CEPC Silicon Tracker Ref-TDR Overview

Qi Yan on behalf of the Silicon Tracker Group Feb 15, 2025, IHEP

CEPC Ref-TDR Silicon Tracker章节概况

致力于完成一个合理自洽的 Silicon Tracker技术性设计报告(Ref-TDR)。Silicon Tracker章节的全部内容超过100页,是Ref-TDR中最大的一个章节。全部撰写工作需要在本月前完成,以应对4月份的国际评审。目前时间紧、任务重。

当前Ref-TDR填充完成的内容超过90%,剩下的少部分内容正在抓紧补充。希望能最终达到一定的技术水平,在能力范围内做到最好。虽然不能尽善尽美,也有许多不足的地方,请大家谅解。

特别感谢叶竞波近期在阅读后提供的宝贵反馈意见。我们也欢迎更多的人能花时间多读一读、提供建设性的意见,帮助一起更好地完成这部分的内容。

Outline of Silicon Tracker Ref-TRD

apter	5 Silicon	n Trackers 总负责人:严琪
5.1	Requiren	nents
	5.1.1	Physics requirements
	5.1.2	Specific requirements on Silicon Tracker
5.2	Overview	v of ITK and OTK
	5.2.1	Technology options and boundary conditions 4
	5.2.2	Optimization tool
	5.2.3	Layout optimization
		5.2.3.1 Geometrical envelope of the tracking system
		5.2.3.2 Layout in Barrel Region
		5.2.3.3 Layout in Endcap Region 撰与. 贝贡人: . , 学 刚、 产 拱 7
	5.2.4	Optimization summary 7
5.3	Inner sili	con tracker (ITK) · · · · · · · · · · · · · · · 擢 写 奇 青 人 · · · 严 琪 · · · · · · · 9
	5.3.1	CMOS chip R&D
		5.3.1.1 HV-CMOS pixel R&D
		5.3.1.1.1 Technology survery for silicon pixel detectors
		5.3.1.1.2 Development of HV-CMOS pixel sensor for CEPC 10
		5.3.1.1.3 COFFEE1 ····· 撰写负责人:·李一鸣、周扬 ¹⁰
		5.3.1.1.4 COFFEE2 12
		5.3.1.2 CMOS strip R&D
		5.3.1.2.1 Motivation
		5.3.1.2.2 Overall design of CMOS strip chip (CSC)
	520	5.3.1.2.3 Fast simulation with RASER
	5.3.2	F 2 0 1 MTK benefit destar
		5.3.2.1 IIK barrel design 擢写份责人· 严祖
		5.3.2.2 If K endcap design \dots $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$
	522	Bandout alextronics 開行他们K
	534	Mechanical and cooling design
	5.5.4	5341 Barrel local support
		5.3.4.1 Barlel local support $3.3.4.1$
		53412 Structural characterisation 35 5.5
		53413 Thermal characterisation 36
		53.4.2 Endcan local support for HV-CMOS nivel detector 37
		5 3 4 2 1 Materials 37
		5 3 4 2 2 Structural characterisation 38
		53423 Thermal characterisation
		5.3.4.3 Endcap local support for CMOS strip detector
		5.3.4.3.1 Materials 39
		5.3.4.3.2 Structural characterisation 39
		5.3.4.3.3 Thermal characterisation
	5.3.5	Prospects and plan
		5.3.5.1 Development of the CMOS pixel sensor . 撰写负责人: 李一鸣、41
		5.3.5.2 Development of the CMOS strip sensor \therefore $\Box = \Box $
		5.3.5.3 Module and system level development
5.4	Outer sili	con tracker (OTK) with TOF
	5.4.1	AC-LGAD sensor and ASIC R&D 撰写负责人: 严琪、赵梅 44
	:	5.4.1.1 AC-LGAD Sensor R&D

