Some new ideas of Feynman integrals computation

Yan-Qing Ma (Peking University)
yqma@pku.edu.cn

第五届量子场论及其应用研讨会, 北京, 2025/11/02

Based on works in progress

Outline

I. Introduction

II. Small parameter expansion

III. Large mass expansion

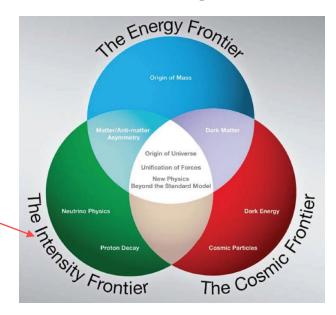
IV. Large index expansion

V. Summary and outlook

Precision: gateway to discovery

> New particles/physics have not been discovered yet at LHC

- Currently main strategy: search anomalous deviations from theory
- Interplay between exp. and th.



To make full use of data: theoretical errors should be much smaller than experimental errors, ideally:

$$Error_{th} < \frac{1}{3}Error_{exp}$$

Feynman integrals: a key obstacle in high-order computation

$$\sum_{\vec{\nu}'} Q_{\vec{\nu}'}^{\vec{\nu}jk}(D, \vec{s}) I_{\vec{\nu}'}(D, \vec{s}) = 0$$

1) Reduce loop integrals to basis (Master Integrals)

2) Calculate MIs

Integration-by-parts reduction: the bottleneck!

> The state-of-the-art IBP method: very challenging

- 4-loop DGLAP kernel cannot be obtained
- H + 2j production: exact two-loop contribution is missing Chen, et al., JHEP2022
- $H + t\bar{t}$ production: exact two-loop contribution is missing Catani, et al., PRL2023

> Improvements for IBPs

Syzygy equations: trimming IBP system

Gluza, Kajda, Kosower, PRD2011 Böhm, Georgoudis, Larsen, Schulze, Zhang, PRD2018 NeatIBP: Wu, et al. CPC2024

Block-triangular form: search simple IBP system

Liu, YQM, PRD2019 Guan, Liu, YQM, CPC2020 Blade: Guan, Liu YQM, Wu, 2405,14621 Improve efficiency \approx half order in $\alpha_{\scriptscriptstyle S}$ by a hundredfold

Need to calculate two more orders in α_s ! How?

Ways to bypass IBP

The new representation

> Any L-loop amplitude, including Feynman Integral, takes the form

$$\mathcal{M} \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D} l_{i}}{\mathrm{i} \pi^{D/2}} \frac{P(l)}{\mathcal{D}_{1}^{\nu_{1}} \cdots \mathcal{D}_{N}^{\nu_{N}}},$$

> Can be written in the new representation

$$\mathcal{M} = \int [d\mathbf{X}] \,\hat{\mathcal{M}} (\mathbf{X}) \qquad \qquad \hat{\mathcal{M}} (\mathbf{X}) = \mathcal{U}^{-\frac{(L+1)D}{2}} \sum_{\Delta, \vec{\nu}'} K_{\vec{\nu}'}^{\Delta} (\mathbf{X}) \, I_{\vec{\nu}'}^{\Delta} (\mathbf{X})$$

- $\Delta = \frac{LD}{2}$, K's are rational in X
- Fixed-Branch Integrals (FBIs) defined as

$$I_{\vec{\nu}}^{\Delta}(\mathbf{X}) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int [d\mathbf{y}] \frac{\prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha} - 1}}{\left(\frac{1}{2} \mathbf{y}^{T} \cdot R \cdot \mathbf{y} - i0^{+}\right)^{\nu - \Delta}}$$

- The same as one-loop integrals, except for more delta functions $[d\mathbf{y}] \equiv \prod_{\alpha=1}^{N} dy_{\alpha} \prod_{b=1}^{B} \delta \left(1 \sum_{i=1}^{n_b} y_{(b,i)}\right)$
- $U^{-(L+1)D/2}$ can sometimes be absorbed into the definition of FBI

Outline

I. Introduction

II. Small parameter expansion

III. Large mass expansion

IV. Large index expansion

V. Summary and outlook

Introduce a parameter for FI

> For 2-loop, 3 branch variables at most, after integrating delta functions: two-fold integration

$$F_{\vec{\nu}}^{D} = \sum_{\vec{\nu}'} \int_{0}^{1} dX \int_{0}^{1} dY K_{\vec{\nu},\vec{\nu}'}^{\Delta}(X,Y) I_{\vec{\nu}'}^{\Delta}(X,Y)$$

