CEPC Silicon Tracker Progress Report (19)

Qi Yan *on behalf of the Silicon Tracker Group* Feb 11, 2025, IHEP

Progress on Silicon Tracker Ref-TRD

Chapter 5 Silicon Trackers

5.1	Requirements								
	5.1.1	5.1.1 Physics requirements 1							
	5.1.2	Specific requirements on Silicon Tracker							
5.2	Overview of ITK and OTK								
0.2	5.2.1	1 Technology options and boundary conditions							
	5.2.2 Ontimization tool								
	5.2.2 Optimization to finization								
	0.2.0	5.2.3.1 Geometrical envelope of the tracking system 4	V						
		5.2.3.1 Geometrical envelope of the tracking system							
	5.2.3.2 Layout in Endean Region								
	524	4 Optimization summary 7							
53	J.2.4 Inner si	Inner silicon tracker (ITK)							
5.5	531	$5.3.1 (MOS chin R&D \qquad 0$							
	5.5.1	5 3 1 1 HV-CMOS nivel R&D 9							
		5.3.1.1 Technology survey for silicon nivel detectors							
		5.3.1.1.2 Development of HV CMOS nixel sensor for CEPC 10							
		5.3.1.1.2 Development of HV-CMOS pixel sensor for CEPC	•						
		5.3.1.1.5 COFFEE1							
		5.2.1.2 (MOS atrip B & D	he						
		5.2.1.2 CMOS sup K&D	M						
		5.3.1.2.1 Mollvation (CKC)							
		5.3.1.2.2 Overall design of CMOS strip cmp (CSC)							
	520	5.5.1.2.5 Fast simulation with RASER	X						
	5.3.2								
		5.3.2.1 IIK barrel design	J						
		$5.3.2.2$ ITK endcap design \ldots 25							
	5.2.2	5.3.2.3 Alternative design for the ITK c							
	5.3.3	Readout electronics	V						
	5.3.4	Mechanical and cooling design							
		5.3.4.1 Barrel locar support							
		5.3.4.1.1 Miterials 34	V						
		5.3.4.1.2 • Structural characterisation							
		5.3.4.1.3 Thermal characterisation							
		5.3.4.2 Endcap local support for HV-CMOS pixel detector							
		5.3.4.2.1 Materials							
		5.3.4.2.2 Structural characterisation							
		5.3.4.2.3 Thermal characterisation							
		5.3.4.3 Endcap local support for CMOS strip detector							
		5.3.4.3.1 Materials							
		5.3.4.3.2 Structural characterisation							
		5.3.4.3.3 Thermal characterisation							
	5.3.5	Prospects and plan							
		5.3.5.1 Development of the CMOS pixel sensor							
		5252 Development of the CMOS string concerns 42							
		5.5.5.2 Development of the CMOS strip sensor	v						
		5.5.5.2 Development of the CMOS strip sensor 42 5.3.5.3 Module and system level development 43							
5.4	Outer si	5.5.5.2 Development of the CMOS strip sensor 42 5.3.5.3 Module and system level development 43 licon tracker (OTK) with TOF 44							
5.4	Outer si 5.4.1	5.5.5.2 Development of the CMOS strip sensor 42 5.3.5.3 Module and system level development 43 licon tracker (OTK) with TOF 44 AC-LGAD sensor and ASIC R&D 44							

