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Scattering amplitudes

In past over 30 years, significant progress has been made 
in the studies of scattering amplitudes.
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1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

⟨ij⟩4

⟨12⟩ · · · ⟨n1⟩ . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.

[Parke, Taylor, 1986]
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formula for elastic scattering, which replaces Eq. (11)
when the nucleus is 6nite, must have the form (YUKAWA)I'2

(Ze'I ' coss-', 8 2

~.(e)=I I .„'p(r)e"'dr'2E' sin sg "nuclear
volume

(13)
P.I

where p(r) is the charge density within a nucleus as a
function of radius vector from the center of the nucleus
and Ag is the momentum transfer vector. The numerical
magnitude of q for elastic scattering is, thus, given by

2If' 2
q= sin —,'8 =—sin-', 8 (14)

Ac

Q.QI
GAUSSI

EXPONENTIAl

as shown in Fig. 2 where
I ptI = ~

ppI. pp and pt are the
incident and scattered momenta, respectively. X in
Eq. (14) is the reduced de Broglie wavelength of the
high-energy incident electron:

K=A/pe. , (15)
qr in Eq. (13) is, thus, a dimensionless phase factor.
The assumption is made once more that the nucleus

does not recoil, or equivalently, that Fig. 2 is imagined
to be in the center-of-mass frame.
It can be shown" that the integral in Eq. (13) can

be reduced, so that
t'Zes) coss gsrst" singr

a, (8)=I I p(r) 4vrrsdr . (16)
E 2EJ sin4-';6I, ~ p qr

Since the quantity in square brackets multiplies the
point charge cross section given by Eq. (11), it is
customary to follow the precedent established in the
electron diffraction and x-ray diffraction analogs of this
equation and call this quantity

4xP= —p(r) sin(qr)rdr
q Jp

the "form factor" or "structure factor" corresponding
to a finite nuclear charge distribution. Indeed, the
analogy is very close" and it is merely necessary to
replace the electron cloud of an atom by the proton
cloud of a nucleus. If the charge density in Eq. (16) is
normalized to unity, the form factor F is a dimensionless
quantity.
In dealing with the first Born approximation, the

central idea is as follows: To obtain the actual scattering
from a finite nucleus, it is necessary merely to multiply

FIG. 2. The mo-
mentum transfer q
in electron scatter-
ing. For elastic scat-
tering in the center-
of-mass frame lpil= Ipal.

—Pp= q

' See, for example, Z. G. Pinsker E/ectroe Digructioe (Sutter-
worth Scientific Pubiications, London, 1955), p. '148, Eq. (7,25).

0.00I

0.000I

FIG. 3. The square of the form factor for typical charge
distributions.

the point charge scattering cross section by the square
of a form factor appropriate to the particular model of
a nucleus under consideration. This procedure makes
the calculations quite direct and usually quite simple,
since it is only necessary to evaluate a single quadrature
I-Eq. (17)'j. For light nuclei this is satisfactory. Unfor-
tunately, for medium and heavy nuclei, this procedure
fails. As is weH. known, the first Born approximation is
equivalent to considering both the incident and dif-
fracted waves as plane waves. Actually, the waves are
distorted by the intense nuclear electromagnetic fieM, ,
so that they can no longer be considered plane waves.
Perhaps an equivalent way of saying this is that the
first Born approximation amounts to a single scattering
in the force field, while the exact scattering depends on
a plurality of scatterings in the same force field.
In any event, the application of the Born formalism

to elastic scattering provides a most valuable tool for
analyzing electron scattering by light nuclei and is of
qualitative value in discussing heavier nuclei. We shall
make further remarks about the accuracy of the first
Born approximation at a later time.
Making use of Eq. (17),we shall now give the results

for a number of useful nuclear models. In order to
present the calculations in the most succinct way, we
have prepared in Table I2' a series of form factors for
several nuclear charge density distributions. In the
table "a," represents the root-mean-square radius,
weighted according to charge, and defined as

a= r24~r'pdr =4~ pr4dr,
4p p

~' This convenient form of the table is due to E. E. Chambers.
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“Generalized” form factors
Hybrids of on-shell states and off-shell operators:

form factors
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)
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⟨p1p2…pn |0⟩ ⟨𝒪1𝒪2…𝒪n⟩
Scattering amplitude Correlation functions



Applications of form factors
• Operator classification and spectrum

• EFT amplitudes

• IR divergences (Sudakov FF)

• Correlation functions (EEC, etc..)

• New hidden structures beyond amplitudes
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Figure 1: Master integrals for the planar two-loop minimal form factors.
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Figure 2: Complete set of unitarity cuts for the planar two-loop form factors.

where master integrals Ii correspond to the topology and labeling given in Fig. 1. The master
coefficients ci are what to be computed. The spanning set of cuts used to fix all coefficients
are given in Fig. 2. Note that the two-loop minimal form factors of length-3 operators have
no sub-leading-color contribution, thus the set of planar cuts are enough to fix the full results.
More details can be found in [6].

4 Results and analysis

The master integrals in Fig. 1 are known in terms of 2d harmonic polylogarithms [30, 31].
Together with IBP coefficients, the form factors can be written in explicit functional form,
from which one can extract the wanted physical information.

The bare form factors contain divergences and can be schematically expanded as:

Loop form factor= (Universal IR div.)+ (UV div.)+ (Finite part) , (17)

where the infrared (IR) divergences depend only on the configuration of external on-shell
states, while the UV divergences are related to the operator and coupling renormalization.

Operator renormalization

In dimensional regularization, both IR and UV divergences are regularized by ✏ = (4� D)/2,
and it may seem non-trivial to disentangle the two divergences. Fortunately, this problem can
be easily solved, thanks to the universal structure of IR divergences. In particular, the two-loop
IR can be obtained by the Catani form [32], which is determined by the one-loop form factor
together with some universal functions independent of operartors.

After subtracting IR divergences, the obtained UV divergences can be eliminated by per-
forming operator renormalization. The renormalization constant Z in general takes a matrix
form as:

OR,i = Z j
i OB, j , (18)

since different operators in the same basis can generally mix with each other under renormal-
ization. From the renormalization constant, one can further define the dilation operator as

D= �d log Z
d logµ

. (19)

5

RenormalizationSudakov form factor EFT amplitudes



“Higgs” EFTHiggs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

Effective gluon-Higgs vertex:

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0
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, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log
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T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can

32

Dimension-7 operators

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.

– 3 –

Dimension-5 operator
O0 = Htr(FμνFμν)
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1 Introduction

O1 = Htr(F ⌫
µ F ⇢

⌫ F µ
⇢ ) , (1.1)

O2 = Htr(D⇢Fµ⌫D
⇢Fµ⌫) , (1.2)

O3 = Htr(D⇢F⇢µD�F
�µ) , (1.3)

O4 = Htr(Fµ⇢D
⇢D�F

�µ) . (1.4)

– 1 –

Higgs plus jet production 
p

p
g H

A(qH,1g,2g, …, ng) = F𝒪=tr(F2)(1g,2g, …, ng)



Tree-level form factors



A warm-up exampleA warm-up

(LSZ reduction)

Scattering amplitudes in massless scalar theory with      interaction:



A warm-up exampleA warm-up

LSZ reduction for the first two fields, but 
only Fourier transformation for the third 

How about LSZ reduction for part of the fields?



Composite operatorA warm-up

LSZ reduction for elementary fields, 
Fourier transformation for the operator

More interesting case with operator inserted:

+ (t, u channel like diagrams)



MHV form factor ?MHV form factor?
MHV (color ordered) amplitudes (Parke-Taylor): 

(firstly found by computing Feynman diagrams)

Do we have MHV formula for (color ordered) form factor ?

A four-point example (in N=4):



MHV tree-level form factorsMHV form factor

MHV like structure implies the underlying simplicity of form factor !

MHV rules, BCFW recursion relation, unitarity method can be applied 
efficiently.



“On-shell” method

“Modern”on-shell method

Minimal blocks Tree-level Loop-level

3pt Amp

Minimal FF

4pt High-point

BCFW CSW

1-loop
High-loop

Integrand

Unitarity-IBP



Full-color integrand up 
to 4 loops

Integrated results at 3 
loops

Loop-level form factors
ℱn = ∫ d4x e−iq⋅x⟨p1, . . . , pn | tr(F2)(x) |0⟩

Lin, GY, Zhang, 2021

Full-color integrand up 
to 5 loops

Integrated results at 4 
loops

GY, 2016
Boels, Kniehl, Tarasov, GY 2012

Boels, Huber, GY 2017
Guan, Lin, Liu, Ma, GY 2023Huber, von Manteuffel, Panzer, 

Schabinger, GY 2020

Lin, GY, Zhang, 2021

Integrated results 
at 2 loops
Guo, Wang, GY, 2022
Guo, Wang, GY, Yin  2024

See also: Dixon, Gurdogan, Liu, McLeod, 
Wilhelm 2021, 2022; Dixon, Xin 2024



Computational methods

𝒪3 = ϕ∂μϕ∂μϕ

𝒪2 = tr(FμνFμν)

• On-shell unitarity method

• Color-kinematics duality

• Master-integral bootstrap

Simple tree blocks -> Higher loop results

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 

double-copy

CK-duality

References

At loop level, a generalization of the above relations provides very strong constraints 
for the integrand. Hundreds of diagrams can be determined by only very few diagrams, 
which we call the master graphs.

Sudakov form factor is a key observable to 
understand the infrared (IR) divergences of 
amplitudes, as well as the factorization 
property of QCD.
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
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Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 
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Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, "New Relations for Gauge-Theory 
Amplitudes", Phys.Rev. D78, 085011 (2008).
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The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1
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Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],
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At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
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+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.
In QCD, the known CAD has the same maximal tran-

scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies

Cusp Anomalous dimension (CAD)

Diagram-expansion 
up to 3 loops

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory
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Definition Logarithmic behavior
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where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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[4] Z. Bern et.al., "Simplifying Multiloop Integrands and Ultraviolet Divergences of 
Gauge Theory and Gravity Amplitudes", Phys.Rev. D85, 105014 (2012).
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5
# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand

ℱ5-loop
2 = F tree

2
306
∑
i=1 ∫

L
∏

j
dDℓj

1
Si

Ci Ni
∏αi

P2αi

Four master 
graphs @    
5-loop:

Ten 4-loop 
non-planar 
topologies

When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = − 3072 × (1.60 ± 0.19) 1

N 2c

Sudakov Form Factor in N=4 SYM 
Up To Five Loops

+ ++
(a)

q
p1

p2

(a)

q

p1

p2

the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].

(a)

q

p1

p2

(b)

q

p1

p2

Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.

q

p1

p2

(a) (b) (c)

q

p1

p2

q

p1

p2

(d) (e) (f)

q

p1

p2

` q

p1

p2

` q

p1

p2

`

Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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[6] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nucl.Phys. B425, 217 
(1994); R. Britto, F. Cachazo, and B. Feng, Nucl.Phys. B725, 275 (2005).

[5] T. Becher, M. Neubert, "On the Structure of Infrared Singularities of Gauge-
Theory Amplitudes", JHEP 0906, 081 (2009).

A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + '(ϵ3)

I (a) = [(ℓ3 − p1)2]2 ,

I (b) = (ℓ3 − p1)2 [ℓ2
4 + ℓ2

6 − ℓ2
3 + (ℓ3 − ℓ4 + p1)2 + (ℓ3 − ℓ6 − p1)2] ,

I (c) = [(ℓ3 − p1)2]2 ,

I (d ) = (ℓ3 − p1)2 [(q − ℓ3 − ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ CuNu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.

Large number of diagrams -> Very few “master” diagrams

Construct final results directly using physical constraints

Bern, Dixon, Durban, Kosower 1994; 
Britto, Cachazo, Feng, 2003

Bern, Carrasco, Johansson 2008

Guo, Wang, GY 2021



Sudakov form factor

FL−loop
tr(F2),2 (1g,2g)



Sudakov form factor

Leading IR singularity -> Cusp anomalous dimension

FL−loop
tr(F2),2 (1g,2g)

log F2(1,2) ≃ −
∞

∑
l=1

g2l(
γ(l)

cusp

ϵ2
+

𝒢(l)
coll

ϵ )(−q2)−lϵ + 𝒪(ϵ0)

Logarithm behavior is well-understood:
For dim-reg representation, see:  
Magnea and Sterman 1990; 
Sterman and Tejeda-Yeomans 2002 
Bern, Dixon, Smirnov 2005



Color structure

Up to three loops, only quadratic Casimir appears:

At four-loop, there is a new quartic Casimir which contains non-planar part



Casimir scaling conjecture

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we explicitly check 
that the constraints exclude the appearance of higher Casimir 
invariants at four loops.” 

In "On the Structure of Infrared Singularities of Gauge- Theory Amplitudes", 
JHEP 0906, 081 (2009) 
Thomas Becher and Matthias Neubert conjectured that:

An explicit four-loop computation is needed.



Four-loop compact integrand 

Four-loop form factor integrand was obtained by: 
color-kinematics duality and unitarity:

[Boels, Kniehl, Tarasov, GY 2012]
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Figure 1. Integral topologies that contribute only to the planar form factor at four loops.
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Figure 2. Sample integral topologies that contribute to the non-planar form factor at four loops.
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Figure 3. Integral topologies that do not have dLog numerators.

where Di are twelve propagators and N(li, pj) are dimension four numerators in terms of

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice is

not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.
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where Di are twelve propagators and N(li, pj) are dimension four numerators in terms of

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice is

not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.
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where Di are twelve propagators and N(li, pj) are dimension four numerators in terms of

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice is

not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.
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non-planar

compact form and with only quadratic loop 
momenta in the numerator.

Table 5 (continued). The result for the two-point four-loop form factor.