			5.4.1.1.1	AC-LGAD simulation	45
			5.4.1.1.2	Testing setup	46
			5.4.1.1.3	Pixelated AC-LGAD prototypes 据与贝页人:赵俊	48
			5.4.1.1.4	Strip AC-LGAD prototype and properties	50
		5.4.1.2	AC-LGA	D ASIC R&D	55
			5.4.1.2.1	General requirements	55
			5.4.1.2.2	ASIC architecture	56
			5.4.1.2.3	Single-channel readout electronics	56
			5.4.1.2.4	Data process and digital blocks	59
			5.4.1.2.5	Prototype 擢写负责人 严雄波	60
			5.4.1.2.6	Power distribution and grounding	63
			5.4.1.2.7	Radiation tolerance	63
			5.4.1.2.8	Monitoring	64
			5.4.1.2.9	Development plan and schedule	64
	5.4.2	OTK de	esign		65
		5.4.2.1	OTK bar	rel design	65
		5.4.2.2	OTK end	cap design	66
	5.4.3	Readou	t electronics		72
		5.4.3.1	Front-end	l board	72
		5.4.3.2	Concentra	ator Card and power Vistribution 提。三名志人亚雄油	73
		5.4.3.3	Slow con	trol and mentiousing	73
		5.4.3.4	Clock dis	tributen	73
	5.4.4	Mechar	nical and cool	ng design	74
		5.4.4.1	Earrel su	pport	74
		- N	5.4.4.1.1	· ·············· 撰写负责人···严琪···	75
	_ 6	<u>, N</u>	5.4.4.2.2	Structural characterisation	76
1	he		5.4.3	Thermal characterisation	77
25		5.462	Endcap s	upport	78
0	-ri	110	5.4.4.2.1	Materials	80
- (20,	•	5.4.4.2.2	Structural characterisation	80
\mathcal{N}	<u>۲</u>		5.4.4.2.3	Thermal characterisation	81
	5.4.5	Prospec	cts and plan .		82
		5.4.5.1	Developn	nent of AC-LGAD strip sensor for CEPC	82
		5.4.5.2	Developn	nent of AC-LGAD readout ASIC	82
		5.4.5.3	Developn	nent of mechnical and cooling system 新 ···· 亚 提议 ···· 亚 提	83
		5.4.5.4	Summary	□供到见贝八:	83
5.5	Beam b	ackgroun	d estimation		84
	5.5.1	Beam b	ackground sir	nulation	84
		5.5.1.1	Pair prod	uction background	84
		5.5.1.2	Single be	am background	84
			5.5.1.2.1	Beam Thermal Photon Scattering (BTH)	84
			5.5.1.2.2	Beam Gas Coulomb Scattering (BGC) and Beam Gas Bremsstrahlung	
				Scattering (BGB)	84
			5.5.1.2.3	Touschek Scattering (TSC)	85
	5.5.2	Hit rate	estimation fo	r beam background	85
	5.5.5	OTK to	larable hit rate	撰与负责人: 严琪、李一鸣	05 1 ₈₆
56	Darform			5	88
5.0	561	The ner	formance of t	he barrel region	88
	5.0.1	5 6 1 1	Momente	m resolution	80
		5612	Roles of	resolution	00 89
		5612	Particle i	entification performance 撰写倚書人. 本刚 亚钳	00 00
	562	The nor	formance of t	he forward region (endcan)	90
	5.0.2	5621	Momentu	m resolution performance	90
		5.0.2.1	wiomentu		90 00
		5622	Particle in	lentification performance	u /

Section 5.1: Requirements

The CEPC is designed to operate across a wide energy region, including Z-pole (91 GeV), W^+W^- threshold (160 GeV), the energy maximizing ZH production (240 GeV), and $t\bar{t}$ threshold after upgrade (360 GeV). In High Lumi Z mode, the luminosity reaches $\mathcal{L} = 115 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ at 30 MW ($192 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ at 50 MW), with a 23 ns interval between bunch crossings. The stringent requirements of both physics and operational conditions impose high demands on the CEPC tracking system.

5.1.1 Physics requirements

- Higgs and electroweak physics studies
- Flavor physics, the precise reconstruction of B and D hadrons
- Flavor physics studies and jet substructure analysis

Summarized physics requirements:

- Momentum resolution
- Impact parameter measurement
- Particle identification
- Solid angle coverage

5.1.2 Specific requirements on Silicon Tracker

- Layout
- Spatial resolution and material budget
- Timing resolution

Section 5.2: Overview of ITK and OTK

The layout of the tracker system is crucial for accurately identification and determination of particle trajectories. This section provides an overview of the CEPC tracker system, with a particular focus on the Silicon Trackers and their layout optimization to enhance performance.