- Here, we rescale the integral region to [0,1], with the new integration variables named X and Y.
- $U^{-(L+1)D/2}$ is absorbed into the definition of FBI
- > Introduce a parameter into FI

$$F_{\vec{\nu}}^{D}(\delta) = \sum_{\vec{\nu}'} \int_{a-a\delta}^{a+(1-a)\delta} dX \int_{b-b\delta}^{b+(1-b)\delta} dY K_{\vec{\nu},\vec{\nu}'}^{\Delta}(X,Y) I_{\vec{\nu}'}^{\Delta}(X,Y)$$

- The original FI can be achieved by taking the δ to 1
- (a, b) could be any rational regular point of the integrand

Expand generalized FI at $\delta = 0$

$$F_{\vec{\nu}}^{D}(\delta) = \sum_{\vec{\nu}'} \int_{a-a\delta}^{a+(1-a)\delta} dX \int_{b-b\delta}^{b+(1-b)\delta} dY K_{\vec{\nu},\vec{\nu}'}^{\Delta}(X,Y) I_{\vec{\nu}'}^{\Delta}(X,Y)$$

- - K is rational on X and Y
 - Mainly Taylor expansion of X and Y, the integration is straightforward
- > The expansion takes the following form

$$F_{\vec{\nu}}^D(\delta) = \delta^2 \sum_{\vec{\nu}'} b_{\vec{\nu}'} \left(\sum_{i=0}^n c_{\vec{\nu},\vec{\nu}',i} \, \delta^i + \mathcal{O}(\delta^{n+1}) \right)$$

- b is boundary condition of the FBI, which is the first order coefficient of the FBI
- b could be irrational, but we don't really need b
- c comes from DEs and K, and since (a, b) is rational, c is rational

Search relation between generalized FIs

$$F_{\vec{\nu}}^D(\delta) = \delta^2 \sum_{\vec{\nu}'} b_{\vec{\nu}'} \left(\sum_{i=0}^n c_{\vec{\nu},\vec{\nu}',i} \, \delta^i + \mathcal{O}(\delta^{n+1}) \right)$$

- Use series expansions of generalized FIs to search relations between them
 - Choose a set of generalized FIs for search $S = \{\vec{\nu} | \vec{\nu} \text{ chosen for search}\}$
 - Assume a polynomial relation for the integral, with degree d

$$\sum_{\vec{\nu} \in S} \left(\sum_{i=0}^{d} a_i \delta^i \right) F_{\vec{\nu}}^D(\delta) = 0$$

 Considering a and c are rational and b should be independent irrational numbers, we can further write down independent relations

$$\sum_{\vec{\nu} \in S} \left(\sum_{i=0}^{d} a_i \delta^i \right) \left(\sum_{j=0}^{n} c_{\vec{\nu}, \vec{\nu}', j} \delta^j + \mathcal{O}(\delta^{n+1}) \right) = 0, \quad \forall \vec{\nu}' \in \text{Master FBIs}$$

Solve equations between generalized FIs

$$\sum_{\vec{\nu} \in S} \left(\sum_{i=0}^{d} a_i \delta^i \right) \left(\sum_{j=0}^{n} c_{\vec{\nu}, \vec{\nu}', j} \delta^j + \mathcal{O}(\delta^{n+1}) \right) = 0, \quad \forall \vec{\nu}' \in \text{Master FBIs}$$

- > Solving the above equations, we may get the relations between (generalized) FIs
 - To search relations between more complicated integrals, #S and d should increase,
 which in turn requires an increase in n
 - For $O(n^2)$ complexity, n can easily go up to 10^2 or even 10^3
 - · Since a and c are all rational, we can use Finite Field to speed up the calculation

An alternative approach to introducing a parameter

> Introduce a parameter for FI by restricting the integration to a region near a specific U

$$F_{\vec{\nu}}^{D} = \int [\mathrm{d}\mathbf{X}] K_{\vec{\nu},\vec{\nu}'}^{\Delta}(\mathbf{X}) I_{\vec{\nu}'}^{\Delta}(\mathbf{X}) = \int_{0}^{\frac{1}{3}} \mathrm{d}t \int [\mathrm{d}\mathbf{X}] K_{\vec{\nu},\vec{\nu}'}^{\Delta}(\mathbf{X}) I_{\vec{\nu}'}^{\Delta}(\mathbf{X}) \delta\left(\frac{1}{3} - \mathcal{U} - t\right)$$