Graph Numerator factor Color factor
Symmetry

factor

(14) −N13 2N4
c δa1a2 1

(15) −N13 0 1

(16) N13 0 1

(17)

−(ℓ3 · p1)(ℓ5 · (p1 + 5p2))

+(ℓ3 · p2)(ℓ5 · (3p1 − p2))

+(p1 · p2)
[

2(ℓ3 · ℓ5) + 2ℓ4 · (p1 − p2)

−3ℓ5 · (p1 − p2)
]

+ 1
7(α1 + 1)×

(ℓ3 · p12 − p1 · p2)(ℓ5 · (7p1 − p2))

2N4
c δa1a2 1

(18) −N17 0 2

(19)

(ℓ3 · p1)
[

ℓ5 · (p1 + 5p2)− ℓ6 · (p1 − 3p2)
]

−(ℓ3 · p2)
[

ℓ5 · (3p1 − p2) + ℓ6 · (5p1 + p2)
]

−(p1 · p2)
[

2ℓ3 · (p1 − p2 + ℓ5 − ℓ6)

−3(ℓ5 + ℓ6) · (p1 − p2)
]

−1
7(α1 + 1)(ℓ3 · p12 − p1 · p2)
×[ℓ5 · (7p1 − p2) + ℓ6 · (p1 − 7p2)]

2N4
c δa1a2 1

(20) N19 0 2

(21)

−(ℓ3 · p1)2 − (ℓ3 · p2)2 − 6(ℓ3 · p1)(ℓ3 · p2)
+(p1 · p2)

[

2(ℓ3 · ℓ3) + 4(ℓ3 · p1) + p1 · p2
]

+(α1 + 1)
[

(ℓ3 · p12 − p1 · p2)2

−2
7(ℓ3 · (ℓ3 − p12) + p1 · p2)(p1 · p2)

]

(2N4
c + 24N2

c ) δa1a2 2
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N21 =



Four-loop Sudakov form factor

• Numerical integration: Boels, Huber, GY 2017

Finding Uniform Transcendental (UT) basis is the key

• Analytic integration: Huber, von Manteuffel, Panzer, Schabinger, GY 2020 
(See also: Henn, Korchemsky, Mistlberger 2020)

γ(4)
cusp,NP = − 3072 × (

3
8

ζ2
3 +

31
140

ζ3
2)

1
N2

c
= − 3072 × 1.52

1
N2

c

As mentioned above, physics dictates that the coefficients of orders ϵ{−8,−7,−6,−5,−4,−3}

vanish in the final result, which is numerically indeed the case and provides a strong con-

sistency check of our computation. The coefficients of order ϵ−7 must even vanish in each

of the 23 UT integrals separately. The orders ϵ{−8,−6,−5,−4,−3} are in most cases non-zero in

individual integrals but cancel in the final result. As described below, the precision of the

orders ϵ{−8,−6,−5,−4} is good enough to translate the reported numbers into small rational

multiples of {1, ζ2, ζ3, ζ4}. After doing so, these orders also vanish analytically in the final

result of the nonplanar form factor.

As can be seen from table 1, the first non-zero term is at order ϵ−2. The result 1.60±0.19

has a statistical significance to deviate from zero of 8.4σ. Adding individual uncertainties

linearly to account for potential systematic effects would yield 1.60 ± 0.58; still significantly

non-zero.7 We will argue below that there is no evidence for systematically underestimated

error bars in our calculation.

Translating the result of the order ϵ−2 of the nonplanar form factor into a result for the

sought-after nonplanar four-loop CAD yields for gauge group SU(Nc)

γ(4)cusp, NP = −3072 × (1.60 ± 0.19)
1

N2
c
, (5.7)

where the prefactor 3072 = 2×24×64 is the normalisation stemming from the permutational

sum, the colour factor [42], and the denominator of (2.5), respectively. Compared to the

planar result γ(4)cusp,P = −1752ζ6 − 64ζ23 ∼ −1875, we observe that the nonplanar CAD has

the same sign. If we use Nc = 3, its value becomes γ(4)cusp, NP ∼ −546 ± 65, i.e. the planar

contribution is a factor of 3 – 4 larger.

The result at order ϵ−1 is also given in table 1. This contains the nonplanar four-loop

collinear anomalous dimension:

G(4)
coll, NP = −384× (−17.98 ± 3.25)

1

N2
c
, (5.8)

where the prefactor 384 = 2× 24 × 8 has the similar origin as γ(4)cusp, NP above. Interestingly,

compared to the four-loop planar collinear AD result, G(4)
coll, P = −1240.9(3) [89], we observe

that the nonplanar central value result +(6904±1248)/N2
c indicates the sign is different; it is

also different from the sign of the nonplanar cusp AD above. This is a new feature comparing

to all known planar results in which collinear AD always has same sign as cusp AD.8 Note that

our result is in tension with a vanishing result at the 5.5σ level. The largest contribution to

the error budget within the integrals at this order comes from I(27)8 , which contributes ∼ 1.86,

followed by four integrals which contribute between 0.95 and 1 each, whereas all others are

below 0.75. We mention that the linearly summed error is obtained as −17.98 ± 11.89.

7Note that these numbers are slightly improved compared to those in [15].
8One should also keep in mind that unlike cusp AD, collinear AD is scheme dependent, thus the sign may

change in different schemes.
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Casimir scaling conjecture is incorrect.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Full-color five-loop N=4 integrand is also known. (N4LL resummation)GY, 2016



High-dimensional operators and 
two-loop renormalization

FL−loop
tr(F2),2 (1g,2g)

• 1804.04653, 1904.07260, 1910.09384, with Qingjun Jin（靳庆军） 
• 2011.02494 with Qingjun Jin, Ke Ren（任可）;  
• 2202.08285, 2208.08976; 2301.01786, 2312.08445, 2510.19696 with 

Qingjun Jin, Ke Ren; Rui Yu（余睿）
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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ℱn = ∫ d4x e−iq⋅x⟨p1, . . . , pn |𝒪(x) |0⟩

• Two-loop renormalization and spectrum

• Two-loop EFT amplitudes

• Operator basis

D-dimensional on-shell methods using form factor formalism:



Minimal tree form factors

Dictionary for YM operators:

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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4-dim

The map of D results from spinor representation of momentum p↵̇↵ = �̃↵̇
p�

↵
p . As for field

strength F , first one takes decomposition

Fµ⌫ ! F↵↵̇��̇ = ✏↵� f̄↵̇�̇ + ✏↵̇�̇f↵� (2.27)

to obtain self-dual and anti-self-dual components

f̄↵̇�̇ =
1

2
✏↵�F↵↵̇��̇ , f↵� =

1

2
✏↵̇�̇F↵↵̇��̇ . (2.28)

Then one makes use of LSZ reduction formula

h~p|Fµ⌫(0)|⌦i = (�i)["⌫pµ � "µp⌫ ] (2.29)

to get their final matrix elements

h~p|f↵�(0)|⌦i =

(
0, h = +

�
i

p
2
�↵�� , h = �

, h~p|f̄↵̇�̇(0)|⌦i =

(
i

p
2
�̃↵̇�̃�̇ , h = +

0, h = �
. (2.30)

Here, "µ denotes polarization vector of external gluon. We summarize the correspondence

between operators and on-shell spinors in Table 3, and the example on reconstructing op-

erators from spinor-helicity formalism will be given in upcoming context, see (2.41). The

correspondence listed in Table 3 is not limited within pure Yang-Mills theory, and the result

can be generalized when fermions enter in.

The above on-shell language has several advantages:

1. Equivalent relations between operators take much simpler forms. Equation of motion

holds automatically, and Bianchi identities are translated into Schouten identities:

DµF
µ⌫

! �[��]���̃
�̇ + h��i�̃�̇�

� = 0 ,

DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ ! ��̃↵̇�̃�̇�̃�̇(�↵✏�� + ��✏�↵ + ��✏↵�)

+ �↵����(�̃↵̇✏�̇�̇ + �̃�̇✏�̇↵̇ + �̃�̇✏↵̇�̇) = 0 .

2. Two operators that are equivalent up to higher length components have identical tree-

level minimal form factor, since F
(0)
OL

(1, .., n) = 0 when n < L. For example, following

three operators are equivalent at the level of length 2:

Tr(D⇢Fµ⌫D
⌫Fµ⇢),

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫),
1

4
@2Tr(Fµ⌫F

µ⌫) , (2.31)

and they have the same form factor for arbitrary helicity setting, like s12h12i2 for 1�2�

and 0 for 1�2+.

3. In the previous field theory classification we treat DF contraction and DD contraction

di↵erently. In on-shell language, DD contraction only contributes to scalar factor like

sij . For example:

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫) 2
⌅
Tr(Fµ⌫F

µ⌫)
⇧

) s212h12i
2
2
⌅
h12i2

⇧
.
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.

– 11 –

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.

– 11 –

D-dim

Important for capturing 
“Evanescent operators”

One can translate any local operator into “on-shell” kinematics.

Used in N=4 SYM: Zwiebel 2011, Wilhelm 2014
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Figure 2: The operator diagram of F12D1F34D2F34.

... = 0, + + = 0

(a) (b)

Figure 3: (a): DF rule 2 and (b): Bianchi identity in operator diagram language.

Figure 4: A disconnected operator diagram.

3(a). The Bianchi identity is translated to "three arrow configurations of a 3-vertex add up
to zero" as shown in Figure 3(b).

Operator diagrams can be connected or disconnected. An example of disconnected
diagram is given in Figure 4, and it corresponds to the operator F12F12F34F45F53. The
operator can be divided into two components, F12F12 and F34F45F53, and there are no
Lorentz contractions between these two components. We will henceforth assume the oper-
ator diagrams are connected (unless stated otherwise), as the components can be treated
separately.

3.2 Arrow configurations

If we remove all arrows from an operator diagram, the resulting diagram will be called an
undirected diagram. In the terminology of Feynman diagrams, the undirected diagrams
are vacuum diagrams without external legs.3 There are usually multiple ways to add arrows
to an undirected diagram (or any subdiagram of an undirected diagram), and we will call
them (arrow) configurations.

3
Diagrams with external legs correspond to tensor operators with uncontracted Lorentz indices.
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undirected diagram. In the terminology of Feynman diagrams, the undirected diagrams
are vacuum diagrams without external legs.3 There are usually multiple ways to add arrows
to an undirected diagram (or any subdiagram of an undirected diagram), and we will call
them (arrow) configurations.

3
Diagrams with external legs correspond to tensor operators with uncontracted Lorentz indices.
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A graphic representation of operators
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Primitive configurations

Length-2:

Length-3:

Figure 22: 1-loop primitive configurations in presence of saturated vertices. The arrow on
one of the edges (colored green) adjacent to the saturated vertice shall be removed.

(a) (b)

1

n

...

a

b

Figure 23: Some special cases of one-loop diagrams.

Figure 24: Length-2 and length-3 primitive operator diagrams.

arrows in the loop to the external legs, for example:

D1F24D2F13 = D1F24D1F23 +D1F24D3F12 → D1F24D3F12 = ↑
1

2
D4F12D3F12 (4.8)

Figure 23(b) contains a skeleton snail which was discussed in Figure 10. It can be reco-
ganized as a special case of Figure 23(a), and the only independent primitive configuration
of this structure is D1···nFabFab.

5 Construction of primitive operator basis

With the help of operator diagrams, the complete list of length-n primitive operators can
be obtained by first finding all undirected diagrams with n vertices and R(T ) ↓ 1, and then
generating the primitive configurations of each diagram by examining its skeleton diagram.
The length-2,3 operator diagrams are shown in Figure 24.
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Figure 22: 1-loop primitive configurations in presence of saturated vertices. The arrow on
one of the edges (colored green) adjacent to the saturated vertice shall be removed.
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Figure 23: Some special cases of one-loop diagrams.

Figure 24: Length-2 and length-3 primitive operator diagrams.

arrows in the loop to the external legs, for example:

D1F24D2F13 = D1F24D1F23 +D1F24D3F12 → D1F24D3F12 = ↑
1

2
D4F12D3F12 (4.8)

Figure 23(b) contains a skeleton snail which was discussed in Figure 10. It can be reco-
ganized as a special case of Figure 23(a), and the only independent primitive configuration
of this structure is D1···nFabFab.

5 Construction of primitive operator basis

With the help of operator diagrams, the complete list of length-n primitive operators can
be obtained by first finding all undirected diagrams with n vertices and R(T ) ↓ 1, and then
generating the primitive configurations of each diagram by examining its skeleton diagram.
The length-2,3 operator diagrams are shown in Figure 24.
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Figure 25: The length-4 operator diagrams containing primitive configurations.

T T11 T12 T21 T22 T31 T32

R 1 1 1 1 3 1
GT D4 D4 S2 S2 S2 → S2 S2 → S2

|GT | 8 8 2 2 4 4

Table 1: The ranks and symmetry groups of length-4 operator diagrams.

In this section we first present the primitive diagrams with length-4 and length-5,
and discuss their symmetries. In Section 5.3 we give the number of primitive operators
with length ↑ 7. Last, in Section 5.4, we show that the primitive configurations can be
further refined according to the symmetries of diagrams, which makes it easier to construct
the complete operator basis when the vertex permutations of the diagrams are taken into
account.

5.1 Length-4 primitive operators

The length-n diagrams satisfying R(T ) ↓ 1 can be systematically constructed from skeleton
diagrams with at most n vertices, where skeleton diagrams can be derived from vacuum
diagrams without degree-2 vertices. A detailed algorithm for this procedure is provided in
Appendix C.

Following the algorithm, we obtained the length-4 undirected diagrams with nonzero
rank, which are given in Figure 25.

The diagrams are labelled in the form of Txy. x is the type of symmetry of the diagram
which will be discussed further in Section 5.4, and y is a label to discriminate diagrams
which have the same symmetry. For example, T11 and T12 are two diagrams with the same
symmetry. The ranks and symmetries of the diagrams are listed in Table 1.

In what follow, we discuss the configurations of these diagrams in detail. The configu-
rations of T11 and T12 are arrow-free. For T21, T22 and T32, each of which contains a 1-loop
bubble structure; accordingly, as discussed in Section 4.4, each possesses only one primitive
configuration, as illustrated in Figure 26.
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T11 T21 T31 T32 T33 T34 T41

T51 T52 T53 T54 T55

T61 T62 T63 T64 T65 T71

Figure 29: Length-5 undirect diagrams with primitive configurations.

The primitive configurations for each diagram in DF-form are presented in Table 3
in Appendix D. For instance, the skeleton diagram of T21 consists of a single vertex with
degree 4, thus the number of pritmitive configurations, denoted as R(T21), is 3. The
primitive configurations can be chosen as

P
1
21 =F12F23F45F56D13F46,

(13)(24)P 1
21 =F45F56F12F23D13F46,

P
2
21 ={F12, F23}{F45, F56}D14F36 .

(5.1)

We have also constructed all length→ 7 undirected diagrams with R ↑ 1. The number
of connected diagrams with R ↑ 1 are

Length 2 3 4 5 6 7
# connected 1 2 5 16 58 226

.

5.3 The total number of primitive operators with length → 7

The total number of primitive operators of length-n can be determined by summing the
ranks of all primitive diagrams of length-n. As discussed in the previous section, two
operator diagrams related by a vertex permutation should be treated as distinct diagrams,
unless the diagram is invariant under that permutation ( i.e., the permutation is an element
of GT ). Starting from an undirected operator diagram T with n vertices, we can thus
generate n!

|GT |
distinct diagrams, denoted by SnT .

