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The motivation



In this talk, we will present our recent work about finding
complete symbolic reduction rules for general multi-loop
integrals using the generating function.



@ Scattering amplitude is one of central object in QFT. It
connects the theoretical prediction with the experiment.
Thus its computation is extremely important.

@ The tree-level amplitudes give the classical effect, so to
probe the quantum correction, we must compute the loop
amplitudes.

@ With the efforts of whole community, the one-loop integrals
have been solved with the on-shell program.

@ Currently, the frontiers are the computation of higher loop
integrals. Especially with the huge data collected by

experiments, precise computation become more and more
important.



A very important step of multi-loop integral computation is the
reduciton, i.e.,

| = ZC,'/,'
i

where ¢; is the rational function of external information, while /;
is called ( master integrals).

For higher loop, there are a lot of proposal to do the reduction.

One of very successful method is the IBP method (plus its
various generalization).



However, with the increasing of complexities of problem, i.e.,
higher number of prapagators, higher tensor, higher powers of
propagators etc, the IBP method faces serious challenge,
especially with the exponential increasing of to-be-solved linear
equations. Thus improving the efficiency of reduction becomes

critical.



Setup



For L-loop integrals with E independent external momenta, a
family of scalar Fls can be represented as

R s
) /H o 0

The IBP method is to establish relations between different /()
and solve them by some basic integrals (master integrals).



We can group different /(7) using generating function

/H @ b eZ, 1 (1=w)misy ' Dy 1 (2)
H, 1( 50771)

Expand it we see that

= > Fqi (3)

>0
where

FFIN /(n1 +17"'7nK+17_nK+17"'7_nN) (4)



The general differential equations for generating functions have
the form

= 0
Ti— ) = B 5
> o™ G () = . (5)

where B is the function of generating functions of subsector of
the sector ji; and

351 N 8(50:'
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Putting the expansion (3) to equation (5) and collecting the
coefficient of 77", we get

N (Bt)j »
Z Ct (H H a)/ +p ) Fﬁert*at =B (7)

t j=1 p=1
where for simplicity, we have made the convention that

F;=0, i, such (n);<0 (8)



@ The recurrence relation connects Fj at the different lattice
points 7.

o If we define the degree of lattice point 7i as Zf\; n;, itis
naturally to see that when we could express F at the
higher lattice points by these F5 at the lower lattice points
n, we will get a nice recurrence relation or reduction rule.

@ Since the choice ri can be arbitrary as long as the
reduction rule can be applied, we get a symbolic
reduction rule



The expression (7) provide a nice mapping between operator

~ = gb
0= 773835 and F g, 4, thus
n

@ We define the finer index by the pair of vectors (3, b) and
the corresponding index as the vector 6 = b — &, thus the
of a operator is given by |0| = z,“;(a),-

@ finding symbolic reduction rule is equivalent to express
the higher degree operator as the sum of lower degree
operators using the differential equations



In this talk, | will present an algorithm to find complete
symbolic reduction rules using differential equations of
generating function!



Algorithm

The algorithm



Algorithm

The algorithm is given by the diagram:
Find Reduction Rules

No!

Generate Equations ¢

lYes!
IBP



Algorithm

Three type of equations:
@ First: it contains one and only one highest degree operator

o 0
— 20 ¢ 9
0 {—l— 115 O G111}

2mi 9 fo_y O
+{_soc‘91611_ % 836111} (9)

@ Second: it contains several highest degree operators, but
all of them have the same operator index. For example, in
the differential equation

0 = {—2775 G202 9 G- 3D)G}
2 D s
fo_ —K? —K?(D-2
+ —a G+ My 9 g, K(D=2) )nsG (10)
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Algorithm

@ Third: it contains several highest degree operators with
different operator indices, for example,

0 0
0 = —0-202Ga+(p-22a
( )3774 ( )3?75
freqem 0 0
+ 2 % G+R 11
So  OnpOns (an

There is a partial ordering of operators to determine which
operator should be solved!



