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Precision: gateway to discovery

• Currently main strategy: search 

anomalous deviations from theory

• Interplay between exp. and th.

➢New particles/physics have not been discovered yet at LHC

To make full use of  data: theoretical errors should be much smaller than experimental errors, ideally:

𝐸𝑟𝑟𝑜𝑟𝑡ℎ <
1

3
𝐸𝑟𝑟𝑜𝑟𝑒𝑥𝑝
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Feynman integrals: a key obstacle in high-order computation

1) Reduce loop integrals to basis (Master Integrals )

2) Calculate MIs
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Integration-by-parts reduction: the bottleneck!

➢The state-of-the-art IBP method: very challenging

• 4-loop DGLAP kernel cannot be obtained

• 𝐻 + 2𝑗 production: exact two-loop contribution is missing

• 𝐻 + 𝑡 ҧ𝑡 production: exact two-loop contribution is missing

Chen, et al., JHEP2022

➢ Improvements for IBPs

• Syzygy equations: trimming IBP system

• Block-triangular form: search simple IBP system
Liu, YQM, PRD2019

Guan, Liu, YQM, CPC2020

Blade: Guan, Liu YQM, Wu, 2405.14621

Improve efficiency 

by a hundredfold
≈ half  order in 𝛼𝑠

Need to calculate two more orders in 𝛼𝑠!    How?

Gluza, Kajda, Kosower, PRD2011

Bö hm, Georgoudis, Larsen, Schulze, Zhang, PRD2018

NeatIBP: Wu, et al. CPC2024

Catani, et al., PRL2023

https://doi.org/10.1007/JHEP03(2022)096
https://inspirehep.net/literature/1651462
https://inspirehep.net/literature/1771922
https://inspirehep.net/literature/2789587
https://inspirehep.net/literature/866930
https://inspirehep.net/literature/1645272
https://inspirehep.net/literature/2659772
https://doi.org/10.1103/PhysRevLett.130.111902


Ways to bypass IBP
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• Δ =
LD

2
, 𝐾’s are rational in 𝑿

• Fixed-Branch Integrals (FBIs) defined as

• The same as one-loop integrals, except for more delta functions

• 𝐔− 𝐋+𝟏 𝐃/𝟐 can sometimes be absorbed into the definition of  FBI

The new representation

➢Any 𝑳-loop amplitude, including Feynman Integral, takes the form

➢Can be written in the new representation
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Introduce a parameter for FI

➢For 2-loop, 3 branch variables at most, after integrating 

delta functions: two-fold integration

• Here, we rescale the integral region to [0,1], with the new integration variables named X and Y.

• 𝐔− 𝐋+𝟏 𝐃/𝟐 is absorbed into the definition of  FBI

➢ Introduce a parameter into FI

• The original FI can be achieved by taking the δ to 1 

• (a, b) could be any rational regular point of  the integrand
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Expand generalized FI at δ = 0

➢Expand F(δ) at δ=0 to n-th order with complexity 𝑶(𝒏𝟐)

• We have FBIs’ differential eqautions w.r.t. X and Y

• K is rational on X and Y

• Mainly Taylor expansion of  X and Y, the integration is straightforward

Need 𝐗𝐥𝐘𝐦 whose 𝐥 +𝐦 ≤ 𝐧

➢The expansion takes the following form

• b is boundary condition of  the FBI, which is the fisrt order coefficient of  the FBI

• b could be irrational, but we don’t really need  b

• c comes from DEs and K, and since (a, b) is rational, c is rational
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Search relation between generalized FIs 

➢Use series expansions of  generalized FIs to search 

relations between them

• Choose a set of  generalized FIs for search

• Assume a polynomial relation for the integral, with degree d 

• Considering a and c are rational and b should be independent  irrational numbers, we can 

further write down independent relations
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Solve equations between generalized FIs 

➢Solving the above equations, we may get the relations 

between (generalized) FIs 

• To search relations between more complicated integrals, #S and d should increase, 

which in turn requires an increase in n

• For 𝐎(𝐧𝟐) complexity, n can easily go up to 𝟏𝟎𝟐 or even 𝟏𝟎𝟑

• Since a and c are all rational, we can use Finite Field  to speed up the calculation
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An alternative approach to introducing a parameter