R	\square			5.4.1.1.1	AC-LGAD simulation	45			
				5.4.1.1.2	Testing setup	46	1		
				5.4.1.1.3	Pixelated AC-LGAD prototypes	48	V		
				5.4.1.1.4	Strip AC-LGAD prototype and properties	50			
			5.4.1.2	AC-LGA	D ASIC R&D	55			
				5.4.1.2.1	General requirements	55			
				5.4.1.2.2	ASIC architecture	56			
				5.4.1.2.3	Single-channel readout electronics	56			
				54124	Data process and digital blocks	59			
				54125	Prototype	60	/		
				54126	Power distribution and grounding	63	•		
1				54127	Padiation talerance	63			
				5.4.1.2.7	Manitasing	64			
				5.4.1.2.0		64			
		5.4.0	OTV 1	5.4.1.2.9		64			
		5.4.2		esign	$\sim \sim $	65	<u> </u>		
			5.4.2.1	OTK barr		65	•		
1			5.4.2.2	OTK end	ap design	66			
		5.4.3	Readou	t electronics		72			
			5.4.3.1	Frant-end	board	72	1		
		- •	34.55	Concentra	ator Card and power distribution	73	V		
		re'	5.4.3.3	Slow cont	tro and monitoring	73			
_	\mathbf{n}	$\backslash $	5.4.3.4	Clock d.	ribution	73			
<u> </u>		5.4.4	Mechar	vical and cooli	ng design	74			
50			5.44.1	Barrel suj	oport	74	1		
-		2	\ ~`	5.4.4.1.1	Materials	75	V		
1	6	U'		5.4.4.1.2	Structural characterisation	76			
λ.	$\mathbf{\lambda}$			5.4.4.1.3	Thermal characterisation	77			
			5.4.4.2	Endcap su	1pport	78			
				5.4.4.2.1	Materials	80			
				5.4.4.2.2	Structural characterisation	80			
				5.4.4.2.3	Thermal characterisation	81			
		5.4.5	Prospec	ts and plan .		82			
			5.4.5.1	Developm	nent of AC-LGAD strip sensor for CEPC	82			
			5.4.5.2	Developm	nent of AC-LGAD readout ASIC	82	<u> </u>		
			5.4.5.3	Developm	nent of mechnical and cooling system	83	•		
			5.4.5.4	Summarv		83			
	5.5	Beam ha	ackgroun	d estimation		84			
		5.5.1	nulation	84					
			5.5.1.1	Pair produ	action background	84			
			5.5.1.2	Single be	am background	84			
			0.01112	55121	Beam Thermal Photon Scattering (BTH)	84			
				55122	Beam Gas Coulomb Scattering (BGC) and Beam Gas Bremsstrahlung	01			
				0.0.1.2.2	Scattering (BGB)	84	•		
				55123	Touschek Scattering (TSC)	85			
		552	Uit rate	estimation for	beem beckground	85			
		5.5.3	ITK tol	erable hit rate		85			
		554	OTK to	lerable hit rate	· · · · · · · · · · · · · · · · · · ·	86			
	5.6	Performance							
	2.0	5.6.1 The performance of the barrel region							
		5.0.1	5611	Momentu	m resolution	88			
			5612	Roles of a	reseaus and silican trackers	88	1		
			5612	Dortiola :	lantification performance	00	V		
/		560	J.0.1.5	Farucle IC	a forward ration (and an)	90			
		5.0.2	file per	Manual Manual		90			
			5.6.2.1	Momentu		90	2		
			3622	Particle in	lennication performance	47	/		

Remining Work on Silicon Tracker TDR

- <10% content needs to be completed and refined.
- Finish revision on the references and figure captions
- Finish silicon tracker group paper reading.

Thanks to Jingbo Ye for his TDR comments. We will take them into account properly.

Sensor and ASIC R&D Plan

➢ HV-CMOS Pixels (COFFEE3):

Submitted in 2025.1 and expected received in 2025.5

CMOS Strips (CSC1):

Scheduled for submission on March 5, 2025

AC-LGAD Strips

Pre-phototype for AC-LGAD ASIC (JuLoong, 烛龙)

Scheduled for submission in Feb 2025

Scheduled for submission in April 2025 4

Other R&D Plan

- Visit wafer foundries and semiconductor research institutions to explore direct collaboration and the development of sensor processes.
- Mechanical and cooling system development for the CEPC silicon trackers:
- Collaborate with universities, especially their School of Energy and Power engineering, and industry partners to develop the system.
- Build an STK mechanical and cooling laboratory at IHEP.
- Partner with DRD8 and send young mechanical engineers for training at CERN in future (as pre-discussed with senior staff at CERN last year).
- Detector phototype module development.

