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Outline

= Status and plan of the Large Hadron Collider

» Higgs Physics

= Top Physics

» Prospect for the High Luminosity LHC

Disclaimer:

most direct BSM searches, electroweak, QCD measurements,
flavor physics, heavy ion physics are not covered
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The Large Hadron Collider
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LHC Timeline and Evolution

= 1983-1994: Concept, magnet feasibility, and CERN Council approval

= 1998-2008: Civil engineering, magnet installation, hardware
commissioning

= 2010-2025: Physics exploitation (Run 1-3)

= 2026-2029: Long Shutdown 3 (LS3) — HL-LHC installation

= 2030-2040 + : HL-LHC operation, delivering up to 3000 fb—!
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Run 3 Performance and Achievements

= Routine operation at ~ 2x design luminosity
= Average production rate: 0.83 fb~!/day, peak: 1.5 fb—!/day
= Accumulated luminosity: 415 fb=! @ 13 TeV + 30 fb—! @ 7 TeV
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Run 3 Performance and Achievements

= Routine operation at ~ 2x design luminosity
= Average production rate: 0.83 fb~!/day, peak: 1.5 fb~!/day
= Accumulated luminosity: 415 fb~! @ 13 TeV + 30 fb~! @ 7 TeV
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High Luminosity LHC

= from mid-2026 to mid-2030
Long Shutdown 3

= installation of new magnets and
other components for HL-LHC

= Run 4 will continue to run at
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Higgs boson discovery
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= The “Higgs mechanism” was proposed in 1964 by Peter Higgs,
and Francois Englert and Robert Brout, independently

= In 2012, it was observed by both ATLAS and CMS experiment

= Since then, LHC experiments continue to characterize the
Higgs boson
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Higgs boson productions and decays at the LHC

Terms in the SM lagrangian tell us how the Higgs boson might be produced at the LHC and how they
might decay
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Higgs Couplings and the k Framework

= Coupling-modifier framework: test for
deviations from SM
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= Ky scales all vector-boson couplings, k¢
all fermionic ones

= Run 1-3 measurements: consistent with
SM within 5-10 %

= Couplings follow particle mass
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Precision Measurement of Higgs boson properties

LHC experiments performed a suite of precision measurements
and searches for rare decays
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Higgs mass
measurement
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Detailed Higgs Coupling Measurements by Channel

= Production modes: ggF, VBF, VH, ttH,
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Higgs Total Width Measurements

= Standard Model expectation: [PM ~ 4.1 s =
MeV H
= Indirect methods: on-shell / off-shell
ratio in H—2Z, WW ¢ zs
RiKf
Oon X
r 10%&
EW ZZ(—41)+qq production (I=e, j1)
Ooff X Kjkf 1 — SMH signal (HP) *
SM contin. (CP) 4
Hoff M — SMotal (H+CP)

fion M

= The most precise measurements made in
ZZ* final states: ATLAS: 'y = 4.3727
MeV; CMS: 3.0%3:2 MeV
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Higgs total width constraint from top Yukawa processes

ATLAS also made a novel measurement using top-Yukawa induced processes
to constrain Higgs total width

= Proposed by Qing-Hong Cao, et al
(Phys.Rev.D 95 (2017) 5, 053004

)

= Avoid assumptions made about
running of ggH coupling, which is
unknown when BSM is present

= I'H’exp < 75 MeV (I‘H,obs < 450
MeV)

= always important to check the

same parameter using
complementary approaches

Phys. Lett. B 861 (2025) 139277

Berkeley

UNIVERSITY OF CALIFORNIA


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2023-22/

Higgs Self-Coupling and Di-Higgs Production Overview
Measurements of Higgs boson pair production directly probe of the Higgs

potential:
V(h) = Imih® + Avh® + 2h* + .
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Combined Di-Higgs Results and Self-Coupling Constraints

= Channels combined: bby~y, bbrr, bbbb, bbWW, bbZZ, bbVV
= ATLAS Run 2 combination: 1.2 < r) < 7.2 (95 % CL)