$$F_{\vec{\nu}}^{D}(\lambda) = \int_{0}^{\lambda} \mathrm{d}t \int [\mathrm{d}\mathbf{X}] K_{\vec{\nu},\vec{\nu}'}^{\Delta}(\mathbf{X}) I_{\vec{\nu}'}^{\Delta}(\mathbf{X}) \delta\left(\frac{1}{3} - \mathcal{U} - t\right)$$

$$\mathbf{X}_{1}\mathbf{X}_{2} + \mathbf{X}_{2}\mathbf{X}_{3} + \mathbf{X}_{3}\mathbf{X}_{1} \in [0, 1/3]$$

- Expand near $\lambda \sim 0$, so $t \sim 0$, U ~ 1/3, (X1, X2, X3) ~ (1/3, 1/3, 1/3), mainly Taylor region
- Integrate the δ -function in the mesure to get a two-fold integral
- Expand the integrand and the integration takes the standard form

$$\int_{-\infty}^{\infty} \mathrm{d}x \mathrm{d}y \, x^l y^m \delta(1 - x^2 - y^2)$$

With series expansions of λ, the search process is the same

Outline

I. Introduction

II. Small parameter expansion

III. Large mass expansion

IV. Large index expansion

V. Summary and outlook

\triangleright FBI with an auxiliary parameter η :

$$\mathcal{I}_{\vec{\nu}}^{\Delta}(\eta) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int \left[d\mathbf{y} \right] \frac{\prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha} - 1}}{\left(\frac{1}{2} \mathbf{y}^{T} \cdot R \cdot \mathbf{y} + \eta \right)^{\nu - \Delta}}$$

Expand eta asymptotically in the limit toward infinity

$$\mathcal{I}_{\vec{\nu}}^{\Delta}(\eta) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{b=1}^{B} \Gamma\left(\sum_{i=1}^{n_b} \nu_{(b,i)}\right)} \eta^{\Delta - \nu} \left(1 + \sum_{k=1}^{\infty} a_{\vec{\nu},k}^{\Delta} \eta^{-k}\right)$$

Determine the coefficients by solving the differential equation

$$(2z_0\eta - C)\frac{\mathrm{d}}{\mathrm{d}\eta}\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) = (2\Delta - \nu - B)z_0\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) + \sum_{\alpha=1}^{N} z_\alpha\mathcal{I}^{\Delta-1}_{\vec{\nu}-\vec{e}_\alpha}(\eta)$$

> Coefficients can be computed directly

$$a_{\vec{\nu},k}^{\Delta} = \frac{1}{z_0(B-2k-\nu)} \left[C(\Delta-\nu-k+1) a_{\vec{\nu},k-1}^{\Delta} - \sum_{\alpha=1}^{N} \left(\sum_{\substack{i \text{ in the same} \\ branch \text{ with } \alpha}} \nu_{(b,i)} - 1 \right) z_{\alpha} a_{\vec{\nu}-\vec{e_{\alpha}},k}^{\Delta} \right]$$

Final result

$$a_{\vec{\nu},k}^{\Delta} \sim X^{(L+1)k}$$
 $X = \{X_1, X_2, ..., X_B\}$

- Substitute η with $-i\mathcal{U}\eta$ so that η becomes a real number with the dimension of mass squared.
- Specifically, amplitude with an auxiliary parameter η becomes:

$$\mathcal{M}(D, \vec{s}, \eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D} \ell_{i}}{\mathrm{i} \pi^{D/2}} \prod_{\alpha=1}^{N} \frac{P(l)}{(\mathcal{D}_{\alpha} + \mathrm{i} \eta)^{\nu_{\alpha}}}$$

 \triangleright Amplitude with the substituted η in the new representation:

$$\mathcal{M}(\Delta, s, \eta) = \int [dX] \, \mathcal{U}^{-\frac{(L+1)D}{2}} \sum_{\Delta, \vec{\nu}'} K_{\vec{\nu}'}^{\Delta}(X) \mathcal{I}_{\vec{\nu}}^{\Delta}(X, \eta)$$

$$\mathcal{I}_{\vec{\nu}}^{\Delta}(\eta) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{b=1}^{B} \Gamma\left(\sum_{i=1}^{n_b} \nu_{(b,i)}\right)} (-i\mathcal{U}\eta)^{\Delta - \nu} \left(1 + \sum_{k=1}^{\infty} a_{\vec{\nu},k}^{\Delta} (-i\mathcal{U}\eta)^{-k}\right)$$