Suppose the diagram T has RT primitive configurations, then the total number of
primitive configurations in SnT is

R(SnT ) =
n!

|GT |
RT . (5.2)

– 28 –
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Primitive configurations

Explicit construction up to length-7. Jin, Ren, GY, Yu 2025



Unitarity-IBP strategy

We will apply a different strategy which allow overcoming both issues. The key idea is

to apply IBP reduction directly for the cut integrand. The logic is thus outlined as:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (3.1)

whereMi are IBP master integrals. In this way, there is no need to contruct the full integrand,

but one reaches directly to the finally coefficients ci of IBP master integrals. Because the cut

integrand are simpler than the full integrand, there is a significant room of simplification for J: drop mas-

ter and men-

tion Zeng’s

paper

J: drop mas-

ter and men-

tion Zeng’s

paper

the IBP reduction. Furthermore, the coefficients computed by a single cut must be the final

answer, i.e. no ambiguity involved. This is because the master integrals are “unreducible”,

and the coefficients are loop momenta independent.
Y: mention

color factor

and only pla-

nar

Y: mention

color factor

and only pla-

nar

Below we illustrate our strategy in more details.

We will apply D-dimensional unitarity method. We choose to use the planar unitarity

cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[42]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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On-shell unitarity (cut) IBP reduction

∑
i

ci Mi

symmetric property under label permutation. For example, kinematic part of single-trace

operators are invariant under Z4 cyclic permutation, and those of double trace operators are

invariant under 1 $ 2, 3 $ 4 permutation.

Form factors for one plus three minus or three plus one minus are not written in the table.

The results are all zero, because these eight operators do not have ffff̃ or f̃ f̃ f̃f components

under decomposition (2.27).

For length-2 and length-3 operators, the counting of operators in these two di↵erent

approaches agree with each other. However, this is not the case for higher length opera-

tors, where the evanescent operators appear. Such evanescent operators do not show up in

the 4-dim spinor approach, on the other hand the field theory approach is valid for generic

dimensions and can captures these operators. We leave the discussion to future work.

3 Two-loop form factor computation via unitarity

In this section, we compute the one and two-loop form factors of the high dimensional opera-

tors discussed in the last section. Our computation is based on the on-shell unitarity methods

[26–28], where the cut integrands are constructed by sewing tree-level components. Further-

more, we combine the unitary method together with the integration by parts (IBP) reduction

[29, 30]. This “unitarity-IBP” strategy not only makes the computation very e�cient, but

also provides important internal consistency checks for the results. Below we first outline the

main strategy of the computation and then apply it to the concrete form factor computations.

The work flow of our calculation can be illustrated as follows:

F
(l)
���
cut

=
Y

(tree blocks) = cut integrand

IBP with cuts
�����������!

X

cut permitted

ciIi
collect all cut channels
������������������!

X

complete

ciIi = F
(l) ,

where Ii are IBP master integrals. In the beginning, a particular cut channel (or cut configu-

ration) is chosen and one can calculate the cut integrand through tree-level data. In order to

avoid the issue of rational terms, here it is essential to use D-dimensional cut instead of four-

dimensional cut. The resulting cut integrand contains all the integrals whose topologies are

permitted by the chosen cut. As for the integral reduction, we use IBP method combined with

on-shell conditions for the cut propagators. Because terms proportional to cut inverse propa-

gators vanish under cut condition, the expressions of IBP relations can be sharply shortened

and therefore the computing e�ciency is improved. After the cut-constrained IBP reduction,

one obtains coe�cients ci of all the cut-permitted master integrals. Finally, by repeating the

process for di↵erent cut channels, coe�cients of all the master integrals are probed. See also

[31] for discussion.

In this paper we will mostly focus on the three-point form factors of length-three operators

up to two-loop level. In these cases only planar integrals appear (and therefore the planar cuts

are su�cient). This can be understood from a simple color analysis of Feynman diagrams that

– 18 –
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Unitarity cuts and master integrals

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The cuts needed in the 2-loop 3-point form factor calculation. For F (2)
O2

, only the first cuts
are needed.

p1

p2p3

(1)

q

q

p3 q

q

q

p3

p3

p3
p1

p2

p1 p1 p1

p2 p2 p2

(2) (2)′ (3) (3)′

Figure 5. Master integrals of F (2)
O2

captured by the s12 triple cut.

(4) (5) (6) (7)

Figure 6. Master integrals of F (2)
O2

that are not captured by the s12 triple cut.

for integral (5) and (6), since the permutation does not alter the diagram.

The cuts needed for the three-point two-loop form factors are given in Figure 4. These

cuts are all needed for the form factor of Tr(DFDF ), while for Tr(F 3) only the first four

cuts are needed. The form factor F (2)
O2

contains seven master integrals up to permutations of

external legs, as show in Figure 5 and Figure 6. Each cut fixes the coefficients of a subset

of these master integrals. For example, triple cut (b) of Figure 4 in s12 channel is given in

terms of five master integrals in Figure 5, and the coefficients of (2)′ (or (3)′) are related to

that of (2) (or (3)) by flipping symmetry p1 ↔ p2. If a master integral appears in the result

of several different cuts, its coefficient in these cuts must be the same.

The full two-loop 3-point form factor can be given as

F (2)
O2

(p1, p2, p3; q) =
1

2

( 7
∑

i=1

ciMi +
∑

i=2,5

ciMi

)

+ perms(p1, p2, p3) , (3.9)

where Mi correspond to the integrals with label (i) in Figure 5 and Figure 6.

4 Results

The method of last section computes the bare form factors. For the Higgs and three-gluon

amplitudes considered in this paper, all master integrals have been known explicitly in terms
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All cuts that are needed:

4

l
p

FIG. 5. The master integrals of the 2-loop 3-point form factor.
The second double-box master has a numerator (l − p)2. A
propagator with a dot is a double propagator.

ter integrals have been obtained in terms of harmonic
polylogarithms [63, 64]. Thus we obtain the bare form
factors in explicit transcendental functions.

Divergence subtraction and checks.—The bare form fac-
tors contrain both ultraviolet (UV) and infrared (IR) di-
vergences. Our QCD results are regularized in the CDR
scheme, and we use MS renormalization scheme [65]. To
remove the UV divergences in the form factors, both the
gauge coupling and the operator require renormalization.
For the IR divergences, we apply the subtraction formula
by Catani [66].
At two-loop, all poles in 1/ϵm,m = 4, 3, 2 are totally

fixed by the universal IR structure and the one-loop data,
which provides non-trivial consistency check of the re-
sults. From the 1/ϵ UV pole one can extract the two-loop
anomalous dimension of the operator, which is related to
the renormalization constant of the operator by

γ = µ
∂

∂µ
logZ . (14)

Our computations reproduce all known results, includ-
ing the non-trivial two-loop QCD amplitudes of Higgs
plus three gluons with the operator O0 [24] (see also
[67]). For the latter, we match not only the divergences
but also the finite remainders exactly, which provides a
non-trivial check for our computation. The N = 4 com-
putations also reproduce those in [23] and [29].
As a further consistency check of the new results of

dimension-7 operators, we find the form factor results
satisfy exactly the linear relation (8). This is true already
for the expressions in terms of IBP master integrals.

Operator mixing at two loops.—At two-loop the operator
mixing appears. Let us first consider O2. Based on (8),
we can define a new operator

Õ2 = −
3

2
(O2 + 8gYMO1) = −

3

4
∂2O0 . (15)

The new operator Õ2 has no mixing with others. The
anomalous dimension of Õ2 is identical to that of O0,

and the form factor of Õ2 is proportional to that of O0

as

FÕ2
= −

3

4
q2 FO0 . (16)

Below we only focus on the results for the operator O1.
The normalization constant − 3

4 is introduced such that

F (0)

Õ2
(1−, 2−, 3−)/F (0)

O1
(1−, 2−, 3−) = 1/(uvw), where

u =
s12
q2

, v =
s23
q2

, w =
s13
q2

, q2 = s123 . (17)

To study the operator mixing effect for O1, we
first consider the form factor with two external gluons

F (l)
O1

(1−, 2−). The tree and one-loop results are zero,
while at two-loop we obtain

F (2)
O1

(1−, 2−) =F (0)

Õ2
(1−, 2−)

(

−
1

ϵ
+ 2 log s12 −

487

72

)

+O(ϵ1) . (18)

This is completely an operator mixing effect between O1

and Õ2. Furthermore, for the three-point form factor

F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
(19)

= F (0)
O1

(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw

is precisely due to the operator mixing,
and its divergence is consistent with (18).
Similar to (15), we can define a new operator which

avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (20)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (21)

in which the two-loop anomalous dimensions is computed
using (14). We emphasize that it is an important consis-
tency check that the 1/ϵ2 term in the two-loop renormal-
ization constant cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and
subtracting the IR divergences, the two-loop finite re-

mainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of har-
monic polylogarithms, which can be simplified using the
symbology technique for transcendental functions [68].
The final expression takes a remarkable simple form. It
can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (22)

[Gehrmann, Remiddi 2001]

Master integrals are known in terms of 2d Harmonic polylogarithms.



Mixing matrix and spectrum

Dim-16 length-3 operators at 2-loop:
where two block matrices M , N are

M =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
34
3 0 0 0 0 0 0 0 0 0

�
1
3

269
72 0 0 0 0 0 0 0 0

�
209
900 �

5579
18000

712
125 0 0 0 0 0 0 0

�
31
180

53
3600 �

36227
28800

3575983
432000

9793
21600 0 0 0 0 0

�
181
900 �

60979
36000

78487
72000 �

2177
2000

704167
72000 0 0 0 0 0

�
523
3920 �

2201287
29635200

605939
1975680 �

64128769
24696000

3303367
9878400

332422343
29635200

6699071
14817600 0 0 0

�
809
5600 �

12166789
21168000

11202299
7056000 �

73487
36750 �

9182209
7056000

37249
156800

26302879
2116800 0 0 0

�
269
2520

125599
10584000

50369
1323000 �

98317
1176000

73489
392000 �

8625329
3528000 �

97913
756000

90760559
7408800

25354501
21168000

40519
56448

�
19717
176400

3374557
7408800 �

102465523
74088000

5260289
1764000 �

6201763
4939200 �

115070197
24696000

10687837
9261000
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9261000

1025255701
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25511
493920

�
19717
176400 �

2733089
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88146899
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5678651
3528000 �

1966229
12348000

17842339
18522000 �

6878309
4630500 �

58976629
37044000

8569667
9261000

179275483
12348000

�1 0 0 0 0 0 0 0 0 0

�
19
36

139
2400

499
800 0 0 0 0 0 0 0

�
1
3

4
15

121
400

637
800 �

211
800 0 0 0 0 0

�
209
900

6299
21168

6767
35280

71063
88200 �

34723
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25841
58800 �

36091
264600 0 0 0

�
31
180

13843
105840

8317
15120 �

797
35280

5477
35280

2417
3528

611
105840

13975
14112 �

5377
10584 �

3581
10080

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

N =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0
5
2 0 0 0 0

1493
1200

5
36 0 0 0

13
16

16877
14400 �

7319
14400 0 0

1229
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115501
43200 �

9803
43200 0 0

37547
78400

75071
39200 �

497
576

103
1440 0

1613
3360

17401
6720

19
225

1187
2880 0

184259
1058400

65297
23520 �

420373
211680

248791
235200 �

2747
9408

347437
1764000

863371
302400 �
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938797
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78243
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28489
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54403
14700 �

228689
88200

687461
264600 �

485507
5292000

25
12 0 0 0 0

�
143
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2195
288 0 0 0
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120 �

15643
7200

79313
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22723
21600 �
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48 �

2861
5400

443801
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114221
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6017
15120

121
216 �

3661627
1411200

63879443
4233600

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA
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and

Z(2)
O16,d

���
1
✏�part.

=
N2

c

✏

0

BBBBBBBBBBB@

575
144 0 0 0 0 0 0 0

�
23347
14400

46517
5760 0 0 0 0 487

1800 0
3883
4032 �

171823
37800

36597791
3024000 �

29581
16800 0 0 �

1789
4800 0

�
9271
11200 �

35239
50400

74209
168000

188599
18900 0 0 2101

4800 0
3287
84000 �

2048479
1176000

422283
392000 �

2501309
1764000

49211483
3528000

293221
392000

2764807
2116800 �

61
20160

947587
1058400 �

1555357
705600

16831
29400 �

239641
75600 �

381527
2116800

5839021
423360 �

5807
201600

118933
1411200

3349
7200 �

2591
2400 0 0 0 0 150391

14400 0
�

45083
44100

16564
11025

5447
117600

380791
176400

1063
29400 �

545189
352800

1176541
1058400

174229
12600

1

CCCCCCCCCCCA

.

(4.68)

The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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where two block matrices M , N are

M =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
34
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�
1
3

269
72 0 0 0 0 0 0 0 0

�
209
900 �

5579
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712
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�
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3600 �

36227
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60979
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�
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73487
36750 �

9182209
7056000

37249
156800

26302879
2116800 0 0 0
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�
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37044000

8569667
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�1 0 0 0 0 0 0 0 0 0

�
19
36

139
2400

499
800 0 0 0 0 0 0 0

�
1
3

4
15

121
400
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800 �

211
800 0 0 0 0 0

�
209
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6299
21168

6767
35280
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88200 �

34723
176400
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58800 �

36091
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�
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15120 �
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10584 �

3581
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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239641
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201600
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1411200
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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of fabc and dabc sector at one-loop level are

Z(1)
O16,f

=
Nc

✏

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
11
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 7
6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
3
5

71
30 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �
5
4

221
60 �

1
6 0 0 0 0 0 0 0 0 0 0

0 �1 1
10 �

19
30

37
10 0 0 0 0 0 0 0 0 0 0

0 17
84 �

17
28 �

47
70 �

17
28

337
84

5
14 0 0 0 0 0 0 0 0

0 �
3
20

9
20 �1 �

31
20 �

1
4

31
6 0 0 0 0 0 0 0 0

0 13
30 �

13
15

13
10 �

13
10 �

5
2

13
15

961
210

8
15 0 0 0 0 0 0

0 71
105 �

212
105

141
35 �

71
35 �

141
35

79
105 �

38
35

223
35

5
14 0 0 0 0 0

0 17
70

19
105 �

19
70 �

121
70 �

11
42

16
105 �

6
5

127
210

559
105 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 �1 17
6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 �2 9
2 0 0

0 0 0 0 0 0 0 0 0 0 1
3 �2 1

3
43
10 0

0 0 0 0 0 0 0 0 0 0 1
2 �

5
2

5
2 �

11
4

67
12

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(4.64)

Z(1)
O16,d

=
Nc

✏

0

BBBBBBBBBBBB@

13
6 0 0 0 0 0 0 0

�
1
2

41
12 0 0 0 0 0 0

1
2 �2 301

60 �
2
3 0 0 0 0

�1 1 �
3
10

25
6 0 0 0 0

�
2
5

1
5 0 �

1
5

307
60

7
20 0 0

1
3 �1 1

2 �
7
3

13
12

67
12 0 0

0 0 0 0 0 0 9
2 0

0 0 0 0 0 0 7
12

67
12

1

CCCCCCCCCCCCA

. (4.65)

The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f

���
1
✏�part.