5.2.1 Technology options and boundary conditions

- Spatial Measurements
- Materials
- Particle Identification (PID) Compatibility

5.2.2 Optimization tool

Lic Toy (LDT): a MatLab software designed to model and optimize the layout of detector taking in to account physical constraints, material budget, and performance metrics.

5.2.3 Layout optimization

- Optimization of geometrical envelope of the tracking system
- Optimization of the Layout in barrel region
- Optimization of the Layout in endcap region
- Optimization summary

Section 5.3: Inner Silicon Tracker (ITK)

5.3.1 CMOS chip R&D

5.3.1.1	HV-CMC	OS pixel R&D
	5.3.1.1.1	Technology survery for silicon pixel detectors
	5.3.1.1.2	Development of HV-CMOS pixel sensor for CEPC
	5.3.1.1.3	COFFEE1
	5.3.1.1.4	COFFEE2
5.3.1.2	2 CMOS	strip R&D
	5.3.1.2.1	Motivation
	5.3.1.2.2	Overall design of CMOS strip chip (CSC)
	5.3.1.2.3	Fast simulation with RASER
		Yiming's will give a detailed presentation

5.3.2 ITK design

5.3.2.1	ITK barrel design
5.3.2.2	ITK endcap design
5.3.2.3	Alternative design for the ITK

Section 5.3.2.1: ITK barrel design (Baseline)

HVCMOS pixel sensor:

- Sensor size: $20 \text{ mm} \times 20 \text{ mm}$ (active area of 17.4 mm \times 19.2 mm) •
- Array size: 512 rows \times 128 columns
- Pixel size: $34 \ \mu m \times 150 \ \mu m$ (spatial resolution: $8 \ \mu m \times 40 \ \mu m$) •
- Time resolution: 3-5 ns •
- Power consumption: ~200 mW/cm²

Module:

- 14 sensors (2 rows \times 7 columns)
- Sensor gap: 100 µm
- Module dimensions: 140.6 mm \times 40.1 mm
- Stave:
 - Module gap: 300 µm
 - Length: 986.6 mm (ITKB1), 1,409.6 mm (ITKB2), and 1973.2 mm (ITKB3)
 - Barrel radii: 235 mm (ITKB1), 345 mm (ITKB2), and 555.6 mm (ITKB3)

Information about staves, modules, and sensors used for 3 ITK barrels construction					
Barrel	Number of staves	Modules per stave	Sensors per module	Total number of sensors	Sensor area [m ²]
ITKB1	44	7	14	4312	1.72
ITKB2	64	10	14	8960	3.58
ITKB3	102	14	14	19992	8.00
Total	210			33264	13.31

Stave(7-14 modules)

Barrel (44-102) staves

ing Structure

Section 5.3.2.2: ITK endcap design (Baseline)

Module:

• 3 types of modules: 8, 12, and 14 sensors for all 4 ITK endcaps

Endcap active area radii:

81.5 mm<r<242.5 mm(ITKE1), 110.5 mm<r<352.3 mm (ITKE2),
163 mm <r<564 mm (ITKE3), and 223 mm<r<564 mm (ITKE4)

Back view of endcap

Perspective view of full endcap

The Module and Sensor Layout of a Single Face of Each ITK Endcap					
Endcap	Number of module rings	Number of modules per module ring	Number of sensors per module	Total sensors	
ITKE1	2	13,20	8,8	264	
ITKE2	2	16,24,28	8,8,8	544	
ITKE3	3	24,36,44	12,14,14	1408	
ITKE4	3	24,36,44	8,12,14	1312	
Total				3528	

Section 5.3.2.3: Alternative design for the ITK

Section 5.3.3: Readout electronics

5.3.3 Readout electronics

In each ITK module, 14 monolithic HV-CMOS pixel sensors are bonded to a common flexible PCB (FPC), as shown in Fig. 5.34. The FPC transmits digital signals from the sensors to the data aggregation chips and subsequently to the optical fiber. To ensure error-free data transmission, the FPC integrates two ASICs for data aggregation: the TaoTie chip and the ChiTu chip.