> The computation of the η-expansion of the amplitude reduces to the evaluation of vacuum bubble diagrams.

$$M(\Delta, \vec{s}, \eta) = \sum_{\lambda_0, \vec{\lambda}} M^{\lambda_0 \dots \lambda_r}(\Delta) \eta^{\lambda_0} s_1^{\lambda_1} \dots s_r^{\lambda_r}$$

\triangleright Suppose we have a set of integrals: $G = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}$

Linear relations among them can be written as:

$$\sum_{i=1}^{n} Q_i(\Delta, \vec{s}, \eta) \mathcal{M}_i(\Delta, \vec{s}, \eta) = 0$$

- Q_i are homogeneous polynomials of η and kinematic variables s.
- Denote the mass dimension of M_i by $Dim(M_i)$ and the degree of Q_i by d_i .

$$2d_1 + \text{Dim}(\mathcal{M}_1) = \cdots = 2d_n + \text{Dim}(\mathcal{M}_n)$$

$$Q_i(\Delta, \vec{s}, \eta) = \sum_{(\lambda_0, \vec{\lambda}) \in \Omega_{d}^{r+1}} Q_i^{\lambda_0 \dots \lambda_r}(\Delta) \eta^{\lambda_0} s_1^{\lambda_1} \dots s_r^{\lambda_r}$$

• There is only one degree of freedom in $\{d_i\}$, which can be chosen as $d_{max} = \max\{d_i\}$.

- > Vanishing the coefficients of these polynomials of η and \vec{s} provides the condition to solve for Q
- > Thus, the reduction relations among these integrals can be obtained.
 - Consider two sets of integrals, G1 and G2. Assuming that G1 can be reduced to G2, we provide an algorithm to find out relations to realize this reduction:
 - 1.Let $G = \{G_1, G_2\}$ and $d_{max} = 0$.
 - 2.Solve the linear equations generated by vanishing the coefficients of these polynomials,
 to obtain all possible relations
 - 3.If the obtained relations are enough to express G_1 in terms of G_2 , stop; otherwise, increase d_{max} by 1 and go to step 2

Outline

I. Introduction

II. Small parameter expansion

III. Large mass expansion

IV. Large index expansion

V. Summary and outlook

Non-commutativity of IBP Equations

> IBP Equations for Integral Reduction

$$0 = \int [dl] \frac{\partial}{\partial l_i^\mu} \left(\frac{q_j^\mu}{\prod_a D_a^{\nu_a}} \right) \qquad \qquad \left(\sum_{a,b} F_{ba}^{(m)} 1_b^- 1_a^+ + \sum_a F_a^{(m)} 1_a^+ + F_0^{(m)} \right) J(\nu) = 0$$

$$\qquad \qquad \left\{ \begin{aligned} 1_a^+ J(\nu) &= \nu_a J(\nu + e_a) \\ 1_b^- J(\nu) &= J(\nu - e_b) \end{aligned} \right.$$
 • Linear Relations from Full Derivatives

- ightharpoonup Difficulties: Non-commutativity $[1_b^-, 1_a^+] = \delta_{ab}$
 - Laporta algorithms: Large Linear System.
 - Symbolic Rules (Smirnov): complexity from non-commutative nature of IBP

S. Laporta: hep-ph/0102033

A.V. Smirnov, V.A. Smirnov: hep-ph/0606247

A.V. Smirnov, V.A. Smirnov: hep-lat/0509187

Large Index Limit & its Expansion

\triangleright Use large index (ν_a) limit to resolve the structure

- Subtitute $v_a \to n + v_a$, take limit $n \to \infty$; $j(v) \coloneqq J(n + v)$
- Consider leading behavior in 1/n, then make perturbation

> Asymptotic behavior at large n limit

- Single out terms involving 1⁺_a
- Asymptotic IBP made up of commutative difference operator Δ_a^\pm
- Linear Difference Equation at leading order

$$(F_{ba}^{(m)}\Delta_b^-\Delta_a^+ + F_a^{(m)}\Delta_a^+)j(
u) = O(1/n)$$

$$egin{align} \Delta_a^\pm j(
u) &:= j(
u \pm e_a) \ [\Delta_a^\pm, \Delta_b^\pm] &= 0, \quad \Delta_a^+ \Delta_a^- &= 1 \ 1_a^+ &= n \Delta_a^+ (1 + O(1/n)) \ \end{gathered}$$