=
N2

c

✏

⇣
M N

⌘
, (4.66)
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Two-loop renormalization for higher length operators.

Mixing matrices and spectrum

Two-loop anomalous dimensions for length-3 operators up to dimension 16:
Table 8. Summary of anomalous dimensions for length-2 and length-3 operators. The lower dimension
operators will appear as descendants in the high dimension operators.

dim 4 6 8 10 12 14 16

�
(1)
f,↵ �

22
3 /

7
3

71
15

241
30 ,

101
15

61
6 ,

172
21

331
35 ,

1212±
p

3865
105

�
(2)
f,↵ �

136
3 /

269
18

2848
125

49901119
1404000 ,

8585281
234000

4392073141
87847200 ,

685262197
15373260

231568398949
4253886000 ,

355106171452034±95588158951
p
3865

6576507756000

�
(1)
f,� �

22
3 1 /

17
3 9 43

5
67
6

�
(2)
f,� �

136
3

25
3 /

2195
72

79313
1800

443801
9000

63879443
1058400

�
(1)
d,↵ / / /

13
3

41
6

551±3
p

609
60

321±
p

1561
30

�
(2)
d,↵ / / /

575
36

46517
1440

5809305897±19635401
p
609

131544000
229162584707±225658792

p
1561

4130406000

�
(1)
d,� / / / / 9 /

67
6

�
(2)
d,� / / / /

150391
3600 /

174229
3150

Checks and analysis

Some consistency checks for our calculation have been mentioned above, and here we make a

summary:

1. The O(✏�2) poles of one-loop bare form factors and the O(✏�3),O(✏�4) poles of two-loop

bare form factors have infrared origin and therefore should be totally canceled after IR

subtraction procedure shown in (4.9), (4.10).

2. The O(✏�2) poles of two-loop UV divergences are totally determined by one-loop UV

divergences and �0, as shown in (4.24).

3. At a given dimension, mixing from descendent operators to non-descendent operators

never takes place, such as length-2 to higher length operators in (4.15).

4. As explained in the dimension eight case, mixing from general length-3 operators to

the unique length-2 operator can be probed by form factors with both (�,�,+) and

(�,�,�). So form factors under these two helicity settings should give the same length-

changing matrix elements Z(2)
3!2.

Our results satisfy all these requirements. Some further consistency checks will be also men-

tioned for the computation of finite remainder function in next section.

Let us make a few comments on the anomalous dimensions and dilatation matrix.

• In Table 8, the irrational number appears in the dimension 14 and 16 cases. As eigen-

values of dilatation operators, anomalous dimensions can be obtained straightforwardly

by solving characteristic equation. Alternatively, one can get their series expansions

in �̂ up to arbitrary finite order through perturbation method introduced in quantum

mechanics, which is equivalent to treat dilatation operator as a Hamiltonian of a finite

system, see e.g. [69]. From perturbative calculation, one can find that whether irrational

numbers appear in perturbative expansions is determined by characteristic equation of
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Evanescent operators
2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called

an evanescent operator, if the tree-level matrix elements of this operator have non-trivial

results in general d dimensions but all vanish in four dimensions. In terms of form factors, we

can give a more practical definition: for an evanescent operator Oe
L of length-L, its tree-level

form factors with arbitrary numbers of external on-shell states, are all zero in four dimensions,

but it has a non-trivial minimal form factor in general d dimensions, namely

F(0)
Oe

L,n≥L

∣

∣

4-dim
= 0 , F(0)

Oe
L,L

∣

∣

d-dim
̸= 0 . (2.18)

Here we would like to emphasize that the vanishing of minimal form factors in four dimensions

is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it

a physical operator.

Let us review the example of evanescent operator mentioned in the introduction (1.2).

Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we

reproduce here

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (2.19)

where the δ functions are Gram determinants defined as follows. We define the generalized

Kronecker symbol as

δµ1..µn
ν1...νn = det(δµν ) =

∣

∣

∣

∣

∣

∣

∣

δµ1
ν1 . . . δµ1

νn
...

...

δµn
ν1 . . . δµn

νn

∣

∣

∣

∣

∣

∣

∣

. (2.20)

Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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Evanescent operators
2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called
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is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it
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Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we
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as follows:
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It is easy to see that
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transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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𝒪(n)
4-ferm = ψ̄γ[μ1…γμn]ψ ψ̄γ[μ1

…γμn]ψ , n ≥ 5 .

Buras, Weisz 1990; Dugan, Grinstein 1991; Herrlich and U. Nierste 1994

Four-fermion dimension-6 operators:

Evanescent operator (“倏逝算符”)：
Vanishing in 4 dimension but non-zero in d = 4 − 2ϵ



Evanescent operators

In this paper, we consider a new class of evanescent operators in the pure Yang-Mills

theory, which are composed of field strength Fµν and covariant derivatives Dµ. A simple

example of such operators can be given as

Oe =
1

16
δµ1µ2µ3µ4µ5
ν1 ν2 ν3 ν4 ν5tr(Dν5Fµ1µ2Fµ3µ4Dµ5Fν1ν2Fν3ν4) , (1.2)

where δµ1..µn
ν1...νn = det(δµν ) is the generalized Kronecker symbol (see Section 2 for detail). This

operator is zero in four dimensions but has non-trivial matrix elements such as form factors

in general d dimensions. For example, its (color-ordered) minimal tree-level form factor can

be given as

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (1.3)

which is a non-trivial function of Lorentz product of momenta and polarization vectors in d

dimensions. The main goal of this paper is to study the classification of such operators and

their one-loop renormalization.

Unlike the four fermion operators in (1.1), due to the insertion of covariant derivatives

and different ways of Lorentz contractions, the gluonic evanescent operators like (1.2) exhibit

richer structures. Moreover, at a given mass dimension, the number of all the possible Lorentz

contraction structures is finite, which means that the gluonic evanescent operators are also

finite, calling for a systematic way to construct their independent basis. To classify these

operators, it will be convenient to apply the correspondence between local operators and

form factors [13, 14]. The main advantage is that form factors are on-shell matrix elements,

thus the constraints from the equation of motion and Bianchi identities can be taken into

account automatically, see e.g. [15]. Here, due to the special nature of evanescent operators,

the usual spinor helicity formalism will be insufficient. Instead, one needs to consider form

factors consisting of d-dimensional Lorentz vectors (i.e. external momenta and polarization

vectors) such as in (1.3). Since the Yang-Mills operators contain non-trivial color factors, the

form factor expressions provide also a useful framework to organize the color structures. One

can first classify function basis at the form factor level and then map back to basis operators.

We will apply a strategy to construct the basis evanescent operators along this line.

To study the quantum effect of evanescent operators, we perform one-loop computation of

their form factors. The calculation is based on the unitarity method [16, 17] in d dimensions.

Using the form factor results, we can study their renormalization and operator-mixing behav-

iors. We provide explicit results of the one-loop renormalization matrices and the anomalous

dimensions for the dimension-ten basis operators. These one-loop results will be necessary

ingredients for the two-loop renormalization of physical operators.

This paper is organized as follows. In Section 2, we first give the definition of evanescent

operators and then describe the systematic construction of the operator basis. In Section 3 we

first explain the one-loop computation of full-color form factors using the unitarity method,

then we discuss the renormalization and obtain the anomalous dimensions of the complete set

of evanescent operators with dimension 10. A summary and discussion are given in Section 4

followed by a series of appendices. Several technique details in the operator construction are

– 2 –

2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called

an evanescent operator, if the tree-level matrix elements of this operator have non-trivial

results in general d dimensions but all vanish in four dimensions. In terms of form factors, we

can give a more practical definition: for an evanescent operator Oe
L of length-L, its tree-level

form factors with arbitrary numbers of external on-shell states, are all zero in four dimensions,

but it has a non-trivial minimal form factor in general d dimensions, namely

F(0)
Oe

L,n≥L

∣

∣

4-dim
= 0 , F(0)

Oe
L,L

∣

∣

d-dim
̸= 0 . (2.18)

Here we would like to emphasize that the vanishing of minimal form factors in four dimensions

is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it

a physical operator.

Let us review the example of evanescent operator mentioned in the introduction (1.2).

Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we

reproduce here

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (2.19)

where the δ functions are Gram determinants defined as follows. We define the generalized

Kronecker symbol as

δµ1..µn
ν1...νn = det(δµν ) =

∣

∣

∣

∣

∣

∣

∣

δµ1
ν1 . . . δµ1

νn
...

...

δµn
ν1 . . . δµn

νn

∣

∣

∣

∣

∣

∣

∣

. (2.20)

Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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∣

∣
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∣
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∣

∣

∣
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Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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dimension goes to its physical value (usually four dimensions)

Jin, Ren, GY, Yu, 2022

Evanescent operator (“倏逝算符”)：
Vanishing in 4 dimension but non-zero in d = 4 − 2ϵ

Length-4 basis counting



For example,          contains 

Two-loop renormalization

Evanescent operators are important for renormalization beyond 
one-loop order.

convenient order to renormalize the form factors of a given operator is from lower-point ones

to higher-point ones. In this way, one can use the mixing matrix elements associated with

lower-length operators as input in the renormalization of a higher-point form factor. This not

only simplifies the computation but also provides a check for the computation.

In the MS scheme, the Z matrices have the blockwise structures

 
Z(1)
pp Z(1)

pe

0 Z(1)
ee

!
,

 
Z(2)
pp Z(2)

pe

Z(2)
ep Z(2)

ee

!
, (3.28)

where the block Z(1)
ep vanishes. This is due to the fact that the fact that the form factor of an

evanescent operator is one order higher in the ✏ expansion. According to (3.15) and (3.16),

the dilatation matrices have similar blockwise structures
 
D(1)

pp D(1)
pe

0 D(1)
ee

!
,

 
D(l)

pp D(l)
pe

D(l)
ep D(l)

ee

!
. (3.29)

Note that starting from two loops, all four blocks of Z and D matrices are in general non-

vanishing.

 
Z(1)
pp Z(1)

pe

0 Z(1)
ee

!
,

 
Z(l)
pp Z(l)

pe

Z(l)
ep Z(l)

ee

!
, l � 2 (3.30)

3.3.2 Finite renormalization scheme

We give an introduction for the finite renormalization scheme in this subsection. To distin-

guish from the MS scheme, we use Ẑ and D̂ to denote the Z matrix and dilatation matrix in

the finite renormalization scheme. The most important feature of the finite renormalization

scheme is that the block D̂(l)
ep in the dilatation matrix is O(✏) at all orders. Therefore in the

✏ ! 0 limit, the dilatation matrix take the block upper triangular form [3, 4, 7]:

 
D̂(l)

pp D̂(l)
pe

0 D̂(l)
ee

!
. (3.31)

We will see that this simplifies the calculation of physical anomalous dimensions.

In the finite renormalization scheme, the renormalization of physical operators are the

same as the ones in the MS scheme and we have

Ẑ(l)
pp = Z(l)

pp , Ẑ(l)
pe = Z(l)

pe . (3.32)

While the renormalization of evanescent operators is di↵erent. This scheme takes into account

the fact that the form factor of an evanescent operator is one order higher in the ✏ expansion,

and the mixing from evanescent to physical operators is finite and should also be subtracted.

In other words, one will modify the RHS of (3.26)-(3.27) by taking into account some “finite”
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Note that starting from two loops, all four blocks of Z and D matrices are in general non-

vanishing.

 
Z(1)
pp Z(1)

pe

0 Z(1)
ee

!
,

 
Z(l)
pp Z(l)

pe

Z(l)
ep Z(l)

ee

!
, l � 2 (3.30)

3.3.2 Finite renormalization scheme

We give an introduction for the finite renormalization scheme in this subsection. To distin-

guish from the MS scheme, we use Ẑ and D̂ to denote the Z matrix and dilatation matrix in

the finite renormalization scheme. The most important feature of the finite renormalization

scheme is that the block D̂(l)
ep in the dilatation matrix is O(✏) at all orders. Therefore in the

✏ ! 0 limit, the dilatation matrix take the block upper triangular form [3, 4, 7]:

 
D̂(l)

pp D̂(l)
pe

0 D̂(l)
ee

!
. (3.31)

We will see that this simplifies the calculation of physical anomalous dimensions.

In the finite renormalization scheme, the renormalization of physical operators are the

same as the ones in the MS scheme and we have

Ẑ(l)
pp = Z(l)

pp , Ẑ(l)
pe = Z(l)

pe . (3.32)

While the renormalization of evanescent operators is di↵erent. This scheme takes into account

the fact that the form factor of an evanescent operator is one order higher in the ✏ expansion,

and the mixing from evanescent to physical operators is finite and should also be subtracted.

In other words, one will modify the RHS of (3.26)-(3.27) by taking into account some “finite”

– 11 –

but the lower-loop evanescent operator result are needed. 

Again, Ẑ(2) j

i

��
fin

only contributes to the block Z(2)
ep . At the two-loop order, one can check the

divergent mixing to the physical operators in Ẑ 0(2) j

i
should be the same as in Ẑ(2) j

i

��
div

. From

(3.16), one can see that Ẑ(2) j

i

��
fin

contributes to the O(✏) of the two-loop dilatation matrix,

therefore it does not contribute to the calculation of the two-loop anomalous dimensions (it

begins to contribute at the three-loop order).

As mentioned at the beginning of this subsection, the key feature of the finite renormal-

ization scheme is that the dilatation matrix has the form of (3.31) under the limit ✏ ! 0.

At the one-loop order, this is straightforward since Ẑ(1)
ep is finite, thus D̂(1)

ep ⇠ O(✏). At the

two-loop order, the leading divergence of Ẑ(2)
ep is of O(1/✏), and the relation (3.17) still applies

to the leading divergences (which is one order higher in the ✏-expansion than usual cases)

[1, 4]:

Ẑ(2)
ep | 1

✏�part =
1

2

�
Ẑ(1)
ep Ẑ(1)

pp + Ẑ(1)
ee Ẑ(1)

ep

�
� �0

2✏
Ẑ(1)
ep . (3.39)

Using (3.39) and (3.16), it should then be clear that D̂(2)
ep is also O(✏). Note that the block

Ẑ(1)
ep which is finite is necessary in this cancellation. We check that our explicit two-loop

calculations indeed confirm this structure.

