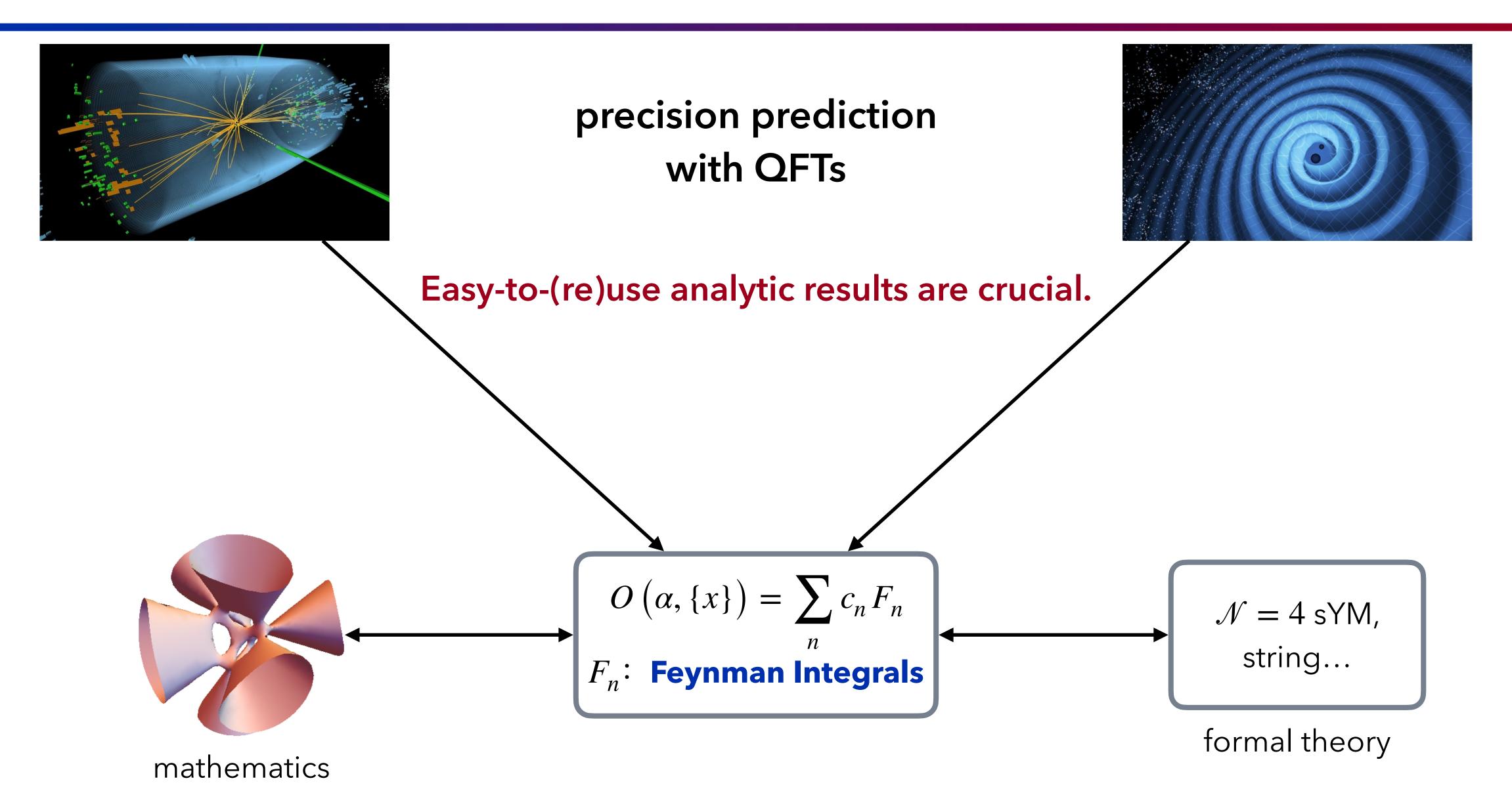
On Canonicalising any Feynman Integrals

Xing Wang (王星)