Section 5.3.4: Mechanical and cooling design

5.3.4 Mechanical and cooling design

5.3.4.1	Barrel lo	ocal support	-
	5.3.4.1.1	Materials	
	5.3.4.1.2	Structural characterisation	
	5.3.4.1.3	Thermal characterisation	
5.3.4.2	Endcap	local support for HV-CMOS pixel detector	
	5.3.4.2.1	Materials	(
	5.3.4.2.2	Structural characterisation	
	5.3.4.2.3	Thermal characterisation	
5.3.4.3	Endcap	local support for CMOS strip detector	
	5.3.4.3.1	Materials	
	5.3.4.3.2	Structural characterisation	
	5.3.4.3.3	Thermal characterisation	
Endcap		Carbon fiber Rib honeycomb Cooling loop Inner ring Inner ring	~
Back carbon fib (with sensor mo	er facesheet (dules)	FPC Sensors Carbon Fibe Carbon Fibe Carbon Fibe Carbon Fibe Carbon Fibe Carbon Fibe Carbon Fibe Carbon Fibe Carbon Fibe	eeeilee

Section 5.3.5: Prospects and plan

The CEPC team has successfully developed several fully functional Monolithic Active Pixel Sensors (MAPS), including JadePix, TaichuPix, and CPV, based on the CMOS Image Sensor (CIS) process. The HV-CMOS pixel sensor and the CMOS strip sensor, both new monolithic full-depletion sensors, are distinguished by their exceptional radiation tolerance, high spatial resolution, and particularly good timing for bunch tagging. These two sensor approaches are key detector technologies targeted for application in the CEPC ITK.

Notably, the HV-CMOS pixel sensor as the baseline for ITK, developed using the 55 nm process, has undergone two rounds of prototype tape-outs, achieving critical principle verification. Meanwhile, the CMOS strip sensor as an alternative approach, offers advantage in spatial resolution and has technological differentiation. Its first design has been completed, and fabrication is scheduled. Over the next few years of iterations, both CMOS sensors will move steadily toward fully functional, full-size sensors. In parallel, the development of module level and system level integration, including R&D on supporting electronics, mechanical structures, cooling systems, as well as detailed integration methodologies, is also in progress.

5.3.5	Prospects	s and plan
	5.3.5.1	Development of the CMOS pixel sensor
	5.3.5.2	Development of the CMOS strip sensor
	5.3.5.3	Module and system level development

这部分的内容会根据这几月COFFEE3的最新流片情况做一定的补充。

Section 5.4: Outer Silicon Tracker (OTK)

5.4.1 AC-LGAD sensor and ASIC R&D

- - 5.4.1.1.1 AC-LGAD simulation

 - 5.4.1.1.3 Pixelated AC-LGAD prototypes
 - 5.4.1.1.4 Strip AC-LGAD prototype and properties

Zhaomei and Yunyun will give a detailed presentation.

- 5.4.1.2.1General requirements5.4.1.2.2ASIC architecture5.4.1.2.3Single-channel readout electronics5.4.1.2.4Data process and digital blocks5.4.1.2.5Prototype5.4.1.2.6Power distribution and grounding5.4.1.2.7Radiation tolerance
- 5.4.1.2.8 Monitoring
- 5.4.1.2.9 Development plan and schedule Xiongbo will give a detailed presentation.

5.4.2 OTK design

Section 5.4.2.1: OTK barrel design

3600 mm

- Strip pitch: 100 µm
- Time resolution: 50 ps
- Power consumption: 300 mW/cm²
- Module: 2 sensors (16 readout ASICs with 128-channels)
- Ladder:
 - 8 modules (16 sensors)
 - Length: 699.8 mm or 719.8 mm
- Stave: 8 ladders (4 short+4 long)

Section 5.4.2.2: OTK endcap design

Strip pitch: 80.7-113.8 μm

Strip length: 28.38-37.61 mm

8" wafer (group A, B, D sensors)

Maximize the use of silicon wafers and facilitate detector assembly.