= CMS Run 2 combination: 3.4 < k) < 9.8

= ATLAS + CMS combined (280 fb~1): 1.1 o (obs), 1.3 & (exp)

= Extended fits including single-Higgs parameters tighten the constraint to
13 <Ky <61
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Top Quark Sector

= The top quark is the most
massive elementary particle in

the Standard Model (SM)

= Its large Yukawa coupling
suggests that the top quark
plays a unique role in the
electroweak symmetry
breaking

= Measurements and searches
involving top quarks could
help us to uncover Beyond the
SM physics
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The LHC is a top quark factory

Cross sections of Top quark processes span over several orders of

magnitudes!
Top Quark Production Cross Section Measurements Status: May 2025
8 ATLAS Preliminary ' Theory
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tt Production Near Threshold — Background and Common
Approach

= Near threshold (m;~2m;~345 GeV) the system becomes non-relativistic:

— gluon exchange induces QCD binding effects — quasi-bound toponium
enhancement
— potential interplay with virtual Higgs exchange and electroweak (EW) loops

= Both CMS and ATLAS study this region using full Run-2 datasets
— high-precision reconstruction of dilepton tt events

— profile-likelihood fits in (my, spin-correlation observables)
— compare pQCD predictions vs NRQCD-reweighted models
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CMS Results: Observation of Threshold Enhancement

= Full Run-2 dataset (138 fb—!, dilepton channel)

s Clear excess in m;z 340-380 GeV and spin-correlation observables

= Fit with pseudoscalar (7;) model gives o(7;) = 8.8732 pb vs 6.4 pb
(NRQCD prediction)

= Background-only hypothesis excluded at > 5o
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ATLAS Results: Confirmation and Top-Yukawa Constraint

= Dedicated Run-2 analysis (140 fb~!, dilepton and lepton+jets channels)
= Observed (Exp.) significance = 7.7 ¢ (5.7 o)

= Measured o(ttnrqep) = 9.0 4 1.3 pb vs theory 6.4 pb

= Consistent with CMS result and NRQCD predictions

= Extracted top-Yukawa coupling from EW effects:

Y2 <21 (|ke| < 1.45, 95% CL)

5

o 1410 ]

3 o N

& ATLAS Preliminary oo W VWijets

B 12 Vs=13TeV, 140.1 fb™! - i w B

2 - 3 = Ziets 4 D

2 [ POWHEG V2 hvqg + PYTHIA 8 tt, post-fit W= X 77/ Totaluncenainty q

& 10— e Fakes il

& C ~1<Chan< 5 -4 <Cnan<} 3<Cnan<1 bl
0.8 —-1<Chai<—§ | —5<Cha<y 3<Cha<t ~1<Cha<-§ | =5 <Chi<y 3<Cha<t “1<Chi<—} | —5<Chai<y $<Chac<t 7

2500~ o o o - - —— y(fixraco) = 1.40

Data - Bkg.

Data/ Pred. |

UNIVERSITY OF CA




Observation of the Four-top production

The simultaneous production of four top quarks has a cross section of ~ 12
fb at the LHC13 TeV

, ; = Excess in four-top
%f :§< i < signal like GNN region
0 ! = The signal is > 60 from

the background-only
hypothesis

= The size of the four-top
signal is almost twice as
large the SM prediction,
but it is still within 2 o

Data / Pred.