Algorithm

One of the key concept: descendant reduction rule

Having a reduction rule, i.e., solved
662 ZC,‘@,‘G—I-B (12)
i

where 5,- has lower degree comparing to O and B are
contributions from subsectors, we have

i

which is a nice reduction rule for the operator 5,5 (it will be
called "descendant operator")



Algorithm

The use of descendant reduction rules:
@ Generate new equations: acting 0%, on reduction rules

@ Simplify equations: When and only when we use
descendant reduction rules to clean the dust caused by the
known reduction rules, new operators can appear to
provide new manifest reduction rules!!



Algorithm

The general principle of solving:

@ Linear combinations to give as many as possible first type
equations, then second type, finally third type.

@ Solving first type equations first, and then second type,
and finally third type.



Algorithm

The determination of reducible and un-reducible lattice points:
@ The reduction rule will be like

c(M)Fas= Y c(MF, 7#>0 (14)

i

@ Thus any lattice point 15, as long as P_5 > 0, can use the
result (14) to reduce

@ Thus we have two sets

S; = {meRN|m>0 & m>d} (15)

U ={meR"|Mm>0 & 3i,(M—6,); < 0} (16)



Algorithm

Criteria of completeness of a set of reduction rules: When and
only when the number of un-reducible lattice points is equal to
the number of master integrals in the given sector!



Example |— topsector of sunset
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Example |— topsector of sunset

For sunset diagram, we have
=((§—m}), D2=(5—-mj), D3=((ts+L2—KP—mi), (13
and the numerators are
Dy=41-K, Ds=/ls-K, (18)

For sunset, among the 23 = 8 possible generating function,
only (remembering that for ISP, 4 = us = 0 so when we write
down the index, we neglect them)

Gi11, Gi10, Giot, Got1 (19)

For massless case, some subsectors is just zero.



Example |— topsector of sunset

More explicitly we will have

— 1NiSo

dgl Z s D: 1
G110 = /Hlﬂ_/ej3n/0 IHT

1iSo

3
_ > 1,45 Sy ' Dj 71
Gort = /HmD/ef 5
i=2

1iSo

1
_ > s7'D,
Gior = /HWD/G =245 1% 11_1[37) % (20)
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Example |— topsector of sunset

3
d“¢; 0 a1, 1
_ Y 2 =457y D -
0 /HmD/ze% { e EDi—nfSO}
3

dﬁ, > nsy ' D; 1
= /HWD/ZDe j=4,5 "o IHD,—
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3
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i — MiSo
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Example |— topsector of sunset

Collecting according to the degree we have initial differential

equation
o 0 2m? 9 f 0
0 = {(+2-———G }+ — =1 = Gyyy — Gy
{ O O { so om " s oy
+4+(D—-3)Gy11 + iG -2 iG
111 7743774 111 ?718771 111
_( + _ )iG }
ngrTm—1z2 s 111
1 0 1 9
_ 22
+{ % O ——Go11]n,=0 + 087736101|"2_0} (22)
where for simplicity we have defined
fabe = @mé + bma + cmi — K2, a,b, ¢ = +1 (23)



Example |— topsector of sunset

Solving and finding reduction rules: For six IBP equations,
the matrix of highest degree operators is given as

9 o o 89 9. o 9 89 8 9 9 8

dny Ong  Omp Ong Oz Iy Oy ns I Ans Ang s
0 0 0 0 2 I
-2 0 -2 -2 0 0 b
-2 0 -2 0 0 -2 h (24)
0 -2 0 0 -2 -2
0 0 2 0 0 0 I
0 0 -2 0 -2 -2 I



Example |— topsector of sunset

After the Gauss elimination we obtain
a 9 a a 9 a 9 a 9 a

Oy Ong On2 Ong  Omz Ong Oy Ons O s g Ons
0 0 0 0 2 I
-2 0 0 0 0 0 I+ 15+ I
0 0 0 -2 0 0 b — 5 — 1
0 -2 0 0 0 0 Iy — Is — Ig
0 0 2 0 0 0 Is
0 0 0 0 -2 0 Ie + 15+ 14



Example |— topsector of sunset

Now solving (25), we obtain reduction rules for following six
degree two operators. For example, the first one is

g 0
8777587736111
0 0
= {-2mPsy' —Gy11 —fi_ 5" —G }

{ 150 g, Gt —li—s8o 5 -G

0 0
+4+H(D=3)Gr11 + 45— Gr11 — 21 5 — Gi11

Ong o

0

- _ )2 2
(n3 +m 772)87736111} (26)



Example |— topsector of sunset

Checking the un-reducible points: The solved operators is

o o0 0 o 0
a._ v A9 Ao X a._ v o 27
{3771 On2’ On3 } {3774 s } (@7)
the set of points can not be reduced by above six reduction
rules are
Uy =(0,0,0,n4,n5), Uz = (ny,n2,n3,0,0) (28)

Since these two sets contain infinity number of lattice points, we
need to generate new equations to solve new reduction rules.