➢ Introduce a parameter for FI by restricting the integration 

to a region near a specific U

𝐗𝟏𝐗𝟐+ 𝐗𝟐𝐗𝟑+ 𝐗𝟑𝐗𝟏 ∈ [𝟎, 𝟏/𝟑]

• Expand near λ ~ 0, so t ~ 0, U ~ 1/3, (X1, X2, X3) ~ (1/3, 1/3, 1/3), mainly Taylor region

• Integrate the δ-function in the mesure to get a two-fold integral

• Expand the integrand and the integration takes the standard form

• With series expansions of  λ, the search process is the same
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𝜂 expansion

➢FBI with an auxiliary parameter 𝜂：

• Expand eta asymptotically in the limit toward infinity

• Determine the coefficients by solving the differential equation
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𝜂 expansion

➢Coefficients can be computed directly

• Final result

• Substitute 𝜂 with −𝑖𝒰𝜂 so that 𝜂 becomes a real number with the dimension of  mass  squared.

• Specifically, amplitude with an auxiliary parameter 𝜂 becomes:
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𝜂 expansion

➢Amplitude with the substituted 𝜂 in the new representation：

➢The computation of the η-expansion of the amplitude reduces 

to the evaluation of vacuum bubble diagrams.
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𝜂 expansion

➢Suppose we have a set of integrals:

• Linear relations among them can be written as:

• 𝑄𝑖 are homogeneous polynomials of  𝜂 and kinematic variables s.

• Denote the mass dimension of  𝑀𝑖 by 𝐷𝑖𝑚(𝑀𝑖) and the degree of  𝑄𝑖 by 𝑑𝑖.

• There is only one degree of  freedom in {𝑑𝑖}, which can be chosen as 𝑑𝑚𝑎𝑥 = max{𝑑𝑖} .
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𝜂 expansion

➢ Vanishing the coefficients of  these polynomials of  𝜂 and Ԧ𝑠 provides 

the condition to solve for Q

➢ Thus, the reduction relations among these integrals can be obtained.

• Consider two sets of  integrals, G1 and G2. Assuming that G1 can be reduced to G2, we 

provide an algorithm to find out relations to realize this reduction:

• 1.Let 𝐺 = {𝐺1 , 𝐺2}and 𝑑𝑚𝑎𝑥 = 0.

• 2.Solve the linear equations generated by vanishing the coefficients of  these polynomials, 

to obtain all possible relations

• 3.If  the obtained relations are enough to express 𝐺1 in terms of 𝐺2 ,stop; otherwise, 

increase 𝑑𝑚𝑎𝑥 by 1 and go to step 2
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Non-commutativity of IBP Equations

• Laporta algorithms: Large Linear System.

• Symbolic Rules (Smirnov): complexity from non-commutative 

nature of  IBP 

➢ IBP Equations for Integral Reduction 

➢Difficulties: Non-commutativity

• Linear Relations from Full Derivatives

S. Laporta: hep-ph/0102033

A.V. Smirnov, V.A. Smirnov: hep-

ph/0606247

A.V. Smirnov, V.A. Smirnov: hep-

lat/0509187

https://inspirehep.net/literature/552763
https://inspirehep.net/literature/719952
https://inspirehep.net/literature/693744
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Large Index Limit & its Expansion

• Subtitute 𝜈𝑎 → 𝑛 + 𝜈𝑎, take limit 𝑛 → ∞; j 𝜈 ≔ 𝐽 𝑛 + 𝜈

• Consider leading behavior in 1/n, then make perturbation

➢Use large index (𝜈𝑎) limit to resolve the structure 

➢Asymptotic behavior at large n limit
• Single out terms involving 1𝑎

+

• Asymptotic IBP made up of  commutative difference 

operator Δ𝑎
±

• Linear Difference Equation at leading order
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Unperturbed Solution: Characteristic Equation

➢ IBP in leading order of 1/n

• Opartors Δ𝑎
±

, 𝑓𝑚 ≡ ∑𝐹𝑏𝑎
(𝑚)

Δ𝑏
−Δ𝑎

+ + ∑𝐹𝑎
(𝑚)

Δ𝑎
+ commute with each other

• Feynman Integrals (FIs) are lying in the zero eigenspaces of 𝑓 (𝑚)

FIs can be expressed as linear combination of Δ𝑎
±

’s eigenfunctions.