Section 5.4.3: Readout electronics

16

Section 5.4.4: Mechanical and Cooling Design

Section 5.4.5: Prospects and plan

Figure 5.106: Timeline for OTK, including sensor, ASIC, mechanics and so on

All the R&D mentioned above is part of a 3-year plan, as detailed in Fig. 5.106. Considering the project timeline of more than 5 years from construction, the CEPC project is flexible enough to adjust its technical approach and has sufficient backup plans for the engineering phase. For example, if the performance of the AC-LGAD strip sensor degrades significantly for large-dimension strip sensor, we may consider using conventional large-dimension sensor, with or without an external time-of-flight detector, or opt for bump bonding or monolithic AC-LGAD technology if it becomes mature.

For the OTK system, including sensor, readout ASIC, and mechanical and cooling components, we are open to both domestic collaborations with research units and industry as well as international partnerships. In light of all these factors, we are confident in delivering a high performance OTK system that meets the physics requirements in a timely manner.

LGAD strip的流片会在本月提交。这部分的内容会根据最新流片情况做一定的补充。

Section 5.5: Background (Hit rate) Estimation

5.5 Beam background estimation

5.5.1	Beam background simulation						
	5.5.1.1 Pair pro	duction background					
	5.5.1.2 Single b	eam background					
5.5.2	5.5.1.2.1	Beam Thermal Photon Scattering (BTH)					
	5.5.1.2.2	Beam Gas Coulomb Scattering (BGC) and Beam Gas Bremsstrahlung					
		Scattering (BGB)					
	5.5.1.2.3	Touschek Scattering (TSC)					
	Hit rate estimation f	or beam background					
5.5.3	ITK tolerable hit rat	e					
5.5.4	OTK tolerable hit ra	te					

5.5.4 OTK tolerable hit rate

For the AC-LGAD strip sesnor used in the OTK, each fired strip generates 48 bits of data, with an average of ~ 2 strips firing per hit. Data from 6 or 8 sensor readout ASICs (6 ASICs are used only in specific parts of the OTK endcap) is aggregated by a primary data aggregation chip. In the OTK barrel, 16 primary data aggregation chips (e-links) are connected to a common data link chip (ChiTu) on the second aggregation board, with each primary data aggregation chip connected to a 446.67 Mbit/s e-link. In the OTK endcap, 10 to 14 primary data aggregation chips (e-links) are connected to a common data link chip on the second aggregation board, with each primary data aggregation chips (e-links) are connected to a common data link chip on the second aggregation board, with each primary data aggregation chips (e-links) are connected to a common data link chip on the second aggregation board, with each primary data aggregation chips via a 693.33 Mbit/s or 346.67 Mbit/s e-link.

The supported data rate per sensor readout ASIC is up to 43.33 Mbit/s for the barrel and up to 86.67 Mbit/s for the endcap, corresponding to a maximum hit rate of 8.0×10^4 Hz/cm² for the barrel (detector active area ~1.28 cm × 4.4 cm per ASIC) and 2.1×10^5 Hz/cm² for the endcap (detector active area ~1.28 cm × 3.3 cm per ASIC). This detector's tolerable hit rate is ~5 times larger than the estimated maximum background hit rate for the OTK barrel (OTKB, 1.56×10^4 Hz/cm²) and ~5 times larger than that for the OTK endcap at Low Lumi Z (OTKE, 4.41×10^4 Hz/cm²), as summarized in Table 5.18.