Since block upper triangular form (3.31), the physical anomalous dimensions are just the

eigenvalues of the D̂pp. This does not mean that evanescent operators have no e↵ect on the

physical anomalous dimensions. At the two-loop order, the e↵ect of the evanescent opera-

tors on D̂(2)
pp comes from the term (�2✏Ẑ(1)

pe Ẑ
(1)
ep ) according to (3.16). Obviously, evanescent

operators should be renormalized up to the one-loop order in the calculation of the two-loop

physical anomalous dimensions.

We point out here that anomalous dimensions are scheme dependent, due to the non-

vanishing beta function in the pure YM theory, and therefore, the results in the finite renor-

malization scheme are di↵erent from the ones in the MS scheme. On the other hand, at the

conformal fixed point, anomalous dimensions should be independent of the renormalization

scheme. A detailed discussion of the scheme dependence of anomalous dimensions will be

given in Section 5.2.

4 Calculation of bare form factors

In this section, we consider the computation of bare form factors up to the two-loop order.

In Section 4.1, we give an overall description of our calculation. In Section 4.2, we discuss

two methods for integral tensor reduction in detail.

4.1 Unitarity-IBP method

The main strategy of our calculation is based on a combination of the unitarity method [17–

19] and the IBP reduction [20, 21]. This strategy has been applied to compute form factors

(and Higgs amplitudes) in [28–30] and for pure gluon amplitudes in [31–33]. The numerical

IBP method by cuts was also studied in [34–39].
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(1)
ep ) according to (3.16). Obviously, evanescent

operators should be renormalized up to the one-loop order in the calculation of the two-loop

physical anomalous dimensions.

We point out here that anomalous dimensions are scheme dependent, due to the non-

vanishing beta function in the pure YM theory, and therefore, the results in the finite renor-

malization scheme are di↵erent from the ones in the MS scheme. On the other hand, at the

conformal fixed point, anomalous dimensions should be independent of the renormalization

scheme. A detailed discussion of the scheme dependence of anomalous dimensions will be

given in Section 5.2.

4 Calculation of bare form factors

In this section, we consider the computation of bare form factors up to the two-loop order.

In Section 4.1, we give an overall description of our calculation. In Section 4.2, we discuss

two methods for integral tensor reduction in detail.

4.1 Unitarity-IBP method

The main strategy of our calculation is based on a combination of the unitarity method [17–

19] and the IBP reduction [20, 21]. This strategy has been applied to compute form factors

(and Higgs amplitudes) in [28–30] and for pure gluon amplitudes in [31–33]. The numerical

IBP method by cuts was also studied in [34–39].

– 13 –

Jin, Ren, GY, Yu, 2022



Evanescent operators
• Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

The answer is NO. 

YM theory is non-unitary in non-integer spacetime dimensions, 
due to the existence of evanescent operators.
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• Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

The answer is NO. 

YM theory is non-unitary in non-integer spacetime dimensions, 
due to the existence of evanescent operators.

Evanescent operators

4

conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs can be cal-
culated within each sector.

The complex anomalous dimensions start to appear in
a sector at dimension 12, where the operators are

@⌫@⇢

h
�
12456⌫
3789µ⇢

⇣
tr(D1F23F45D6F78F9µ) + Rev.)

⌘i
, (13)

@⌫@⇢

h
�
1
4�

2356⌫
789µ⇢

⇣
tr(D1F23F45D6F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
4�

2356⌫
789µ⇢

⇣
tr(D1F23D4F56F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
4�
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689µ⇢

⇣
tr(D1F23D4F56F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
4�
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⇣
tr(D1F23F45D6F78F9µ) + Rev.)

⌘i
,
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⇣
tr(D1F23D4F56F78F9µ) + Rev.)
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�
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⌘i
,

where “Rev.” denotes reversion within the trace. Note
that the first operator in (13) is the only dimension-12
operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on oper-
ators that are Lorentz scalars. An alert reader may find
that the above operators are actually total derivatives
of dimension-10 tensor-2 operators. We will see in (15)
below that the eigenvalue equation for these eight opera-
tors is not factorizable (with rational coe�cients), which
implies that their Z matrix cannot be decomposed into
smaller blocks. Thus there should exist eight dimension-
10 tensor-2 primary operators which give the same eight
anomalous dimensions.

The one-loop dilatation matrix of this sector is the
left-upper part of the following matrix: (the full matrix
is the dilatation matrix of a dimension-12 sector in the
Yang-Mills scalar theory, which will be described soon.)
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The one-loop ADs are given by the eigenvalue equation:

x
8
�

257x7

6
+

27281x6

36
�

191654x5

27
+

3001838x4

81

�
24366124x3

243
+

21495296x2

243
+

101673536x

729

�
175325696

729
= 0 (15)

with �
(1)
⇤ = x

2�0
. Remarkably, two of the �

(1)
⇤ ’s are com-

plex with numerical values:

0.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [20].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[21].
We further mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].
To study the complex ADs in a model with mass fields,

we add Nf scalar fields to the YM

LYMS = LYM +

NfX
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where Nf is the number of flavors and the scalars are in
the adjoint representation with a = 1, . . . , N2
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theory is called as the Yang Mills scalar theory (YMS).
The one-loop beta function is di↵erent from YM and one
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For Nf = 22, the one-loop beta function vanishes and for
Nf > 22, the fixed point becomes an IR one and is at
d < 4.
One can get a sector by enlarge the one in (13) by 2
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One-loop mixing matrix
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(namely, (Z(1)) p
e = 0) [13], one can safely divide oper-

ators into evanescent and physical sectors and compute
their one-loop ADs separately. Our calculation shows
that the one-loop complex ADs, which only happen in
the evanescent sectors, begin to appear at canonical di-
mension 12. This is consistent with the fact that negative
norm states start at this dimension as discussed in the
last section. The operator basis can be further classified
into small sectors according to their parity under charge
conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs for opera-
tors in di↵erent sectors are just eigenvalues of di↵erent
sub-blocks.

As a concrete example, at length four, the lowest di-
mensional sector including complex ADs is a dimension-
12 sector containing eight evanescent operators:
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Note that the first operator in (13) is the only dimension-
12 operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on op-
erators that are Lorentz scalars. An alert reader may
find that the above operators are actually total deriva-
tives of dimension-10 tensor-2 operators. We will see in
(15) below that the eigenvalue equation for these eight
operators is not factorizable (with rational coe�cients),
which implies that their Z matrix cannot be decom-
posed into smaller blocks. Thus there should exist eight
dimension-10 tensor-2 primary operators which give the
same anomalous dimensions.

The one-loop Z-matrix of this sector reads
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(14)

The one-loop ADs �
(1)
⇤ are roots of the following eigen-

value equation:
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195122885985

3429742096
= 0 , (15)

which is a non-trivial degree-8 polynomial equation. Re-
markably, two of the roots are complex with numerical
values:

1.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [21].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[18].
Finally, we mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].

DISCUSSION

In this paper, we provide concrete evidence showing that
the pure YM theory is non-unitarity in fractional space-
time dimensions d = 4 + ✏. In particular, we find that
YM evanescent operators provide negative-norm states
and also generate complex anomalous dimensions, gener-
alizing the previous study for the scalar theory in [10, 11].
As mentioned in the introduction, the pure YM the-

ory is expected to have a UV conformal fixed point. If
we couple YM with a su�ciently large number of matter
fields (see e.g. [23]), the asymptotic freedom can disap-
pear and the theory has an IR conformal fixed point at
4 � ✏. We expect that the unitarity violation still ex-
ists in such cases. First, there are also negative-norm
states corresponding to evanescent operators containing
a rank-5 Kronecker symbol with the norm proportional to
(d�4). Second, for the ADs, the operator mixing matrix
will enlarge in general because of the appearance of new

A pair of complex 
eigenvalues:

Dim-12 evanescent operators
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Note that the first operator in (13) is the only dimension-
12 operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on op-
erators that are Lorentz scalars. An alert reader may
find that the above operators are actually total deriva-
tives of dimension-10 tensor-2 operators. We will see in
(15) below that the eigenvalue equation for these eight
operators is not factorizable (with rational coe�cients),
which implies that their Z matrix cannot be decom-
posed into smaller blocks. Thus there should exist eight
dimension-10 tensor-2 primary operators which give the
same anomalous dimensions.
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which is a non-trivial degree-8 polynomial equation. Re-
markably, two of the roots are complex with numerical
values:

1.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [21].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[18].
Finally, we mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].

DISCUSSION

In this paper, we provide concrete evidence showing that
the pure YM theory is non-unitarity in fractional space-
time dimensions d = 4 + ✏. In particular, we find that
YM evanescent operators provide negative-norm states
and also generate complex anomalous dimensions, gener-
alizing the previous study for the scalar theory in [10, 11].
As mentioned in the introduction, the pure YM the-

ory is expected to have a UV conformal fixed point. If
we couple YM with a su�ciently large number of matter
fields (see e.g. [23]), the asymptotic freedom can disap-
pear and the theory has an IR conformal fixed point at
4 � ✏. We expect that the unitarity violation still ex-
ists in such cases. First, there are also negative-norm
states corresponding to evanescent operators containing
a rank-5 Kronecker symbol with the norm proportional to
(d�4). Second, for the ADs, the operator mixing matrix
will enlarge in general because of the appearance of new



• How about Yang-Mills Theory with fractional Nc (rank of gauge group)?

“Color” evanescent operators

In this case, there are also complex AD due to the existence of 
“color” evanescent operators.

symbols with rank higher than Nc. Here a rank-n Kronecker symbol is defined as
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Following we give a further explanation.

New basis of color factors. Recall that single traces and multi traces of the same length

form a natural basis of color factors. For example, length-4 trace basis includes six single traces

and three double traces. A trace color factor can be constructed by color contraction, i.e.
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We say a color factor is of �-n if the highest Kronecker symbol contained by it has rank n. So
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abc is of �-3. A color factor of �-n vanishes for integer Nc less than n, since �
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is totally

anti-symmetric among indices lying in the same row.

For a given length-L, one can first pick up the only �-L color factor, then all the �-(L�1)

ones and so on. In this way one obtains a new basis of color factors, layered in ranks of

Kronecker symbols. Take length four as an example, the only �-4 factor reads
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Their expansion in trace bases reads,

�
i�(1)i�(2)i�(3)

j�(1)j�(2)j�(4)
�
i�(4)

j�(3)
T
a1
i1j1

T
a2
i2j2

T
a3
i3j3

T
a4
i4j4

= tr(�(3)�(4)�(1)�(2))�
1

2
tr(�(3)�(4))tr(�(1)�(2))

+ �(1) $ �(2) , � 2 S3 . (2.7)

For SU(Nc) theory all the trace factors are at least of �-2, since the neighboring two single
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So far we have created a new basis of length-4 color factors including one �-4, five �-3 and

three �-2.

– 4 –

Mathematically, we make analytical continuation for Nc and consider 
AD as a function of Nc.



• How about Yang-Mills Theory with fractional Nc (rank of gauge group)?

“Color” evanescent operators

Figure 2: anomalous dimensions of the operators in dim-8 length-4 (�)2(+)2 sector.

Riemann surface and cycles (?)

Figure 3: anomalous dimensions of the operators in dim-8 length-4 (�)2(+)2 sector.
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Complex AD

Four Dim-8 operators

In this case, there are also complex AD due to the existence of 
“color” evanescent operators.
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three �-2.
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To appear with Q. Jin, K. Ren, R. Yu,

“Exceptional point”



• How about Yang-Mills Theory with fractional Nc (rank of gauge group)?

In this case, there are also complex AD due to the existence of 
“color” evanescent operators.

“Color” evanescent operators

Dim-12 operators

To appear with Q. Jin, K. Ren, R. Yu,



Summary

• IR divergences • UV renormalization • Finite remainder

Scattering Amplitudes Correlation Functions

Form Factors

O

O1

O2 O3

Figure 1: Form factors provide a bridge between amplitudes and correlation functions.
By imposing on-shell unitarity cuts (indicated by the red dash lines), the amplitudes are
building blocks in form factors, and so are form factors in correlation functions.

It should be fair to say that among these developments, one of the most important ideas is
the use of on-shell methods, such as the spinor helicity formalism [11, 12, 13, 14], the tree-
level recursion relations [15, 16] and the (generalized) unitarity methods [17, 18, 19]. While
scattering amplitudes are central physical quantities in quantum field theory, there are
other important objects, such as gauge invariant operators. Computing their anomalous
dimensions and correlation functions has also been an important subject. A question
that one may ask is: can the modern advances of scattering amplitudes be applied to
more general observables such as anomalous dimensions and correlation functions? At
first sight the answer seems to be negative, because unlike amplitudes, gauge invariant
operators are o↵-shell, therefore, the on-shell methods seem not applicable. Fortunately,
this problem can be overcome with the help of form factors.

Form factors are the matrix elements between on-shell asymptotic states and gauge
invariant operators. The explicit definition of a n-point form factor can be given as

FO,n =

Z
d
D
x e

�iq·x
h1 · · ·n|O(x)|0i = (2⇡)D�(D)

⇣
q �

nX

i=1

pi

⌘
h1 · · ·n|O(0)|0i, (1)

where pi are the on-shell momenta of n asymptotic particle states, and O is a local
operator. By Fourier transformation, q =

P
i pi is the o↵-shell momentum carried by the

operator. Therefore, form factors are partially on-shell and partially o↵-shell quantities,
and they provide a natural bridge connecting the worlds of amplitudes and correlations
functions, as illustrated in Figure 1.

In this review we will give an introduction to form factors in N = 4 super-Yang-
Mills theory (SYM). N = 4 SYM has been the primary model for the discovery and the
developments of AdS/CFT correspondence [20, 21, 22]. It has also been a very important
experimental ground for the modern amplitude developments. The idea of unitarity cut
method was first applied to compute one-loop amplitudes in N = 4 SYM in 1994 by Bern,
Dixon, Durban and Kosower [17, 18]. In 2003 Witten’s groundbreaking work provided a

3

Form factors provide a framework to study many interesting 
physical quantities using on-shell amplitude methods:

 Other hidden structure of form factors

• CK duality, double-copy of form factors, DDCI, FFOPE, etc.



Thank you for your attention!