GNN score
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Constraint on the Higgs-Top Yukawa from Four-Top

= 5¢ T T 3 = = T T T T = —
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= The overall strength of the H-t interaction is about 1.8 +0.3,
but within 20 from SM

= The uncertainty is small thanks to the rate's quartic
dependence on k;

s ATLAS CP interpretation inspired by Phys. Rev. D 99, 113003
(2019) (Qing-Hong Cao et. al).
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Search for Rare Top Quark decays

The LHC has produced a few hundred millions of tt events, a large sample to
search for BSM top quark decays
Example: Flavor Changing Neutral Current

At LHC, top FCNC searches focus on
vertices such as

= tg-g  tg

= t-q-Z t-g-H

FCNC decays

where q is an up-type quark (u,c)

= Searches are designed to capture
both FCNC decays in tt and single
top production via FCNC vertex FCNC production

= Constraints are set on FCNC decay
BR

— separate charm- and up- channels
= Constraints FCNC EFT operators
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ATLAS FCNC tqH search combination

= Combination of four searches in different Higgs decay channels
= Multi-lep analysis contributes to both H — VV* and H — 77, with
H — VV* being the most sensitive channel

ATLAS

H-bb

H-vy

H-Tt

H->w?*

Combination

Vs =13 TeV, 140 fo™'

| B(t—Hc) =0 4
—— Observed
E=== Expected £10 |
---- Expected +20

M
5

SRRV
95% CL limit on B(t — Hu) x 10*

0

H-bb

H-vyy

H-Tt

H->wW*

Combination

ATLAS Vs =13 TeV, 140 fo!
T

B(t— Hu) =0
—— Observed
E==8 Expected £10 |
---- Expected 20

SR S
95% CL limit on A(t —» Hc) x 10

The combined ATLAS observed (expected) upper limits on the branching

ratio are

« B(t — Hu) < 2.8 (3.0) x 10~
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B(t — Hc) < 3.3 (3.8) x 107*.
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Prospect for HL-LHC

CMS and ATLAS
will be significantly
upgraded

Both will have all
new silicon trackers
with extended 7
coverage (up to
4.0)

Timing detectors
to mitigate pile-up
Upgraded
electronics for
calorimeter, muon,
data acquisition,
trigger

LHC + HL-LHC =
3000 b~ expected
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New and upgraded forward

and luminosity detectors

Trigger & DAQ upgrades
New muon
chambers &
electronics

New High
Granularity
Timing Detector
(HGTD)

Calorimeter
electronics
upgrade

PatLAs

Trigger/HLT/DAQ Barrel ECAL/HCAL
« Track information in L1-Trigger * Replace FE/BE electronics

* L1-Trigger: 12.5 s latency - output 750 kHz * Lower ECAL operating temp. (8 °C)
« HLT output 7.5 kHz

New all silicon Inner Tracker (ITk)

Muon Systems

* Replace DT & CSC FE/BE
Electronics

+ Complete Muon coverage

in region 1.5<n<2.4

New Endcap Calorimeters
* High granularity
* 3D capable

New Tracker

+ Rad. tolerant — high granularity - significant less material

+ 40 MHz selective readout (pr>2 GeV) in Outer Tracker for
L1 -Trigger

« Extended covarage to =4

New Precision Timing Detector

+ Barrel: Crystal +SiPM

* Endcap: Low Gain Avalanche
Diodes




Prospect for HL-LHC
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Prospect for HL-LHC

Phase space for “natural” SUSY will be severely limited
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Closing remarks

s The LHC has a lifetime of 30+ years, and it is finishing its Run 3 in
summer 2026
— only about O(1/10) of its ultimate dataset
— Physics topics evolve over this life cycle (SUSY and other direct searches
earlier in the program; precision measurement and rare processes more feasible
later in the cycle)
— detectors also improve over time, opening up new capabilities, especially at
the start of the HL-LHC. New searches will be performed, thanks to extended
711 coverage and improved readout and trigger
= Analysis methods and new ideas matter
— Good examples: measurement of four top production, Higgs total width
measurement
— Artificial intelligence and machine learning enables significant improvement,
e.g., it was never expected that the LHC would have over 5 ¢ sensitivity for
Higgs pair production.
= LHC will play a critical role elucidating the nature of any discovery that
might be made by other upcoming high energy physics experiments in
dark matter direct detection, flavor physics, neutrino physics, etc.
— most likely a discovery in a non-collider experiment would suggest signals
obserable at the LHC and/or future collider