Example |— topsector of sunset

Generating new equations: We act 5,/ = 1,..,5 to above six
reduction rules and get 30 equations of degree three They
belong to two types:

0 9
@ Trivially generated: For example, -2 s <3775 6n3>

@ Non-trivially generated: For example, -2 By ( 0 ) and

dng dns
o (.o
v <8n1 a%) Using the integrability condition
[8771 , 8ns] = 0, we can get a non-trivial new equation.



Example |— topsector of sunset

After using descendant reduction rules to simplify, the
remaining degree two part is given by

0 0 0
N ) 2.—1 Y —f, 7176
3771{ misy an Gii1 — f s o G111

0 f+_+ 0 2m§ 0
~ 2y b Y g, B Y 29
87]3 { So 87]1 G111 So 87]3 G111 ( )

o9 P 9 0

onz? ons? Oy Ong’
which are not descendant of 6 known reduction rules. The
appearance of these new operators is the key of the
algorithm, but as we remarked before, it comes out when and
only when we use descendant reduction rules to clean the dust
caused by the known reduction rules.

There are three new degree two operators



Example |— topsector of sunset

There are 9 new equations, but only 8 independent one. Their
behaviors are different for massive and massless case:

@ Massive: 3 of them, degree two and 5, degree one
@ Massless: 5 of them, degree two and 3, degree one



Example |— topsector of sunset

For massless case:

@ (a) The 3 degree two equations for first type. We can solve

- 0 0 0 9 9 0
degree two operators: By Oz O O and O O

@ (b) 2 degree one equations are second type and we solve

2

2 G t2ns 2 2 6 ©-30)-2a
4 11 + 215 111 — (6 — 11
on? Ang s omg
K2(D — 2) K2 &8 K2 2
———Gr1 + —n5—Gi11 + — (4 + 15) — G
Sop Sp ans Sp Oy

and

2 826 +2 9 9
ns@né 111 M4

fel
Gi11 — (6 — 3D)— Gy
Omng Oms s

K?n, & K2(ns + 8
{ N4 s + (n5 + n4)

K3(D — 2)
nt+t——— Gii1 + Gri1
sy Omy So 9ns So

}




Example |— topsector of sunset

@ (c) 3 degree one equations are third type and we solve two

of them
(D —4) ¢ 2 o G
87]2 111 "728773 111
{(D 02 6 —om P } (32)
= - 111 — €M3 111
ong an3
and

o-49"2a 2 o G
6"1 111 m 37]12 111

{(D na 2 6 } (83)
= — )5 U111 — en3 5 G111
amg on3

we find that these un-reducible points is the set

Uz ={(0,0,n3,0,0)|Vns > 0} (34)



Example |— topsector of sunset

Generating new equation again: Acting on 8 on four degree
one reduction rules, we find using anyone we can generate a
new equation to reduce n3. For example, acting 6%3 at the both
sides of the one reducing n4 and simplifying, we have

(D—4)K? o K2 22
—Gy11 — — 2 Gi11
25y ong 8
(D —3)(3D —8) (5D — 16)n3 @ , 82
= - Gy + —Gi11 — 35 Gin (35)
2 2 ong ong

Using the result (35), one can see that all nonzero ng can be
reduced to n3 = 0. So finally the only point can not be reduced
using the reduction rule is the point (0,0, 0,0, 0), which is the
master integral for this case. Done!!!



Example |— topsector of sunset

For massive case:

@ (a) 2 degree one equations are second type. Solving them
we can reduce ny, ns to zero.

@ (b) 6 degree two equations are third type. Using 5 we can

2 9 9 B
solve five operators D ong" D O 371073 and dnz 8n3 by
the operator -2 aTg
@ (c) un-reducible points are
Uz = {(07 07 ns, 07 O)‘vnS > 0} (36)

and (1,0,0,0,0),(0,1,0,0,0).