Mechanical and Cooling Design for the OTK Endcap

Cooling Loop Design for the OTK Endcap

A few months ago, Quan Ji, Gang Li, and I visited Zhengzhou University of Light Industry, to explore ways to strengthen CEPC's R&D capabilities in mechanical and thermal systems.

The School of Energy and Power Engineering at Zhengzhou University of Light Industry has extensive experience and a strong focus on thermal system development, including CO₂ cooling. During our visit, we were highly impressed by their expertise in both thermal and mechanical engineering.

On Jan 10, the Dean of the School of Energy and Power Engineering, Professor Xuehong Wu, and his team, visited IHEP in return. They are now actively contributing to the design and analysis of the CEPC thermal system.

Cooling loops design and thermal analysis for the OTK endcap performed by Zhengzhou University of Light Industry (郑州轻工业大学).

OTK Endcap Thermal Mesh Generation

24-layer cooling tube(16.85m, cell count 9356670, Orthogonal Quality≥0.5)

32-layer cooling tube(19.16m, cell count 10645946, Orthogonal Quality≥0.5)

- The mesh generation is performed for two different cooling tube arrangements, and numerical solutions are obtained using the finite volume method.
- ✓ The cooling performance of both arrangements is analyzed and compared.

Progress on COFFEE3 Development and Submission

Submitted 2025.1/ expected received 2025.5

- In-pixel electronics;
- Pix matrix readout strategy;
- Periphery digital logics and functional IPs;
- Slow control & Fast control....
- Data/Power/CLK interfaces.....

Two readout architectures:

Both include nearly a complete ASIC readout framework, and the solution can be extended to a full-size chip. Each pixel can independently adjust its threshold through SPI (4-bit in-pixel DAC) and

configure the mask.

- Architecture 1: the optimized design framework based on current process conditions (Triple-well process);
- Architecture 2: an improved solution, while requires process modification. (Deep P-well required); fully utilize the advantages of the 55nm process node,.

Architecture 1: NMOS Pixel Array Schematic Diagram

PERIPHERY

- In-pixel Coarse-fine TDC and 4-bit threshold tuning;
- ToA and ToT information are saved in each pixel;
- Data-driven readout;

LVDS driver/receiver up to 1.28Gb/s

320MHz

FSM

Serializer

Prototypes in 55 nm HV-CMOS Process

Several MPWs to reach the full-size full-function sensor

- 浙江大学:邓建鹏、李鹏戌;
- 大连民族大学: 陈洋、王雨颉、施展;

Progress on CMOS Strip Chip (CSC1) Development

CMOS Strip Sensor Design and Simulation

- Foundry: CSMC CMOS (1P4M)
- Sensor Size: 20.000 mm × 3.486 mm
- Strip length: 19.716 mm, pitch 75.5 μm
 - n-well:18 μm, n+: 15 μm
 - p-well: 4 μm, p+: 2 μm
- pad area: 75 $\mu m \times$ 180 μm
- Number of channels: 40
- n-well to bias ring via well-resister
- Two n+ guard rings
- Doping concentration

IV/CV results consistent with existing data* * Diehl et. al, Characterization of passive CMOS strip sensors, NIMA 1033 (2022) 166671 16

Analog Frontend Design Status and CSC1 Submission

- Completed the design of Analog Frontend (AFE): Preamplifier, the 1st stage amplifier, shaper, discriminator, and bandgap.
 - Circuit design, layout design, pre-simulation, and post-simulation
- Completed the overall Design Rule Checking (DRC), Layout Versus Schematics (LVS) checks.

