{(3)} \left(\mathbf{P}_{A} - \sum_{i=1}^{A} \mathbf{p}_{i}\right),$$

$$f_{2}(\boldsymbol{\rho}, \mathbf{p}_{\rho}) = 8g_{2} \exp\left[-\frac{\rho^{2}}{\sigma_{\rho}^{2}} - \mathbf{p}_{\rho}^{2} \sigma_{\rho}^{2}\right] \qquad \boldsymbol{\rho} = \frac{1}{\sqrt{2}} (\mathbf{x}_{1}' - \mathbf{x}_{2}'), \quad \mathbf{p}_{\rho} = \sqrt{2} \ \frac{m_{2}\mathbf{p}_{1}' - m_{1}\mathbf{p}_{2}'}{m_{1} + m_{2}},$$

Nuclear Physics across Energy Scales -- Personal view from <u>heavy ion collisions</u>

Happy Oth birthday C3NT

Central China Center for Nuclear Theory **华中核理论中心**

- Nuclear structure
- Nuclear matter under extreme conditions
- Hadron physics
- Nuclear astrophysics and fundamental symmetry
- Quantum computing and AI in nuclear physics

Many Thanks