祝李重生老师八十华诞快乐，身体健康！
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1) Nuclear “structure factor”

ELECTRON SCATTERING AND NUCLEAR STRUCTURE 217

formula for elastic scattering, which replaces Eq. (11)
when the nucleus is 6nite, must have the form (YUKAWA)I'2

(Ze'I ' coss-', 8 2

~.(e)=I I .„'p(r)e"'dr'2E' sin sg "nuclear
volume

(13)
P.I

where p(r) is the charge density within a nucleus as a
function of radius vector from the center of the nucleus
and Ag is the momentum transfer vector. The numerical
magnitude of q for elastic scattering is, thus, given by

2If' 2
q= sin —,'8 =—sin-', 8 (14)

Ac

Q.QI
GAUSSI

EXPONENTIAl

as shown in Fig. 2 where
I ptI = ~

ppI. pp and pt are the
incident and scattered momenta, respectively. X in
Eq. (14) is the reduced de Broglie wavelength of the
high-energy incident electron:

K=A/pe. , (15)
qr in Eq. (13) is, thus, a dimensionless phase factor.
The assumption is made once more that the nucleus

does not recoil, or equivalently, that Fig. 2 is imagined
to be in the center-of-mass frame.
It can be shown" that the integral in Eq. (13) can

be reduced, so that
t'Zes) coss gsrst" singr

a, (8)=I I p(r) 4vrrsdr . (16)
E 2EJ sin4-';6I, ~ p qr

Since the quantity in square brackets multiplies the
point charge cross section given by Eq. (11), it is
customary to follow the precedent established in the
electron diffraction and x-ray diffraction analogs of this
equation and call this quantity

4xP= —p(r) sin(qr)rdr
q Jp

the "form factor" or "structure factor" corresponding
to a finite nuclear charge distribution. Indeed, the
analogy is very close" and it is merely necessary to
replace the electron cloud of an atom by the proton
cloud of a nucleus. If the charge density in Eq. (16) is
normalized to unity, the form factor F is a dimensionless
quantity.
In dealing with the first Born approximation, the

central idea is as follows: To obtain the actual scattering
from a finite nucleus, it is necessary merely to multiply

FIG. 2. The mo-
mentum transfer q
in electron scatter-
ing. For elastic scat-
tering in the center-
of-mass frame lpil= Ipal.

—Pp= q

' See, for example, Z. G. Pinsker E/ectroe Digructioe (Sutter-
worth Scientific Pubiications, London, 1955), p. '148, Eq. (7,25).

0.00I

0.000I

FIG. 3. The square of the form factor for typical charge
distributions.

the point charge scattering cross section by the square
of a form factor appropriate to the particular model of
a nucleus under consideration. This procedure makes
the calculations quite direct and usually quite simple,
since it is only necessary to evaluate a single quadrature
I-Eq. (17)'j. For light nuclei this is satisfactory. Unfor-
tunately, for medium and heavy nuclei, this procedure
fails. As is weH. known, the first Born approximation is
equivalent to considering both the incident and dif-
fracted waves as plane waves. Actually, the waves are
distorted by the intense nuclear electromagnetic fieM, ,
so that they can no longer be considered plane waves.
Perhaps an equivalent way of saying this is that the
first Born approximation amounts to a single scattering
in the force field, while the exact scattering depends on
a plurality of scatterings in the same force field.
In any event, the application of the Born formalism

to elastic scattering provides a most valuable tool for
analyzing electron scattering by light nuclei and is of
qualitative value in discussing heavier nuclei. We shall
make further remarks about the accuracy of the first
Born approximation at a later time.
Making use of Eq. (17),we shall now give the results

for a number of useful nuclear models. In order to
present the calculations in the most succinct way, we
have prepared in Table I2' a series of form factors for
several nuclear charge density distributions. In the
table "a," represents the root-mean-square radius,
weighted according to charge, and defined as

a= r24~r'pdr =4~ pr4dr,
4p p

~' This convenient form of the table is due to E. E. Chambers.
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Form factor characterizes the deviation from the point-particle picture. 
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FIG. 5. Curve (a) shows the theoretical Mott curve for a spinless
point proton. Curve (b) shows the theoretical curve for a point
proton with the Dirac magnetic moment, curve (c) the theoretical
curve for a point proton having the anomalous contribution in
addition to the Dirac value of magnetic moment. The theoretical
curves (b) and (c) are due to Rosenbluth. s The experimental
curve falls between curves (b) and (c). This deviation from the
theoretical curves represents the eGect of a form factor for the
proton and indicates structure within the proton, or alternatively,
a breakdown of the Coulomb law. The best 6t indicates a size
of 0.70X10 "cm.

s M. N. Rosenbluth, Phys Rev. 79, 615 (19.50).

in saturation of the ion chamber monitor response and
in the integrating voltmeter, and perhaps other un-
known items. In Fig. 5 we have drawn a curve, labeled
"experimental curve, "which is our best estimate of the
accumulated data at 188 Mev. The limits of error
represent the greatest variations we have observed in
any runs. However all runs, not being absolute, are
normalized to each other by "best fitting. "The experi-
mental curve is also normalized to the theoretical curve
at small angles. Also plotted in Fig. 5 are (a) the theo-
retical Mott curve for a spinless point proton, (b) the
theoretical curve for a point proton with the Dirac
value of magnetic moment (gyromagnetic ratio 2.00),
(c) the theoretical curve for a point proton with the
anomalous value of the proton moment in addition to
the Dirac moment (gyromagnetic ratio=5. 58). The
theoretical curves (b), (c) are obtained from calcula-
tions of Rosenbluth. ' The experimental curve deviates
from curves (a), (b), and (c) at the larger angles and is
lower than the curve for a point proton with anomalous
moment, but higher than the curve for a point proton
with Dirac moment. This reduction at large angles
below the curve for point charge represents the eGect
of a "structure factor" or a "form factor" for the proton
and hence indicates the finite size of the proton. Since
the usual electromagnetic relations and the Coulomb

interaction have been used in Rosenbluth's calculation,
we are here assuming the validity of these interactions
at small distances (&10 "cm). Subject to this assump-
tion, the experiment indicates the proton is not a
point.
In order to carry out the form factor calculations, we

have made use of Rosenbluth's formalism. However
we have given the charge and magnetic moment
phenomenological interpretations in place of the meson
theoretic interpretations originally presented by Rosen-
bluth. ' We may write Rosenbluth's formulas as follows:
for a point charge we have

where

(f2
o =aIve 1+ L2(1+tu)s tan'(8/2)+p'] (1)4M'

e' (cos'(0/2) ) 1
(2)4E' & sin (i)/2) 3 1+(2Z/3f) sin'(8/2)

and where

(2/K) sin(e/2)

L1+(2F/cV) sin'(()/2)) 1

where Ft is the charge form factor (which also influences
the intrinsic "Dirac" magnetic moment) and Fs the
anomalous magnetic moment form factor. In principle
F& does not have to be the same as F2. Fj and F2 may
be written as functions of (q(r)), where (r) is the root-
mean-square radius of the appropriate charge, or mo-
ment distribution. F& and F2 may also be identified
with e'/e and k'e'/kae in Rosenbluth's article.
We have not made detailed analyses for different F&

and F&.Rather, as may be seen below, we have assumed
F~=F2. However, the data at all energies are quite
consistent with this choice.
At the energies used in these experiments, the form

factor (F& or Fs) is not appreciably shape dependent,
i.e., one cannot distinguish between uniform, expo-
nential, or Gaussian charge (or magnetic moment)
distributions. A11 that can be determined is a mean
square radius. Therefore we have tried to fit the experi-
9We are indebted to Dr. D, R, Yennie for formulation of

Eqs. (1)—(4).

Here natural units, k= c= 1, are used and the equations
are written in terms of the laboratory coordinates; g is
the invariant momentum transfer in the center-of-mass
frame expressed in laboratory coordinates; E is the
energy of the incident electrons; 3f the mass of the
proton, and p, is the anomalous part of the proton's
magnetic moment (p, = 1.79). )1 is the reduced de Broglie
wavelength of the electron in the laboratory system.
For a dift'use proton we may write:

o =o~s FI'+ t 2(F&+pFs)' tan'(8/2)+p'Fs j (4)1
g

4M'

McAllister and Hofstadter, Phys.Rev. (1956)
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formula for elastic scattering, which replaces Eq. (11)
when the nucleus is 6nite, must have the form (YUKAWA)I'2

(Ze'I ' coss-', 8 2

~.(e)=I I .„'p(r)e"'dr'2E' sin sg "nuclear
volume

(13)
P.I

where p(r) is the charge density within a nucleus as a
function of radius vector from the center of the nucleus
and Ag is the momentum transfer vector. The numerical
magnitude of q for elastic scattering is, thus, given by

2If' 2
q= sin —,'8 =—sin-', 8 (14)

Ac

Q.QI
GAUSSI

EXPONENTIAl

as shown in Fig. 2 where
I ptI = ~

ppI. pp and pt are the
incident and scattered momenta, respectively. X in
Eq. (14) is the reduced de Broglie wavelength of the
high-energy incident electron:

K=A/pe. , (15)
qr in Eq. (13) is, thus, a dimensionless phase factor.
The assumption is made once more that the nucleus

does not recoil, or equivalently, that Fig. 2 is imagined
to be in the center-of-mass frame.
It can be shown" that the integral in Eq. (13) can

be reduced, so that
t'Zes) coss gsrst" singr

a, (8)=I I p(r) 4vrrsdr . (16)
E 2EJ sin4-';6I, ~ p qr

Since the quantity in square brackets multiplies the
point charge cross section given by Eq. (11), it is
customary to follow the precedent established in the
electron diffraction and x-ray diffraction analogs of this
equation and call this quantity

4xP= —p(r) sin(qr)rdr
q Jp

the "form factor" or "structure factor" corresponding
to a finite nuclear charge distribution. Indeed, the
analogy is very close" and it is merely necessary to
replace the electron cloud of an atom by the proton
cloud of a nucleus. If the charge density in Eq. (16) is
normalized to unity, the form factor F is a dimensionless
quantity.
In dealing with the first Born approximation, the

central idea is as follows: To obtain the actual scattering
from a finite nucleus, it is necessary merely to multiply

FIG. 2. The mo-
mentum transfer q
in electron scatter-
ing. For elastic scat-
tering in the center-
of-mass frame lpil= Ipal.

—Pp= q

' See, for example, Z. G. Pinsker E/ectroe Digructioe (Sutter-
worth Scientific Pubiications, London, 1955), p. '148, Eq. (7,25).

0.00I

0.000I

FIG. 3. The square of the form factor for typical charge
distributions.

the point charge scattering cross section by the square
of a form factor appropriate to the particular model of
a nucleus under consideration. This procedure makes
the calculations quite direct and usually quite simple,
since it is only necessary to evaluate a single quadrature
I-Eq. (17)'j. For light nuclei this is satisfactory. Unfor-
tunately, for medium and heavy nuclei, this procedure
fails. As is weH. known, the first Born approximation is
equivalent to considering both the incident and dif-
fracted waves as plane waves. Actually, the waves are
distorted by the intense nuclear electromagnetic fieM, ,
so that they can no longer be considered plane waves.
Perhaps an equivalent way of saying this is that the
first Born approximation amounts to a single scattering
in the force field, while the exact scattering depends on
a plurality of scatterings in the same force field.
In any event, the application of the Born formalism

to elastic scattering provides a most valuable tool for
analyzing electron scattering by light nuclei and is of
qualitative value in discussing heavier nuclei. We shall
make further remarks about the accuracy of the first
Born approximation at a later time.
Making use of Eq. (17),we shall now give the results

for a number of useful nuclear models. In order to
present the calculations in the most succinct way, we
have prepared in Table I2' a series of form factors for
several nuclear charge density distributions. In the
table "a," represents the root-mean-square radius,
weighted according to charge, and defined as

a= r24~r'pdr =4~ pr4dr,
4p p

~' This convenient form of the table is due to E. E. Chambers.

Robert Hofstadter 
(1915 – 1990)  

Nobel laureate 1961

“form factor”



2) Form factor in text book

Form factors

346 Renormalized perturbation theory

leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2

R

4π2

∫ 1

0
d3x δ(x + y + z − 1)

z(1− z)m2
R

(1− z)2m2
R − xyp2

+ O
(
e4

R

)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)
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Leading order:

One-loop order:

346 Renormalized perturbation theory

leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2

R

4π2

∫ 1

0
d3x δ(x + y + z − 1)

z(1− z)m2
R

(1− z)2m2
R − xyp2

+ O
(
e4

R

)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)

346 Renormalized perturbation theory

leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2

R

4π2

∫ 1

0
d3x δ(x + y + z − 1)

z(1− z)m2
R

(1− z)2m2
R − xyp2

+ O
(
e4

R

)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)

Anomalous magnet moment

Γμ(q) = γμF1(q2) +
iσμνqν

2m
F2(q2)

jμ = ψ̄ γμψ

ψ̄γμψ → ψ̄Γμψ



3) Sudakov form factor
• Pioneer work by Vladimir Sudakov in 1954

SOVIET PHYSICS JETP VOLUME 3, NUMBER 1 AUGUST, 1956 

Vertex Parts at Very High Energies in Quantum Electrodynamics 

v. V.SUDAKOV 
(Submitted to JETP editor Nov. 4, 1954) 

]. Exper. Theoret. Phys. USSR 30,87-95 (January 1956) 

A method is developed for calculating Feynman integrals with logarithmic accuracy, 
working to any order of perturbation theory. The method is applied to calculate the ver-
tex part in quantum electrodynamics for a certain range of values of the momenta. The 
result is displayed as the sum of a perturbation series. 

l J.HE technique of Feynman for calculating ma-
trix elements in quantum electrodynamics is only 

suitable for the lowest-order approximations, since 
the algebraic complexities increase extremely ra-
pidly when we consider contributions to the matrix 
element from higher-order perturbations. When per-
turbation theory is not applicable and it is neces-
sary to .consider the sum of the entire perturbation 
series*, another technique must be developed. For 
example, one elegent method 3 of calculating inte-
grals with logarithmic accuracy depends on chang-
ing k into ik 0• This method is, however, not app-
licabfe to all cases. In particular, it is inapplicable 
to the calculation of the -vertex part r (]' (p, q; l) in 

In what follows we shall everywhere omit the limit-
ing process, simply choosing <to be a positive 
number so small that it does-not make any contri-
bution in the final result. We shall evaluate (l) 
supposing that 

(2) 

where l = p- q. For simplicity we assume 

(3) 

* We do not need to worry about the divergence of the 
pertur.bation series, 2 which occurs at much higher 
energies than those which we consider. 