Section 5.6 Performance

5.6 Performance Momentum resolution in the barrel region: 5.6.1 The performance of the barrel region $\left(\frac{\sigma_{p_t}}{p_t}\right)_{\rm Si} = ap_t \oplus \frac{b}{\beta\sqrt{\sin\theta}}$ 5.6.1.1 Momentum resolution 5.6.1.2 Roles of gaseous and silicon trackers . . . $\left(\frac{\sigma_{p_t}}{p_t}\right)_{\text{TPC}} = as_1 p_t \oplus \frac{bs_2}{\beta\sqrt{\sin\theta}}$ 5.6.1.3 Particle identification performance 5.6.2 The performance of the forward region (endcap) . . . $\left(\frac{\sigma_{p_t}}{p_t}\right)_{\text{Combined}} = \frac{1}{\sqrt{\left(\frac{\sigma_{p_t}}{p_t}\right)_{q_i}^{-2} + \left(\frac{\sigma_{p_t}}{p_t}\right)_{\text{TPC}}^{-2}}}$ 5.6.2.1 Momentum resolution performance . . . 5.6.2.2 Particle identification performance where $a = 1.5 \times 10^{-5}$, $b = 1.4 \times 10^{-3}$, 10⁻² $-\theta = 9.0^{\circ}$ $\theta = 10.0^{\circ}$ Endcap $s_1 \approx 6$, and $s_2 \approx 0.8$. - θ = 11.0° ×10^{−3} $-\theta = 11.5^{\circ}$ $\sigma(P_t)/P_t$ $-\theta = 85^{\circ}$ 1.8 Barrel $\theta = 65^{\circ}$ $- \theta = 45^{\circ}$ 1.6 $\sigma(P_t)/P_t$ 1.4 1.2 10 P,[GeV/c] Momentum resolution in the endcap region: 0.8 $\frac{\sigma_{p_t}}{p_t} = \frac{a'p_t}{(tan\theta)^2} \oplus \frac{b'}{\beta tan\theta \sqrt{\cos\theta}} \oplus \frac{c'\sqrt{p_t}}{\sqrt{\beta}(\tan\theta)^{\frac{3}{2}}(\cos\theta)^{\frac{1}{4}}}$ 10 P_t[GeV/c] 10² where $a' \approx 0.4 \times 10^{-5}$, $b' \approx 0.9 \times 10^{-3}$, and $c' = 4.5 \times 10^{-5}$. 对探测器分辨有系统性的了解。20

Silicon Tracker Ref-TDR的下一步工作

- 进一步完成Silicon Tracker章节的内容填充、完善。
- 完成对references和figure captions的系统性整理。

Agenda

- TDR Overview (Yan Qi)
- Mechanical (Li Yujie)
- Sensor chip + Prototyping of ITK (Yiming)
- AC-LGAD chip design (Zhao Mei)
- AC-LGAD test (Yunyun)
- Electronics (Xiongbo)

Mechanical and Cooling Design for the OTK Endcap

Cooling Loop Design for the OTK Endcap

A few months ago, Quan Ji, Gang Li, and I visited Zhengzhou University of Light Industry, to explore ways to strengthen CEPC's R&D capabilities in mechanical and thermal systems.

The School of Energy and Power Engineering at Zhengzhou University of Light Industry has extensive experience and a strong focus on thermal system development, including CO₂ cooling. During our visit, we were highly impressed by their expertise in both thermal and mechanical engineering.

On Jan 10, the Dean of the School of Energy and Power Engineering, Professor Xuehong Wu, and his team, visited IHEP in return. They are now actively contributing to the design and analysis of the CEPC thermal system.

Cooling loops design and thermal analysis for the OTK endcap performed by Zhengzhou University of Light Industry (郑州轻工业大学).

OTK Endcap Thermal Mesh Generation

24-layer cooling tube(16.85m, cell count 9356670, Orthogonal Quality≥0.5)

32-layer cooling tube(19.16m, cell count 10645946, Orthogonal Quality≥0.5)

- The mesh generation is performed for two different cooling tube arrangements, and numerical solutions are obtained using the finite volume method.
- ✓ The cooling performance of both arrangements is analyzed and compared.

Sensor and ASIC R&D Plan

➢ HV-CMOS Pixels (COFFEE3):

Submitted in 2025.1 and expected received in 2025.5

1cm AC-LGAD

Scheduled for submission in Feb 2025

CMOS Strips (CSC1):

Scheduled for submission on March 5, 2025

AC-LGAD Strips

4cm AC-LGAD

2cm AC-LGAD-

Pre-phototype for AC-LGAD ASIC (JuLoong, 烛龙)

Scheduled for submission in April 2025 28