➢Eigenvalue problem

• Eigenvalues of operators Δ𝑎
±

satisfy characteristic equations:

• General solutions can be generated by action of Δa
±

:
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Perturbed Solution: Expansion by recursion

➢ IBP in all orders of n
• Keep all orders in 1/n: 

• Substitute the perturbation ansatz for each eigenfunction.

• Matching coefficients in full order IBP. Starting from ℎ0 = 1, ℎ𝑘 at each order can be 

reconstructed recursively.

with
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Example

➢Ex. Bubble Integral

• Propagators defined by

• Two Eigenvalues (for s=9):

• Perturbation around 1st Eigenfunctions (1/2,1/4): 

Notice: Some coefficient cannot be 

determined by IBP, but they don’t affect 

the reconstruction of linear relations for 

reduction.   
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Summary: Large Index Expansion

➢Large index (𝜈𝑎) limit: 
• resolve the structure, separate commutative & non-comm. behavior 

➢Leading order (unperturbed part): 
• determined by Characteristic Equation of  commutative difference operators.

➢Higher order (perturbation): 
• recursive expansion coefficient calculation

➢Reduction Relation: 
• using expansion to reconstruct relation suitable for integral reduction.
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Surprising Connection to Syzygy-IBP

➢Characteristic Equation & Syzygy 

• Consider Syzygy-IBP in Baikov Representation. A syzygy vector (𝑔𝑎 , 𝑔0)

defined by:

• Syzygy-constrained IBP: 

• Syzygy-IBP In operator form:

Baikov Rep:

• Q: How to better understand the information encoded in characteristic equations? (and to 

facilitate its solution?)

• Taking 1𝑎
+ -related part, syzygy 𝑔𝑎 can give an alternate 

derivation of Char. Eqns.;

• Moreover, linear syzygies (deg 𝑔𝑎 ≤ 1) gives exactly the 

same Char. Eqns. as in previous derivation.  

Now Char. Eqns. can be written as:
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Elimination of Char.Eqns & Module Intersection 

➢ Intersected Syzygy Module

• Further constraint put on syzygy-IBP, make combination of {𝑔(𝑚)}𝑚=1
𝐾 so that 

no increment of power in denominators. 

• In other word: 

• For the solution of Char. Eqns, module intersection gives a set of A-eliminated

equations.

• As Groebner basis in lex. order of A-eliminated equations usually gives explicit form of 

the solutions ℎ𝑁 𝐵𝑁 = 0, 𝐵𝑖 = ℎ𝑖(𝐵𝑁). 

➢Module Intersection -> Elimination

J. Böhm, A. Georgoudis, K.J. Larsen, H. 

Schönemann, Y. Zhang: hep-th/1805.01873

arXiv-1802.04790v1.tar.gz
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Elimination of Char.Eqns & Module Intersection

➢ Inverse Problem: Elimination -> Module Intersection

• Inverse Problem: Can we constructed construct a module-intersected syzygy ℎ𝑎 ’(𝑧) from each 

A-eliminated Equation ℎ(𝐵) from {𝑓 𝑚 (𝐴, 𝐵)}𝑚=1
𝐾 ? Is ℎ ↦ ℎ’ a map (unique assignment exists)?

• Answer: ℎ’ exists, but not unique: they can differ by ℎ′′(𝑧), s.t ∑𝑎 ℎ𝑎
′′/𝑧𝑎 = 0.

• Characteristic equations share the same structure and information as linear syzygy, both 

from 1𝑎
+-related part of the IBP.

• Module intersection offers a referential method to solve the characteristic equation 

(elimination of A’s).

➢Summary
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Summary and outlook

➢ IBP is the main obstacle of  precise computation

Thank you！

➢ The new representation provides various ways of  asymptotic 

expansion

➢ Optimistic to overcome multi-leg FIs computation beyond one-

loop, and  to meet the requirement of  high-precision LHC data

➢ Large index expansion

Stay tuned!