Unperturbed Solution: Characteristic Equation

> IBP in leading order of 1/n

$$(F_{ba}^{(m)}\Delta_b^-\Delta_a^+ + F_a^{(m)}\Delta_a^+)j(
u) = O(1/n)$$

- Opartors Δ_a^{\pm} , $f^m \equiv \sum F_{ba}^{(m)} \Delta_b^- \Delta_a^+ + \sum F_a^{(m)} \Delta_a^+$ commute with each other
- Feynman Integrals (FIs) are lying in the zero eigenspaces of $f^{(m)}$

$$\Longrightarrow$$
 FIs can be expressed as linear combination of Δ_a^{\pm} 's eigenfunctions.

$$j(\nu) = \sum_k C_k j^{(k)}(\nu)$$

$$\Delta_a^+ j^{(k)} = A_a^{(k)} j^{(k)}$$

> Eigenvalue problem

• Eigenvalues of operators Δ_a^{\pm} satisfy characteristic equations:

$$egin{aligned} F_{ba}^{(m)}B_bA_a+F_a^{(m)}A_a&=0, &orall m\ A_aB_a-1&=0, &orall a \end{aligned}$$

$$\Delta_a^{\pm} J^{(k)} = (A_a^{(k)})^{\pm 1} J^{(k)}$$

- General solutions can be generated by action of $\Delta_{
m a}^\pm$: $j(
u)=\sum_k C_k \prod_a (A_a^{(k)})^{
u_a}$

Perturbed Solution: Expansion by recursion

> IBP in all orders of n

• Keep all orders in 1/n:

$$\sum_a \left(\sum_b F_{ba}^{(m)} \Delta_b^- + F_a^{(m)}
ight) \Delta_a^+ j(
u) + rac{1}{n} \Biggl(\sum_{a,b} F_{ba}^{(m)} \Delta_b^- \Delta_a^+
u_a + \sum_a F_a^{(m)} \Delta_a^+
u_a + F_0^{(m)} \Biggr) j(
u) = 0$$

· Substitute the perturbation ansatz for each eigenfunction.

$$j(
u) = \prod_a (A_a)^{
u_a} \sum_{k=0} rac{h_k(
u)}{n^k} \qquad \quad h_k(
u) = \sum_{ec{lpha}} c_{ec{lpha}} \prod_a
u_a^{lpha_a}$$

• Matching coefficients in full order IBP. Starting from $h_0=1$, h_k at each order can be reconstructed recursively.

$$\sum_a \left(\sum_b ilde{F}_{ba}^{(m)} \Delta_b^- + ilde{F}_a^{(m)}
ight) \Delta_a^+ h_{k+1}(
u) + \left(\sum_{a,b} ilde{F}_{ba}^{(m)} \Delta_b^- \Delta_a^+
u_a + \sum_a ilde{F}_a^{(m)} \Delta_a^+
u_a + F_0^{(m)}
ight) h_k(
u) = 0$$
 with $ilde{F}_{ba}^{(m)} = F_{ba}^{(m)} B_b A_a, \quad ilde{F}_a^{(m)} = F_a^{(m)} A_a$

Example

> Ex. Bubble Integral

- Propagators defined by $D_1=l^2+1, \quad D_2=(l+p)^2, \quad p^2=s$
- ullet Two Eigenvalues (for s=9): $(A_1^{(1)},A_2^{(1)})=(1/2,1/4), \quad (A_1^{(2)},A_2^{(2)})=(4/5,4/25)$
- Perturbation around 1st Eigenfunctions (1/2,1/4):

$$egin{aligned} h_1(
u_1,
u_2) =& c_{00}^{(1)} - 3
u_1 + rac{5
u_2}{2} -
u_1^2 + 2
u_1
u_2 -
u_2^2 \ h_2(
u_1,
u_2) =& rac{
u_1^4}{2} - 2
u_1^3
u_2 + 3
u_1^2
u_2^2 - 2
u_1
u_2^3 + rac{
u_2^4}{2} \ - rac{7
u_2^3}{2} - rac{27
u_1^2
u_2}{2} + 12
u_1
u_2^2 + 5
u_1^3 \ +
u_2^2 \left(rac{167}{8} - c_{00}^{(1)}
ight) +
u_1
u_2 \left(-rac{91}{2} + 2
c_{00}^{(1)}
ight) +
u_1^2(25 - c_{00}^{(1)}) \ +
u_1 \left(rac{209}{2} - 3
c_{00}^{(1)}
ight) +
u_2 \left(-rac{797}{8} + rac{5
c_{00}^{(1)}}{2}
ight) +
c_{00}^{(2)} \end{aligned}$$

Notice: Some coefficient cannot be determined by IBP, but they don't affect the reconstruction of linear relations for reduction.

