

Central China Center for Nuclear Theory 华中核理论中心

EIC Physics - based on some selected topics

Hongxi Xing (邢宏喜)

State Key Laboratory of Nuclear Physics and Technology South China Normal University

Wuhan, 2025.5.17-18

The mystery of our visible matter

Nuclear Femtography: search for answers to the most fundamental structure at Fermi scale!

Nucleon partonic structure

- Nucleus: Rutherford 1911
- Proton: Rutherford 1919

Fig. 5. Elastic electron scattering cross sections from hydrogen compared with the Mott scattering formula (electrons scattered from a particle with unit charge and no magnetic moment) and with the Rosenbluth cross section for a point proton with an anomalous magnetic moment. The data falls between the curves, showing that magnetic scattering is occurring but

The existing experiments for nucleon structure

Electron Ion Colliders -> the next generation facility specifically for nucleon structure!

Future opportunities with electron-ion collisions

Facility	Years	E_{cm}	Luminosity	Ions	Polarisation	Status
		(GeV)	$(10^{33}/cm^2/s)$	*(depends on)		
JLab 11 JLab 22	Running Late 2030's	4.5 - 6.5	$10^2 - 10^6$	$p \rightarrow Pb$	e, p, $\frac{\text{Light}}{\text{nuclei}}$	Running Concept
FASER FPF/AdvSND	Running 2030's	30 — 90	0.3 - 10	W, Ar	no	Running Advance
EIC	> 2034	30 - 140	1 - 10	$\mathbf{p} \rightarrow \mathbf{U}$	$e,p,d,^{3}He$	Approved
EicC	>Late 2030's	15—20	2 - 3	$p \rightarrow U$	$e,p,d,^{3}He$	Concept
LHeC	>Late 2030's	1200	24	*LHC	e possible	Advanced
Plasma-based schemes	2040's	530 - 9000	$10^{-5} - 10^{-1}$	*SPS/LHC	e possible	Concept
FCC-eh	> 2050	3500	15	*FCC-hh	e possible	Concept

2025 European Particle Physics Strategy (2503.18208)

Electron Ion Collider in China (EicC)

E

a nuclear facility proposed to be built in Huizhou, China

Science Pillars for EICs

2

The proton mass decomposition

- **Binding/Mass**
- Atom: 0.0000001
- Nucleus: 0.01
- Nucleon: 100

The origin of proton spin

- No static picture of proton spin
- Interplay between intrinsic property and interactions of quarks and gluons

Parton distribution in space and momentum inside nucleon

How do the nucleon properties emerge from quarks and gluons

Confined partonic/ hadronic states in nucleus

- gluon saturation
- Free nucleon vs bound nucleon
- Quark-gluon interaction with medium

How to probe the nucleon partonic structure?

We can determine the probability of seeing a parton in proton with specific characteristics - PDF

Proton interior in 1-dimension

Prog. Part. Nucl. Phys. 127 (2022) 103985

- There is no still picture for nucleon structure
- The x-dependence can not be predicted in theory, it can be only accessed in experiment
- There is no single machine can map out the full partonic structure of proton!

The origin of proton mass

Ji, Phys. Rev. Lett. 74 (1995), 1071 Ji, Phys. Rev. D 52 (1995), 271

- Quark energy and gluon energy constrained by PDFs
- Quark mass via πN low energy scattering
- Trace anomaly via near threshold production of heavy quarkonium?

Kharzeev et al, Proc. Int. Sch. Phys. Fermi 130 (1996) 105; Eur. Phys. J. C 9 (1999) 459-462 Sun, Tong, Yuan, Phys. Lett. B 822 (2021), 136655; Phys. Rev. D 105 (2022), 054032

11

Proton mass

♦ Naive parton model —> spin crises $\langle p\uparrow |\hat{S}|p\uparrow\rangle = \frac{1}{18}\left\{\left[\left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2}\right) + \right]\right\}$ $+\left[\frac{1}{2}+\frac{1}{2}+4\frac{1}{2}\right]+$

- proton spin 1/2 is consistent with naive parton model, but contradict with experiments.
- Proton spin decomposition

$$\frac{1}{2}\hbar = \left\langle P, \frac{1}{2} | J_{QCD}^{z} | P, \frac{1}{2} \right\rangle = \frac{1}{2} \int_{0}^{1} dx \Delta \Sigma(x, Q^{2}) + \int_{0}^{1} dx \Delta G(x, Q^{2}) + \int_{0}^{1} dx (\sum_{q} L_{q}^{z} + L_{g}^{z})$$
total
quark spin
spin
quark spin
Quark ~ 30%
gluon ~ 40%
Orbital angular momentum?