The Chinese University of Hong Kong, Shenzhen

第五届量子场论及其应用研讨会@北京,2025

Motivation



Feynman Integrals are Inevitable in QFTs

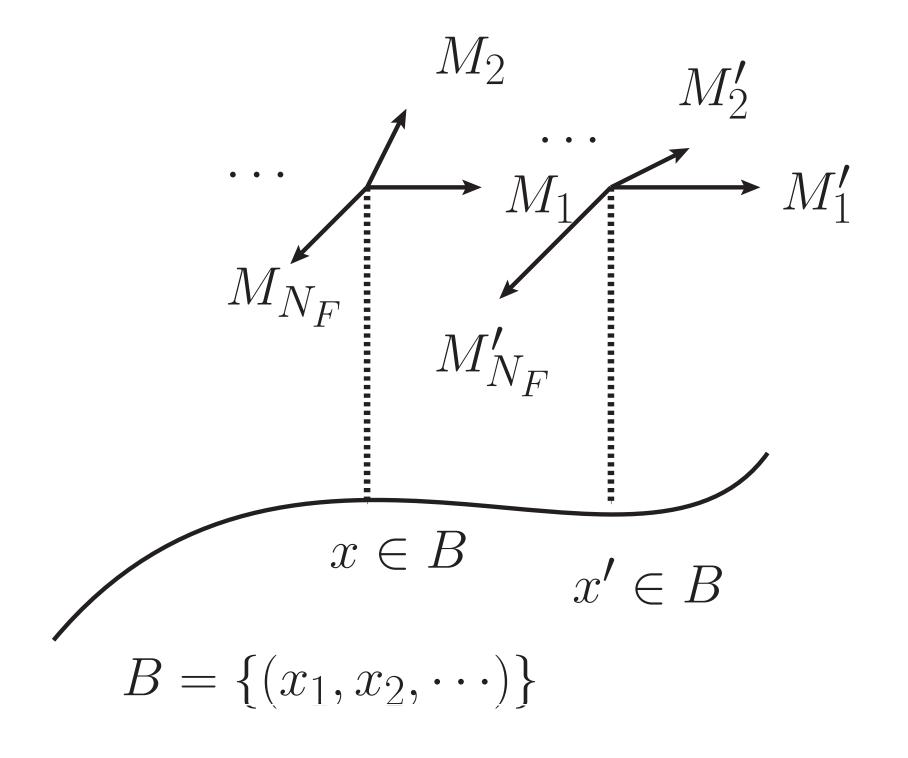
$$p = \int \frac{\mathrm{d}^D l_1}{i\pi^{D/2}} \int \frac{\mathrm{d}^D l_2}{i\pi^{D/2}} \int \frac{\mathrm{d}^D l_2}{i\pi^{D/2}} \frac{e^{2\varepsilon \gamma_E} \cdot (-p^2)^{|\nu|-D} \cdot \operatorname{Num}(\{l\})}{\left[l_1^2 - m^2\right]^{\nu_1} \left[l_2^2 - m^2\right]^{\nu_2} \left[(l_1 + l_2 - p)^2 - m^2\right]^{\nu_3} \left[(l_1 + l_2)^2\right]^{\nu_4} \left[(l_1 - p)^2 - m^2\right]^{\nu_5}}{I_{\nu_1 \nu_2 \nu_3 \nu_4 \nu_5}}$$

Each Feynman diagram corresponds to a **Feynman Integral**, of which the complexity exploits **factorially**.

Kinematics Dependence

Kinematics vary—— differential equations (w. IBPs) of Fls (Mls).

The primary method for analytic and (semi-)numerical calculation of Fls.



$$d\begin{pmatrix} M_1 \\ M_2 \\ M_3 \\ \vdots \\ M_{N_F} \end{pmatrix} = A_{N_F \times N_F} (\varepsilon, \{x\}) \begin{pmatrix} M_1 \\ M_2 \\ M_3 \\ \vdots \\ M_{N_F} \end{pmatrix}$$

[Kotikov '91; Remiddi '97; Gehrmann, Remiddi '00]

Solving this linearly coupled PDE system is non-trivial!

ε -factorisation (canonicalisation)

ε -factorisation:

Via **rotations** of basis (i.e., $\overrightarrow{M} \to \overrightarrow{K}$) and **variable change**, $\underline{\varepsilon}$ -dependence factorises in the connection matrix, with suitable boundary conditions. [Henn '13]

$$d\begin{pmatrix} K_1 \\ K_2 \\ K_3 \\ \vdots \\ K_{N_F} \end{pmatrix} = \varepsilon B_{N_F \times N_F} (\{q(x)\}) \begin{pmatrix} K_1 \\ K_2 \\ K_3 \\ \vdots \\ K_{N_F} \end{pmatrix} \implies \overrightarrow{K} = \sum \varepsilon^n \overrightarrow{K}^{(n)} \longrightarrow \overrightarrow{K}^{(n+1)} = \int B_{N_F \times N_F} \overrightarrow{K}^{(n)} + \text{boundary}$$