AC-LGAD Strip Sensor New R&D Design

New layout and design was done based on simulation. IHEP new AC-LGAD strip sensor prototype design for the CEPC OTK&TOF:

- Strip length: 1 cm, 2 cm, and 4 cm
- Strip pitch size: 100 μ m, 200 μ m, and 500 μ m
- Optimized isolated structure design to reduce sensor capacitance
- Process design optimized for better spatial resolution (n+ layer dose)

AC-LGAD Sensor Readout Board Preparation

- 4-channels readout boards has been fabricated for AC-LGAD testing
- 2-stage amplifiers, Gain~70
- Signal shape has significantly improved, showing no oscillations.

AC-LGAD Strip Sensor Development Plan

Short term plan: 2024.12-2025.2

Simulation: ongoing

- Simulation of Strip length and its effect (signal shape)
- Simulation to reduce capacitance (isolation structure)
- Simulation of process parameters to optimize spatial resolution (AC coupling capacitor, n+ dose)

Testing:

- Multi-channel readout board with low noise design and fabrication (2 stages of amplifier) done
- Testing of short strip connected, radiation testing(TID) ongoing

Submission 1: 2025.2 (layout design is done, process simulation ongoing)

Strip AC-LGAD with different length and pad-pitch size: [1 cm, 2 cm, 4 cm] [100um, 200 um, 500 um]

- Strip AC-LGAD with different process parameters: n+ dose, dielectric material and thickness, ...
- Strip AC-LGAD with different isolation structure \rightarrow Capacitance
- Sensors with EPI layer of different thickness (50 um, 65 um, 80 um, 300 um)

Sensor Testing:

- clarify the sensors performance and requirement (include test beam and radiation test)
- Find out how to optimize the sensor performance (structure and process)

Submission 2: 2025.10

- Based on the results from first version and more simulation
- Sensors with strip length ~4cm

Sensor Testing: basic properties and test together with ASIC and BEE

Submission 3: 2026.6

large area sensor design and fabrication

Submission 4 if needed: 2027.2

module: built sensor + ASIC module and test

OTK AC-LGAD Readout ASIC (JuLoong, 烛龙)

> Functions:

- TOA (Time of arrival) for precise time and TOT (Time over threshold) for time walk correction and accurate position determination.
- Each channel includes preamplifier, discriminator, and Time-to-Digital Converter (TDC).
- > Requirements:
 - 128 channels, channel pitch less than 100 μm.
 - Single channel power consumption less than 20 mW.
 - Time resolution for TOA better than 30 ps.

JuLoong diagram

OTK AC-LGAD ASIC Development Progress

Several key cells are designed or verified:

- FPMROC (10 ps) chip
 - FEE: Preamplifier+Discriminator

jitter<7.8ps @ input 2.5mV, t_r=0.1ns, Cs=0 pF

(need to be test with real LGAD sensor)

- TDC core needs a new design
- PLL, Serializer, SPI is verified but need to be simplified
- > I2C Slave: ASIC parameter configuration

12-bit DAC: threshold and calibration

FPMROC

OTK AC-LGAD TDC Core Design

- Event driven delay line to reduce the power
- Real time Calibration for PVT (Process, Voltage, Temperature)
- LSB ~36 ps for preliminary layout post-simulation
- ➢ Power Consumption :
 - Average current for single event: 443 μA
 - Static current: < 5µA

Single-Channel Delay Chain and Quantization Block Diagram

Delay line layout

TOA transfer function curve (step=5 ps, TT27)

OTK AC-LGAD ASIC (JuLoong) Development Plan

- 2025.4: Design key components, including preamplifier, discriminator, and TDC, along with the design of the ASIC test system. Performance testing of the ASIC will be conducted by the end of the year, with radiation hardness testing for each component.
- 2025.7: Conduct components performance test.
- 2025.10: Refine components and complete the first version of multi-channel integration.
- 2026. 2: Performance test on the multi-channel ASIC, including radiation hardness testing.
- 2026. 6: Further refinement and integration of 128 channels.
- 2027.10: Performance testing of 128 channel ASIC will be conducted, integrated with LGAD sensor.
- 2027.12: Finalize the prototype and prepare for mass production of the chips.