Quark ~ 30%

Proton spin

$$\left\{ \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + 4\left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2}\right) \right]$$
$$\left[\frac{1}{2} + \frac{1}{2} + 4\frac{1}{2} \right] = \frac{1}{2}$$

Jaffe, Manohar; Ji

Pin down the proton spin in future EICs

+ Polarized structure function measurement g_1

Leading order cross section

$$g_1^h(x,Q^2,z) = \frac{1}{2} \sum_q e_q^2 \left[\Delta q(x,Q^2) \right]$$

Extracted nucleon structure information: polarized PDFs (helicity distribution)

Pin down the proton spin in EIC&EicC

SIDIS for flavor decomposition

Anderle, Hou, Yuan, HX, Zhao, JHEP 2021

EicC white paper

EIC Yellow Report

Pin down the proton spin in EIC&EicC

Parton spin contribution to proton spin

The power of EicC for proton spin!

Anderle, Hou, Yuan, HX, Zhao, JHEP 2021

fragmentation functions as an input!

From nucleon structure to hadronization

SIDIS at EIC as a tool to explore parton fragmentation

Parton

Fragmentation function describes the probability of producing a specific hadron.

- QCD confinement
- The first phenomenological indication of gluons
- A tool to probe QGP

(K)

 (π)

 $(\pi)^{\odot}$

FF global fitting panorama

Joint efforts from experiments & theory in extracting FFs

FFs Collab.	NPC	DSS	NNFF	JAM	HKNS	MAPF
SIA						
SIDIS						
pp incl. hadron						
pp hadron in jet						
stat. treatment	Hessian	Hessian	Monte Carlo	Monte Carlo	Hessian	Monte C
parametrization	standard	standard	neural network	standard	standard	neural net
hadron species	$\pi^{\pm}, K^{\pm}, p/\bar{p}$ η, k_s^0, Λ	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	π^{\pm}, K^{\pm}	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	π^{\pm}, I
pQCD order	NLO/NNLO	NLO	NNLO	NLO	NLO	Approx. N
latest update	PRL 132, 261903 (2024) PRD 110, 114019 (2024)	PRD 95, 094019 (2017) PRD 105, L031502 (2022)	EPJC 77, 516 (2017) EPJC 78, 651 (2018)	PRD 94, 114004 (2016)	PTEP 2016, 113B04 (2016)	PLB 834, 1374

NPC: the most precise and complete FFs to date!

New efforts from NPC (SJTU & SCNU & IMP)

♦ NPC23 vs. others Gao, Liu, Shen, HX, Zhao, PRL & PRD Editor's suggestion, 2024

- General agreement for u/d quark to pion
- Discrepancies for FFs to kaon/proton and gluon FFs

126 Hessian error FFs are all available in LHAPDF

Probe the nucleon structure

$$egin{aligned} &rac{\mathrm{d}^3 \sigma^{K^+ - K^-}}{\mathrm{d}x \mathrm{d}y \mathrm{d}z} \propto 2(u_v(x) + d_v(x))(D_u^{K^+}(z) - D_{ar{u}}^{K^+}(z)) \ &+ s_v(x)(D_s^{K^+}(z) - D_{ar{s}}^{K^+}(z)), \end{aligned}$$

The puzzle of strange quark asymmetry: $s_{v} = s - \bar{s} = 0?$

- The impact of NPC FFs on the state-of-the-art PDFs at NNLO Preference of reduced asymmetry in the strange quark PDFs

What do we learn from NPC?

Gao, Shen, **HX**, Zhao, Zhou, arXiv:2502.17837

	$d_v(x=0.2, Q=2 \text{GeV})$	$r_s(x=0.2, Q=2 \mathrm{GeV})$	$r_a(x=0.2, Q=2 { m GeV})$
NNPDF4.0	0.2924 ± 0.0084	0.547 ± 0.079	0.408 ± 0.107
NNPDF4.0(reweighting)	0.3021 ± 0.0069	0.438 ± 0.066	0.281 ± 0.086
MSHT20	0.295 ± 0.011	0.511 ± 0.124	0.213 ± 0.126
MSHT20(profiling)	0.298 ± 0.011	0.481 ± 0.121	0.167 ± 0.136

• Soft scale $Q_2 \sim 1/fm$ accesses the tra gluons

SIDIS: Q>>P_T

TMDs: explore the flavor-spin-motion correlation

and parton motion

ers function f_{1T}^{\perp} : proton spin uences parton's transverse motion

$$\left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

and parton spin

Pretzelosity function h_{1T}^{\perp} : proton spin and parton spin influence parton's transverse motion

 $A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$

Unpolarized proton

Figure 6: *Left:* The transverse momentum profile of the Sivers TMD for upByanks for Signori five x values accessible at the EIC, and corresponding statisistical uncertainties. *Right:* Transverse rson probability of finding the up quark.

Transversely polarized proton

Nucleon 3D imaging at EicC - Sivers effect

Zeng, Liu, Sun, Zhao, PRD, 2023

• EIC&EicC will perform high precision measurement of SSA, providing the most powerful probe to Sivers effect

What if the nucleon is bounded in nucleus?