1 R. P. Feynman, Phys. Rev. 76, 769 ( 1949) 
2 

F. ]. Dyson, Phys. Rev. 85, 631 (1952). 
3 L. D. Landau, A. A. Abrikosov and I. M. K.halatni-

kov, Dokl. Akad. Nauk. SSSR 95, 497, 773, 1177 and 
96, 261 (1954). 
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the case when the absolute value of the square of 
one of the vectors p, q, lis much larger than the 
absolute squares of the other two vectocs. This 
case is especially important foc concrete physical 
applications. There ippear in this case terms with 
the structure e 2 L 1 L 2 , a product of two big loga-
rithms entering with each power of e 2 (we call 
these doubly-logarithmic terms). Rut the earlier 
method 3 can give only terms with the structure 
e 2L (singly-logarithmic terms), in which one large 
logarithm enters with each power of e 2• 

l. To explain the method+ of obtaining the 
doubly-logarithmic te*rms, we shall consider as an 
example the integral 

(l) 

which allows us to omit m2 in the first two factors 
of the denominator in (1). 

From (2) it follows that to a close approximation 
/ 2 = -2pq, which allows US to rev.Tite (2) in the 
form 

(2a) 

Hence it is clear that the squares of the vectors p, 
q are very small compared with the squares of 
their components; the squares of the vectors p, q 
are almost null. 

+In this paper the Feynman notations are used: 

* The integral (l) is singular. To define it precisely 
we have to specify the Feynman rules for integrating 
round the poles. This is done by adding infinitesimal 
imaginary terms to the factors in the denominator. 

A closed formula of summing up the leading-logarithm terms.

346 Renormalized perturbation theory

leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2

R

4π2

∫ 1

0
d3x δ(x + y + z − 1)

z(1− z)m2
R

(1− z)2m2
R − xyp2

+ O
(
e4

R

)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)

l

Generalization to non-leading logarithms in QED of Mueller 1979, Collins 1980, and in QCD Sen 1980



IR divergences
Infrared structure of amplitudes:

Following refs. [26, 30], we expand K[g], γ[g]
K , and G[g] in powers of αs,

K[g](αs, ϵ) =
∞
∑

l=1

1

2lϵ
al γ̂(l)

K , (4.24)

γ[g]
K

(

ᾱs

(µ2

µ̃2
,αs, ϵ

))

=
∞
∑

l=1

al
(µ2

µ̃2

)lϵ

γ̂(l)
K , (4.25)

G[g]
(

−1, ᾱs

(µ2

ξ2
,αs, ϵ

)

, ϵ
)

=
∞
∑

l=1

al
(µ2

ξ2

)lϵ

Ĝ(l)
0 , (4.26)

where a is defined in eq. (4.8) and the hats are a reminder that the leading-Nc dependence

has also been removed in eqs. (4.24), (4.25) and (4.26). That is, the perturbative coefficients

(defined with expansion parameter αs/(2π)) have a leading-color dependence on Nc of,

γ(l)
K = γ̂(l)

K N l
c , G(l)

0 = Ĝ(l)
0 N l

c . (4.27)

We can suppress the [g] label because the N = 4 MHV amplitudes are all related by

supersymmetry Ward identities [57], so that the corresponding functions for external gluinos,

etc., are the same as for gluons. Equation (4.24) follows from solving eqs. (2.12) and (2.13)

of ref. [30] in the conformal case (β ≡ 0). In this case, K[g] contains only single poles in ϵ,

which are simply related to γ[g]
K .

The integral over G is very simple,

∫ −Q2

0

dξ2

ξ2
G[g] = −

∞
∑

l=1

al

lϵ

( µ2

−Q2

)lϵ
Ĝ(l)

0 . (4.28)

The first integral over γK gives,

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K =
∞
∑

l=1

al

lϵ

[(µ2

ξ2

)lϵ
− 1
]

γ̂(l)
K . (4.29)

Adding the K[g] term to 1/2 of eq. (4.29), using eq. (4.24), we see that the “−1” is

cancelled. Then the integral over ξ is properly regulated, and evaluates to

−
1

2

∞
∑

l=1

al

(lϵ)2

( µ2

−Q2

)lϵ
γ̂(l)

K . (4.30)

Combining this result with eq. (4.28) gives

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

[

−
1

4

∞
∑

l=1

al
( µ2

−Q2

)lϵ( γ̂(l)
K

(lϵ)2
+

2Ĝ(l)
0

lϵ

)

]

. (4.31)
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FIG. 5: Infrared structure of leading-color scattering amplitudes for particles in the adjoint rep-

resentation. The straight lines represent hard external states, while the curly lines carry soft or

collinear virtual momenta. At leading color, soft exchanges are confined to wedges between the

hard lines.

constant everywhere. Thus the leading-color IR structure of n-point amplitudes in MSYM

may be rewritten as,

Mn =
n
∏

i=1

[

M[gg→1]

(

si,i+1

µ2
,αs, ϵ

)]1/2

× hn (ki, µ,αs, ϵ) , (4.21)

where hn is no longer a color-space vector.

For a general theory, the Sudakov form factor at scale Q2 can be written as [30]

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

{

1

2

∫ −Q2

0

dξ2

ξ2

[

K[g](αs(µ), ϵ) + G[g]
(

−1, ᾱs

(µ2

ξ2
,αs(µ), ϵ

)

, ϵ
)

+
1

2

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K

(

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

))]

}

, (4.22)

where γ[g]
K denotes the soft or (Wilson line) cusp anomalous dimension, which will produce

a 1/ϵ2 pole after integration. The function K[g] is a series of counterterms (pure poles in ϵ),

while G[g] includes non-singular dependence on ϵ before integration, and produces a 1/ϵ pole

after integration.

In MSYM, αs(µ) is a constant, and the running coupling ᾱs(µ2/µ̃2,αs, ϵ) in 4 − 2ϵ di-

mensions has only trivial (engineering) dependence on the scale,

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

)

= αs ×
(µ2

µ̃2

)ϵ(

4πe−γ
)ϵ

. (4.23)

This simple dependence makes it very easy to perform the integrals over ξ and µ̃.
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Sudakov form factor + finite]
Leading IR singularity -> Cusp anomalous dimension

figure from L. Dixon 1105.0771

For modern dim-reg representation, see:  
Magnea and Sterman 1990; 
Catani 1998,  
Sterman and Tejeda-Yeomans 2002 
Bern, Dixon, Smirnov 2005



Consider one-loop amplitudes:

What we really want

Unitarity computation



Ctri + Cbub

The basis coefficient can be computed by cuts:

Ctri + Cbub

ℱ(1)
2 (1,2)

s12-cut
= ∫ dPS2 ℱ(0)

2 (−l1, − l2)𝒜(0)
4 (1,2,l2, l1)

Unitarity computation

F(1)
2 =



ℱ(1)
2 (1,2)

s12-cut
= ∫ dPS2 ℱ(0)

2 (−l1, − l2)𝒜(0)
4 (1,2,l2, l1)

= ℱ(0)
2 (1,2) i∫ dPS2

⟨l1l2⟩⟨12⟩
⟨l1p1⟩⟨l22⟩= ℱ(0)

2 (1,2) i∫ dPS2
−s12

(l1 + p1)2

Unitarity computation

Ctri + Cbub

Ctri = − s12 , Cbub = 0

𝒪 = tr(ϕ2
12)



Four-loop non-planar cusp AD

[Boels, Huber, GY 2017]
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A UT integrals

A.1 UT integrals with 12 lines

For the UT integrals we use the parametrizaton in terms of loop momenta from [48] and the

normalisation used by FIESTA, i.e. we work in D = 4− 2ϵ-dimensional Minkowskian space-

time and our integration measure is eϵγE dDℓ/(iπD/2) per loop. Moreover, we set (p1+p2)2 =

−1 and suppress the fact that the ϵ-expansion continues in all equations. Below we give our

numerical results as well as the PSLQ up to ϵ−4 order.

Topology 21

I(21)1 =
q

p1

p2

ℓ3

× [(ℓ3 − p1)
2]2

=
1

576ϵ8
+

ζ2
36ϵ6

+
151ζ3
864ϵ5

+
865ζ4
576ϵ4

+
505
216ζ2ζ3 +

5503
1440ζ5

ϵ3
+

44219
1152 ζ6 +

9895
2592ζ

2
3

ϵ2

+
89593
864 ζ3ζ4 +

3419
45 ζ2ζ5 − 169789

4032 ζ7
ϵ

. (A.1)

The integral I(21)1 is known analytically from [108]. Our numerical results obtained by MB

and FIESTA agree with the analytical one well within error bars.

I(21)1,MB =
0.001736111111111111

ϵ8
+

0.04569261296800628(1)

ϵ6
+

0.2100817041401606(1)

ϵ5

+
1.6253638839586(7)

ϵ4
+

8.5855125581(10)

ϵ3
+

44.566338023(40)

ϵ2
, (A.2)

I(21)1,FIESTA =
0.00173611

ϵ8
− 0.0000000004(837)

ϵ7
+

0.0456926(14)

ϵ6
+

0.210082(17)

ϵ5

+
1.62537(18)

ϵ4
+

8.5853(19)

ϵ3
+

44.564(20)

ϵ2
. (A.3)

– 29 –

Topology 22

I(22)2 =
q

p1

p2

ℓ3

ℓ4

ℓ6

× (ℓ3 − p1)
2 [ℓ24 + ℓ26 − ℓ23 + (ℓ3 − ℓ4 + p1)

2 + (ℓ3 − ℓ6 − p1)
2]

=
0.00520833

ϵ8
− 0.000000003(130)

ϵ7
− 0.4340801(26)

ϵ6
− 2.291419(35)

ϵ5
− 9.56243(42)

ϵ4

− 51.4505(51)

ϵ3
− 333.021(67)

ϵ2
− 1705.78 ± 1.46

ϵ
, (A.4)

I(22)2,PSLQ =
1

192ϵ8
− 19ζ2

72ϵ6
− 61ζ3

32ϵ5
− 5089ζ4

576ϵ4
+O(ϵ−3) . (A.5)

Topology 23

I(23)3 =
q

p1

p2

ℓ3

× [(ℓ3 − p1)
2]2

=
0.00694444

ϵ8
− 0.000000001(45)

ϵ7
− 0.45692600(98)

ϵ6
− 2.231590(11)

ϵ5
+

3.21314(10)

ϵ4

+
73.5027(9)

ϵ3
+

351.351(8)

ϵ2
+

664.498(633)

ϵ
, (A.6)

I(23)3,PSLQ =
1

144ϵ8
− 5ζ2

18ϵ6
− 401ζ3

216ϵ5
+

95ζ4
32ϵ4

+O(ϵ−3) . (A.7)

Topology 24

I(24)4 =
q

p1

p2

ℓ3

ℓ5 × (ℓ3 − p1)
2 [(q − ℓ3 − ℓ5)

2 + (ℓ5 + p2)
2]

= − 0.00868056

ϵ8
+

0.00000002(34)

ϵ7
+

0.7425050(65)

ϵ6
+

2.288640(86)

ϵ5
− 7.37337(101)

ϵ4

− 78.1528(116)

ϵ3
− 220.386(91)

ϵ2
+

176.718(990)

ϵ
, (A.8)

I(24)4,PSLQ = − 5

576ϵ8
+

65ζ2
144ϵ6

+
1645ζ3
864ϵ5

− 109ζ4
16ϵ4

+O(ϵ−3) . (A.9)
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Topology 25

I(25)5 =
q

p1

p2

ℓ3
ℓ4

ℓ5

×
{

[

(p1 − ℓ5)
2 + 2(ℓ4 − ℓ5)

2 + (ℓ3 − ℓ4)
2 − (ℓ3 − ℓ5)

2 − (p1 − ℓ4)
2
]2

− 4 (ℓ4 − ℓ5)
2 (p1 − ℓ3 + ℓ4 − ℓ5)

2
}

=
0.00347222

ϵ8
− 0.000000002(63)

ϵ7
+

0.0114231(13)

ϵ6
+

1.163106(20)

ϵ5
+

14.04762(26)

ϵ4

+
109.8742(34)

ϵ3
+

647.669(44)

ϵ2
+

3530.846 ± 1.921

ϵ
, (A.10)

I(25)5,PSLQ =
1

288ϵ8
+

ζ2
144ϵ6

+
209ζ3
216ϵ5

+
623ζ4
48ϵ4

+O(ϵ−3) . (A.11)

Topology 26

I(26)6 =
q

p1

p2

ℓ3
ℓ4

ℓ5

ℓ6

×
{

[(ℓ3 − ℓ4 − ℓ5)
2 − (ℓ3 − ℓ4 − p1)

2 − (ℓ6 − p2)
2 − ℓ25]

× [ℓ25 − ℓ24 − ℓ26 + (ℓ4 − ℓ6)
2] + 4 ℓ25 (ℓ6 − p2)

2 + (ℓ4 − ℓ5)
2 (ℓ3 − ℓ4 + ℓ6 − p2)

2
}

= − 0.0434028

ϵ8
− 0.00000002(59)

ϵ7
+

1.787720(6)

ϵ6
+

6.90626(7)

ϵ5
− 13.7958(8)

ϵ4

− 225.841(9)

ϵ3
− 864.635(105)

ϵ2
− 9.144 ± 2.933

ϵ
, (A.12)

I(26)6,PSLQ =− 25

576ϵ8
+

313ζ2
288ϵ6

+
1241ζ3
216ϵ5

− 3671ζ4
288ϵ4

+O(ϵ−3) . (A.13)

I(26)7 =
q

p1

p2

ℓ3
ℓ4

ℓ5

ℓ6

×
{

4 [(ℓ4 − ℓ5)(ℓ3 − ℓ4 + ℓ5 − p1)] [(ℓ4 − ℓ6)(ℓ3 − ℓ4 + ℓ6 − p2)]

− ℓ25 (ℓ6 − p2)
2 − 4 (ℓ4 − ℓ5)

2 (ℓ3 − ℓ4 + ℓ6 − p2)
2 − ℓ26 (ℓ5 − p1)
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= − 0.000868056

ϵ8
+

0.0000000005

ϵ7
− 0.00285575(22)

ϵ6
− 0.0090438(31)

ϵ5
+

0.714516(37)

ϵ4

+
10.2737(4)

ϵ3
+

76.5178(52)

ϵ2
+

370.489(160)

ϵ
, (A.20)

I(29)10,PSLQ =− 1

1152ϵ8
− ζ2

576ϵ6
− 13ζ3

1728ϵ5
+

169ζ4
256ϵ4

+O(ϵ−3) . (A.21)
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=
0.00347222

ϵ8
− 0.0000000013

ϵ7
+

0.0114231(17)