Example |— topsector of sunset

@ (d) we act a% on three degree one equations, the degree
two part after the partial reduction is

m%(K2 +3m12 — 3m§ — m§) 82

2 2
S5 ong
+m§(K2 +3m —3ms —m2) & 8
s 9nz Ong
2m(m? — K?) 8 8
— @7)
S5 Ony Ong

Adding it to above 5 degree two equations, we get 6
independent equations to solve 6 degree two operators.

@ (e) Using it, the un-reducible points are only following four,
ie., (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0) and
(0,0,0,0,0), which are exactly the master integrals.
Done!
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Example Il— topsector of planar double box

@ There are 9 Lorentz invariant combinations. For top-sector,
there are 7 propagators and 2 ISP’s.

@ There are 10 initial IBP equations. With proper
combinations, we will have 4 degree one first type
equations and 6 degree two first type equations.

@ Using the 4 degree one first type equations we can solve

o =1,3,4,6.
@ Using the 6 degree one first type equations we can solve
o 9 0 o 0
a3 a8 a o (XYa A 38
{5772 s’ Oz } {3778 g } (39)

@ The un-reducible lattice points are
Uy = (Oa ne, 07 0> ns, 07 nz, 0> 0)7 U = (0, 07 01 07 Oa 0> 07 ng, ng)



Example Il— topsector of planar double box

Second round:

@ Since the components ny, n3, N4, Ng have been fully
reduced, we will not consider the action a%’ i=1,3,4,6.
!

@ Let us start with 8%, i=2,5,7,8,9 on four degree one
reduction rules. We get 9 non-trivial generated new
equations, but only 8 are independent

@ Among 8, 3 are degree one third type equations, 3, degree
two first type equations, 2 degree two second type
equations.

@ 3 degree two first type equations can be used to solve

0 0 0 0 9
2 Ons > Onz Oy and ons Ony

i)
on



Example Il— topsector of planar double box

@ 2 degree two second type equations and 1 degree one
third type equation gives

25y 1
-Ry = T("s +1)(ng +1)(D — 4+ ng)Fr 5 5 + 5(”8 +1)(D -4+ ng)F5,5
1
+§(ng +1)(ng — 2n3)Fﬁ+§g (40)
1 1
—Re = (gt 1)(D =4+ ng)Fss — o (ng+ (D — 4+ ng)Fr 5 (41)
259 1
Ry = ?("s +1)(ng +1)(D — 4+ ng)Fp 5 50 + E("B +1)(2(D — 4) + ng + 2n9)Fz. 5,
1
- 5("9 +1)(D — 4+ 9)F7, 5, (42)

We can solve Fﬁ+és+é9’ Fﬁ‘f‘és’ Fﬁ+ég



Example Il— topsector of planar double box

@ Remaining 2 degree one third type equation gives

2

(D—6) @ 22 (D—6) & o
—G-nm7-—5G = —G-n5_——G+ R
2 ony ons 2 Ons ong
D—6) 8 82 (D—6) & 22
OO0 e e - =G5 5G— Ry “3)
2 Iy on3 2 ons Ong

@ The unreduced lattice points are just
(0,0,0,0,ns5,0,0,0,0), so we need generate further

equations.



Example Il— topsector of planar double box

third round'

@ Acting 2 75 ON four new found degree one reduction rules
and S|mpI|fy|ng it, one gives

D — 2 3
( 8) 0 a2 G- 7758736
2 Ons ons
(D-6) 0 0 82 0 0
= — G- —G+—R 44
2 Ons Oz 3772 ons ans 44

we get a perfect degree two reduction rule for
(0,0,0,0,ns5,0,0,0,0).

@ Since the left hand side is f5, 55, we can only reduce
lattice points (0,0,0,0, ns,0,0,0,0) with ns > 2. Now the
only points can not be reduced is ns = 0,1 and we have
found two master integrals. Done!



Example Il— topsector of planar double box

In this talk, | have present an algorithm to find complete

symbolic reduction rules using generating functions. We have
shown the efficiency using several examples. Although it has
been checked conceptually, programming it will be important!

Thanks a lot of your
attention !
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