Initial state Nuclear partonic structure

Two mechanisms leading to nontrivial nuclear effects

Final state Parton propagating in nuclear medium

"Old" and long standing problems of nuclear partonic structure

One-dimensional nuclear partonic structure

Four Decades of the EMC Effect

EMC Collaboration, 1983

"Old" and long standing problems of nuclear partonic structure

One-dimensional nuclear partonic structure - impact of EIC

EIC Yellow Report

"Old" and long standing problems of nuclear partonic structure

Three-dimensional nuclear partonic structure

Cronin effect (50 years)

Naive Gaussian model $F_{i/p}(x,k_T) = f_{i/p}(x) \frac{e^{-k_T^2/\langle k_T^2 \rangle}}{\pi \langle k_T^2 \rangle}, \qquad \langle k_T^2 \rangle_A \to \langle k_T^2 \rangle_p + \left\langle \frac{2\mu^2 L}{\lambda} \right\rangle \xi^2$ 1.0 -0.5 0.5 0.0 0.0 -0.5 0.5 1.0 -1.0

Nuclear TMDs

• TMD factorization in nuclear medium

$$\frac{d\sigma^A}{dx\,dQ^2\,dz\,d^2P_{h\perp}} = \sigma_0\,H(Q)\,\sum_q e_q^2\int_0^\infty \frac{b\,db}{2\pi}J_0\left(\frac{bP_{h\perp}}{z}\right)f_{q/n}^A(x,b;Q)\,D_{h/q}^A(z,b;Q)$$

$$egin{aligned} &f^A_{q/n}(x,b;Q) = \left[C_{q\leftarrow i}\otimes f^A_{i/n}
ight](x,\mu_{b_*})\exp\left\{-S_{ ext{pert}}(\mu_{b_*},Q)-S^f_{ ext{NP}}(b,Q,A)
ight\}\ &D^A_{h/q}(z,b;Q) = rac{1}{z^2}\left[\hat{C}_{i\leftarrow q}\otimes D^A_{h/i}
ight](z,\mu_{b_*})\exp\left\{-S_{ ext{pert}}(\mu_{b_*},Q)-S^D_{ ext{NP}}(b,z,Q,A)
ight\} \end{aligned}$$

	Collaboration	Process	Baseline	Nuclei	N _{dat}	χ^2
/	HERMES [36]	SIDIS (π)	D	Ne, Kr, Xe	27	16.3
	RHIC [44]	DY	р	Au	4	2.0
	E772 [42]	DY	D	C, Fe, W	16	20.1
	E866 [43]	DY	Be	Fe, W	28	43.3
*	CMS [45]	γ^*/Z	NA	Pb	8	9.7
	ATLAS [46]	γ^*/Z	NA	Pb	7	13.1
	Total				90	105.2

nuclear 3D imaging - global extraction from world data

Alrashed, Anderle, Kang, Terry, HX, PRL 2022

Reasonable good overall description on world data from HERMES, FNAL, RHIC, LHC

Three-dimension imaging in nuclei

QCD "phase diagram" for nuclei from dilute to dense region

Dense region: $x \ll \mathcal{O}(1)$ Probing length $\lambda \sim 1/xp \gg L \sim A^{1/3}$

Relatively dense region: $x \leq \mathcal{O}(1)$ Probing length $\lambda \sim 1/xp \leq L \sim A^{1/3}$

Dilute region: $x \sim O(1)$ Probing length $\lambda \sim 1/xp \ll L \sim A^{1/3}$

QCD theoretical frameworks from dilute to dense region

Color Glass Condensate (CGC) McLerran, Venugopalan, 1994 Wilson lines, **BK/JIMWLK** evolution See review: Gelis, Iancu, Venugopalan, 2003

High-twist formalism Multi-parton correlation, DGLAP-type evoluti Qiu, Stermann, PRD, 1991 Kang, Wang, Wang, Xing, RPL, 2014

Leading twist collinear factorization **PDF, DGLAP evolution** Collins, Soper, 1981

The correspondence between CGC and high-twist expansion

establish a unified picture for dilute-dense dynamics in QCD medium

Take direct photon production as an example to prove the matching of CGC and HT

Fu, Kang, Salazar, Wang, HX, PRL, 2025

Nuclear partonic structure from dilute to dense region

 $\ln Q^2$

Fu, Kang, Salazar, Wang, HX, PRL, 2025

Mapping out the QCD phase diagram for nuclei with worldwide efforts using a unified theoretical framework!

36

Bridging EIC to low energy nuclear structure

 Jet charge distribution in eA DIS: a novel probe for high precision determination of neutron skin thickness

Summary

- EICs are the ultimate machines to explore the inner world of proton/nuclei at fm scale
 - 1. Proton 1-D and 3-D imaging
 - 2. Proton spin
 - 3. Parton fragmentation
 - 4. Nuclear effects
- Many more topics are not covered, such as GPDs, exotic states ...
- EIC、EicC、JLab are complementary to each other

Central China Center for Nuclear Theory 华中核理论中心

Congratulations to C3NT!

Where imagination meets reality....