Summary: Large Index Expansion

- \triangleright Large index (ν_a) limit:
 - resolve the structure, separate commutative & non-comm. behavior
- > Leading order (unperturbed part):
 - determined by Characteristic Equation of commutative difference operators.
- > Higher order (perturbation):
 - recursive expansion coefficient calculation

- > Reduction Relation:
 - using expansion to reconstruct relation suitable for integral reduction.

Surprising Connection to Syzygy-IBP

Characteristic Equation & Syzygy

- Q: How to better understand the information encoded in characteristic equations? (and to
 - facilitate its solution?)
 - Consider Syzygy-IBP in Baikov Representation. A syzygy vector (g_a, g_0) defined by: $\partial B(z)$

$$\sum_a g_a(z) rac{\partial B(z)}{\partial z_a} = g_0(z) B(z)$$

Baikov Rep:
$$\int [dz] \frac{1}{\prod_a z_a^{\nu_a}} B(z)^{w(d)}$$

Syzygy-constrained IBP:

 $0 = \int\limits_{-\infty}^{\infty} [dz] \left(rac{\partial g_a(z)}{\partial z_a} + w(d)g_0(z)
ight) B(z)^{w(d)}$

Syzygy-IBP In operator form:

- $ig(1_a^+ g_a(1_b^-) + w(d)g_0(1_b^-)ig)J(
 u) = 0$
- Taking 1_a^+ -related part, syzygy g_a can give an alternate derivation of Char. Eqns.;
- Moreover, linear syzygies ($\deg g_a \le 1$) gives exactly the same Char. Eqns. as in previous derivation.

$$g_a^{(m)}(z) = \sum_b F_{ba}^{(m)} z_b + F_a^{(m)}$$

Now Char. Eqns. can be written as:

$$f^{(m)}(A,B) = \sum_a g_a^{(m)}(B) A_a = 0$$

Elimination of Char. Eqns & Module Intersection

> Intersected Syzygy Module

J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann, Y. Zhang: hep-th/1805.01873

- Further constraint put on syzygy-IBP, make combination of $\{g^{(m)}\}_{m=1}^K$ so that no increment of power in denominators. $h_a(z)=\sum_m p_m g_a^{(m)}(z),\quad h_a\propto z_a$
- In other word: $h\in M_{int}=M_{syz}\cap M_{pd}, \quad M_{syz}=\left\langle g^{(m)}
 ight
 angle _{m=1}^{K}, \quad M_{pd}=\left\langle z_{a}e_{a}
 ight
 angle _{a=1}^{N}$

> Module Intersection -> Elimination

• For the solution of Char. Eqns, module intersection gives a set of A-eliminated equations.

$$\tilde{h} = \sum_{m} p_{m} f^{(m)} = \sum_{a,m} p_{m}(B) g_{a}^{(m)}(B) A_{a} = \sum_{a} h_{a}(B) A_{a} = \sum_{a} \frac{h_{a}(B)}{B_{a}}$$

• As Groebner basis in lex. order of A-eliminated equations usually gives explicit form of the solutions $h_N(B_N) = 0$, $B_i = h_i(B_N)$.

Elimination of Char. Eqns & Module Intersection

> Inverse Problem: Elimination -> Module Intersection

- Inverse Problem: Can we constructed construct a module-intersected syzygy $h_a'(z)$ from each A-eliminated Equation h(B) from $\{f^{(m)}(A,B)\}_{m=1}^K$? Is $h\mapsto h'$ a map (unique assignment exists)?
- Answer: h' exists, but not unique: they can differ by h''(z), s.t $\sum_a h''_a/z_a = 0$.

> Summary

- Characteristic equations share the same structure and information as linear syzygy, both from 1_a^+ -related part of the IBP.
- Module intersection offers a referential method to solve the characteristic equation (elimination of A's).

Summary and outlook

- > IBP is the main obstacle of precise computation
- The new representation provides various ways of asymptotic expansion
- > Large index expansion
- > Optimistic to overcome multi-leg FIs computation beyond one-loop, and to meet the requirement of high-precision LHC data

Thank you!

Stay tuned!