ϵ6
+

1.16310(3)

ϵ5
+

2.90880(35)

ϵ4

− 12.2720(43)

ϵ3
+

29.708(57)

ϵ2
+

3185.60 ± 2.63

ϵ
, (A.14)

I(26)7,PSLQ =
1

288ϵ8
+

ζ2
144ϵ6

+
209ζ3
216ϵ5

+
43ζ4
16ϵ4

+O(ϵ−3) . (A.15)

Topology 27

I(27)8 =
q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× 1

2

[

ℓ23 − ℓ24 − (ℓ4 − ℓ3 − p1)
2
] [

(ℓ3 − ℓ4 − ℓ5)
2 + (ℓ5 + p2)

2
]

= − 0.015625

ϵ8
+

0.00000001(14)

ϵ7
+

0.3426942(17)

ϵ6
+

1.377357(20)

ϵ5

+
0.41430(24)

ϵ4
− 18.1972(33)

ϵ3
− 155.896(52)

ϵ2
− 1304.61(93)

ϵ
, (A.16)

I(27)8,PSLQ = − 1

64ϵ8
+

5ζ2
24ϵ6

+
55ζ3
48ϵ5

+
49ζ4
128ϵ4

+O(ϵ−3) . (A.17)

Topology 28

I(28)9 =
q

p1

p2

ℓ3

ℓ4

ℓ5
ℓ6

× (ℓ3 − ℓ4 − p2)
2
[

(ℓ3 − ℓ4)
2 − (ℓ3 − p1)

2
]

= − 0.0104167

ϵ8
+

0.000000002(253)

ϵ7
+

0.554023(5)

ϵ6
+

2.26219(5)

ϵ5

− 3.56367(64)

ϵ4
− 60.6800(73)

ϵ3
− 182.180(84)

ϵ2
+

395.094(952)

ϵ
, (A.18)

I(28)9,PSLQ = − 1
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+
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288ϵ6

+
271ζ3
144ϵ5

− 3793ζ4
1152ϵ4

+O(ϵ−3) . (A.19)
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Topology 30

I(30)11 =
q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× (ℓ3 − ℓ4 − p2)
2 [(p1 − ℓ4)

2 + (ℓ3 − ℓ4)
2 − (ℓ3 − p1)

2]

=
0.00347222

ϵ8
− 0.05140419

ϵ6
− 0.2601674

ϵ5
− 1.5145009

ϵ4

− 17.34721164(4)

ϵ3
− 133.31287(3)

ϵ2
− 671.48(24)

ϵ
. (A.22)

This result was obtained with MB. FIESTA performs poorly in this topology.

I(30)11,PSLQ =
1

288ϵ8
− ζ2

32ϵ6
− 187ζ3

864ϵ5
− 403ζ4

288ϵ4
+O(ϵ−3) . (A.23)

A.2 UT integrals with 11 lines

Topology 27

I(27)12 =
q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× 1

2
(ℓ3 − ℓ4)

2
[

2 (ℓ4 − p2)
2 + (ℓ6 − p1)

2

−(ℓ4 − ℓ6)
2 − ℓ24 + ℓ25 + 2 (p1 + p2)

2
]

=
0.0303819

ϵ8
− 0.00000002(87)

ϵ7
− 0.625418(2)

ϵ6
− 2.824274(22)

ϵ5
− 7.64568(40)

ϵ4

− 22.7148(82)

ϵ3
+

0.160(47)

ϵ2
+

1354.58(99)

ϵ
. (A.24)

This result is obtained by combining FIESTA and MB results.

I(27)12,PSLQ =
35

1152ϵ8
− 73ζ2

192ϵ6
− 1015ζ3

432ϵ5
− 4069ζ4

576ϵ4
+O(ϵ−3) . (A.25)

Topology 28

I(28)13 =
q

p1

p2

ℓ3

ℓ4

ℓ5
ℓ6

× 1

2
(ℓ3 − ℓ4)

2
[

2 (ℓ3 − ℓ4 − p2)
2 + (ℓ6 − p1)

2 − (ℓ4 − ℓ6)
2 + ℓ24

]

= − 0.0112847

ϵ8
+

0.000000001(95)

ϵ7
+

0.299858(2)

ϵ6
+

0.848669(24)

ϵ5
+

0.86617(24)

ϵ4

+
10.3884(22)

ϵ3
+

107.036(19)

ϵ2
+

184.841 ± 1.038

ϵ
, (A.26)

I(28)13,PSLQ =− 13

1152ϵ8
+

35ζ2
192ϵ6

+
305ζ3
432ϵ5

+
461ζ4
576ϵ4

+O(ϵ−3) . (A.27)
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Plus 12 simpler 11- and 10-line integrals



Full color form factors

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 

double-copy

CK-duality
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amplitudes, as well as the factorization 
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
Graphs

Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 

Sudakov 
From Factor

p1

p2

q

Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, "New Relations for Gauge-Theory 
Amplitudes", Phys.Rev. D78, 085011 (2008).
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The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies

Cusp Anomalous dimension (CAD)

Diagram-expansion 
up to 3 loops

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory
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Definition Logarithmic behavior

2

0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

For SU(N) : CA = N d44 =
N2(N2 + 36)

24
The form factor has no ultraviolet (UV) divergences

since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.

2

0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by
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with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2
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and d44 = N2
c /24 (N

2
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For SU(N) : CA = N d44 =
N2(N2 + 36)
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The form factor has no ultraviolet (UV) divergences

since the operator is protected, leaving only IR diver-
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At l loops the planar part / N l
c of F (l) has leading di-
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terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
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are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
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[4] Z. Bern et.al., "Simplifying Multiloop Integrands and Ultraviolet Divergences of 
Gauge Theory and Gravity Amplitudes", Phys.Rev. D85, 105014 (2012).
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5
# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand

ℱ5-loop
2 = F tree

2
306
∑
i=1 ∫

L
∏

j
dDℓj

1
Si

Ci Ni
∏αi

P2αi

Four master 
graphs @    
5-loop:

Ten 4-loop 
non-planar 
topologies

When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = − 3072 × (1.60 ± 0.19) 1

N 2c

Sudakov Form Factor in N=4 SYM 
Up To Five Loops
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the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].

(a)
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p1

p2

(b)

q
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Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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[6] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nucl.Phys. B425, 217 
(1994); R. Britto, F. Cachazo, and B. Feng, Nucl.Phys. B725, 275 (2005).

[5] T. Becher, M. Neubert, "On the Structure of Infrared Singularities of Gauge-
Theory Amplitudes", JHEP 0906, 081 (2009).

A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + '(ϵ3)

I (a) = [(ℓ3 − p1)2]2 ,

I (b) = (ℓ3 − p1)2 [ℓ2
4 + ℓ2

6 − ℓ2
3 + (ℓ3 − ℓ4 + p1)2 + (ℓ3 − ℓ6 − p1)2] ,

I (c) = [(ℓ3 − p1)2]2 ,

I (d ) = (ℓ3 − p1)2 [(q − ℓ3 − ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ CuNu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.

5

TABLE I. Number of cubic graphs, planar masters and free
parameters in CK-solution of three-point form factors up to
four loops. Note that the number of parameters are counted
based on the solutions obtained from minimal ansatzes.

L loops L=1 L=2 L=3 L=4

# of cubic graphs 2 6 29 229

# of planar masters 1 2 2 4

# of free parameters 1 4 24 133

contributions and include all—usually one has to find all
possible ways of planar projections and distribute the in-
tegrand equally among them.

We have performed explicitly checks for three-point
form factors up to four loops. The checks also use CK-
dual integrands with free parameters as input. to modify

DISCUSSION

In this paper we obtain for the first time the full-color
four-loop integrand of the three-point form factor in
N = 4 SYM. The color-kinematics duality has played
a crucial role in this construction by providing a very
compact integrand ansatz. The main challenge of the
computation is actually if a solution consistent with all
unitarity cut constraints exists. Remarkably, there is a
large solution space for the final four-loop CK-dual inte-
grand. In Table I, we summarize the some descriptions
of the CK-dual constructions up to four loops, including
also previous lower loop results in [38, 40]. One can see
that as the number of loops increase, the number of mas-
ters and the size of their ansatzes increase mildly. Impor-
tantly, the dimension of the CK-dual solution space also
grows when going to higher loop orders, which strongly
suggests that the construction can be applied to form
factors at five and even higher loops.

As another interesting aspect of this work, we show
that for the three-point form factor up to four loops, the
leading-Nc integrands in the limit of q2 ! 0 all satisfy
the directional dual conformal symmetry with a boost
vector bµ / qµ. This property should hold for more
general higher-point and higher-loop form factors, which
are supported by a unitarity based argument. It is thus
reasonable to closely inspect the directional dual con-
formal symmetry for the dual periodic Wilson lines at
both weak- and strong-coupling. On the other hand, for
the integrated planar form factors, the DDCI symmetry
should be broken and the cusp anomalies appear due to
IR divergences [30]. We expect that the cusp anoma-
lies can also be subtracted by the BDS ansatz, similar to
the amplitudes case, and can be well interpreted by the
anomalous conformal Ward identities [51] for the dual
Wilson lines. Furthermore, it is natural to ask whether
the directional dual conformal symmetry can be extended

to general conformal symmetry beyond the directional
bµ / qµ as well as the lightlike limit of q. Some dis-
cussions about the (general) dual conformal symmetry
for form factors as well as its Wilson line dual at one-
loop level are already given in [10, 36] but higher-loop
generalizations are still not completely clear. We also
mention that recently a non-perturbative result has been
obtained in [52, 53] (see also the related study for am-
plitudes [54]) originating from the integrability of N = 4
SYM [55] in the operator product expansion (OPE) limit
of the Wilson line and it would be interesting to have
a deeper comprehension about the form factor/periodic
Wilson line duality. We will give more details about the
above DDCI, as well as the cut-based proof, and further
generalizations elsewhere [? ].

Finally, to implement the four-loop integrals defi-
nitely deserves considerations. As discussed in the pre-
vious three-loop discussions [40], our form factors re-
sults should encode full-color IR divergences and splitting
functions. This is, however, not a trivial task even in the
large Nc limit, since the color-singlet q-leg results in in-
evitable contributions from non-planar topologies (the q-
interior topologies). Besides these di�culties, we are still
optimistic about solving the problem of loop integrations
in the future.
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FIG. 2. Selected four-loop diagrams from the 229 topologies.

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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FIG. 3. Master topologies.

consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according

2

those of others, and thus a relatively small ansatz can be
utilized rather than making ansatz for all topologies. The
second step is to solve the ansatz via constraints, where
topology symmetries are involved and generalized unitar-
ity method [7–9] is applied. Readers are also referred to
[6, 11, 31] for more details of general constructions.

Before entering the specific construction, we summa-
rize the final CK-dual integrand of the considered four-
loop three-point form factor as follows:

F (4)
3 =

X

�3

229X

i=1

Z 4Y

j=1

dD`j
1

Si
�3 ·

F
(0)
3 Ci NiQ
↵i

P 2
↵i

, (3)

where the sum is over 229 non-isomorphic cubic graphs;
Si are symmetry factors which remove the overcounting
from the automorphism symmetries of the graphs and the

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [32] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[33, 34]. This symmetry is generalized to the Yangian
symmetry [35–37] and is closely related to the integra-
bility [38]. In contrast, the generalization to form factor
cases is much less discussed so far [39]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [40]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [41]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

ANSATZ OF CK-DUAL INTEGRAND

To start the construction, we first need to get all trivalent
diagrams, each of which contains one operator q-leg and
three external on-shell legs. As observed in [11, 20, 21,
42], for N = 4 SYM, it is reasonable to exclude diagrams
with tadpole, bubble and triangle sub-graphs, unless the
triangle is connected with the q-leg. Under this criteria,
there are 229 trivalent topologies to consider. Selected
examples are shown in Figure 2: the first column contains
planar diagrams which can be drawn on a plane with the
ends of the q-leg and three on-shell legs aligned at infinity;
the second column includes diagrams defined as q-interior
planar in the sense that after removing the color-singlet
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FIG. 2. Selected four-loop diagrams from the 229 topologies.
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FIG. 3. Master topologies.

q-leg, the graphs are planar (they survive in the large-Nc

planar limit); the third column involves some intrinsic
non-planar diagrams; some special one-particle-reducible
graphs are shown in the last column.
The color factors Ci and propagators P 2

↵i
in (3) can be

directly read from these trivalent diagrams �i, whereas
the truly non-trivial physical information is contained in
the kinematic numerators Ni which are the focus of our
construction. Here the CK duality plays a central role.
The induced dual Jacobi relations referring to (2) pro-
vide linear relations among the numerators of di↵erent
topologies. As a result, we can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. Practi-
cally, it is convenient to select planar diagrams as master
graphs, and a minimal set requires only four planar mas-
ters shown in Figure 3.
With the planar master graphs at hand, we further

need to construct numerator ansatz for them. Firstly,
we expect the numerators are in fully local form, which
means the ansatz are polynomials of Lorentz products of
momenta. Moreover, for planar master graphs, we find
it convenient to parametrize the momenta by the dual
coordinates corresponding to zones [32] as, for example,
`a = x1 � xa ⌘ x1a in the first diagram of Figure 3,
and hence the ansatz are polynomials of proper distance
variables x2

ij . Secondly, since form factors of a protected
operator tr(�2) in N = 4 SYM are considered, we can
impose the power-counting constraint on the ansatz: a
one-loop n-point sub-graph carries no more than n � 4
powers of the corresponding loop momentum [11], with
an exception that if the sub-graph is a one-loop form fac-
tor, the maximal power is n� 3 [20]. The detailed expla-
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FIG. 1. Trivalent graphs for four-point tree amplitudes.

REVIEW AND STRATEGY

Before discussing three-loop form factors, we briefly re-
view the color-kinematics duality, and an instructive ex-
ample is the four-gluon tree amplitude. It is always pos-
sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
[2].

Before discuss the details of the construction, we
present the final form of the CK-dual integrand of 3-loop
3-point form factors:

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (5)

where sum over �3 is due to the permutation of external
on-shell momenta pi, i = 1, 2, 3. The symmetry factors
Si remove the overcounts from the automorphism sym-
metries of the graphs.
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FIG. 2. Loop graphs related by Jacobi relation.

FIG. 3. Trivalent topologies for the form factor of tr(�2).

CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2

ac)
1
, (x2

a0)
1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there
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sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
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CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2
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1
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1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there

ℱ(ℓ) ∼ ∑
i

∫
Ci × Ni

∏D
Conjecture !
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Main challenge:  it is a priori not known whether the solution exists

Conjecture !