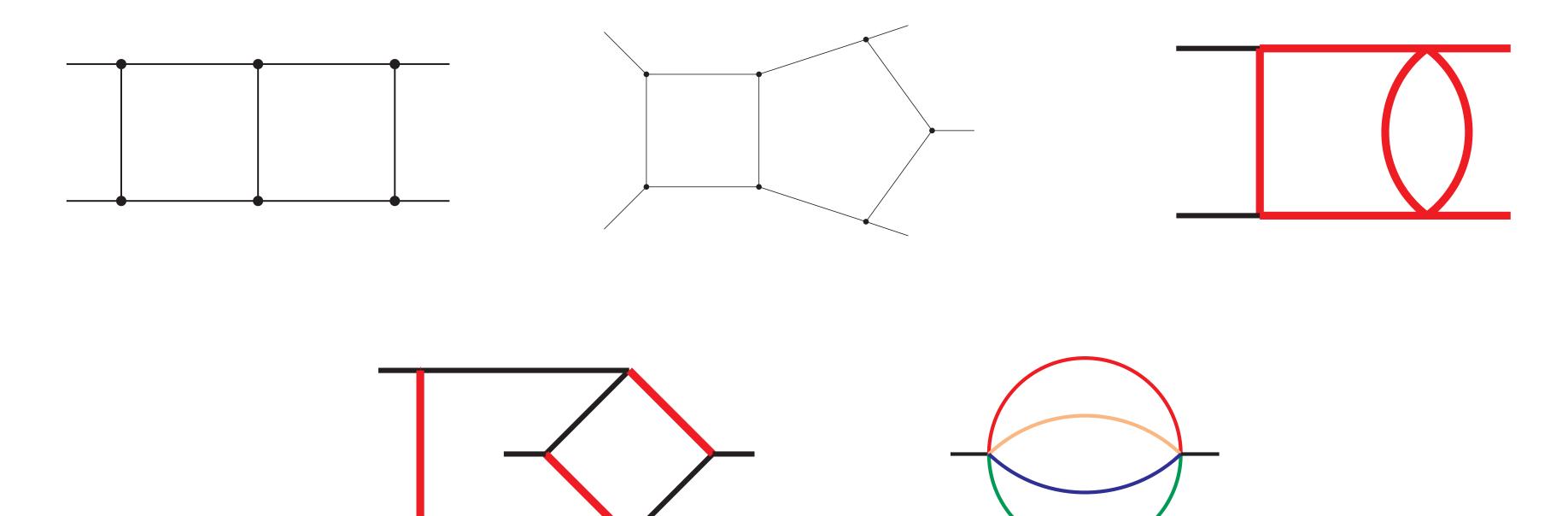
$$\Leftrightarrow \overrightarrow{K} = \mathbf{P} \exp \left(\varepsilon \int B_{N_F \times N_F} \right) \overrightarrow{K}_{\text{boundary}}$$

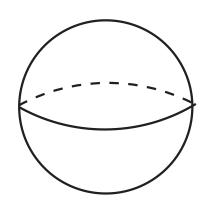
MIs can be written as Chen's iterated integrals [Chen '77].

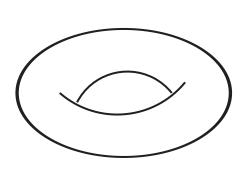
Once the ε -factorised (canonical) form is derived, FIs (MIs) are viewed as solved.

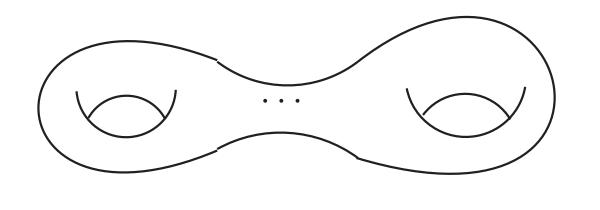
Very Hard! Lots of progress recently, e.g., Baune, Bönisch, Broedel, ε -collaboration, Dlapa, Duhr, Frellesvig, Görges, Henn, Klement, Jiang, Maggio, Nega, Porkert, Sauer, Sohnle, Stawinski, Tancredi, Wager, Wilhelm, Yan, Yang, Zhang, Zhu + many more...

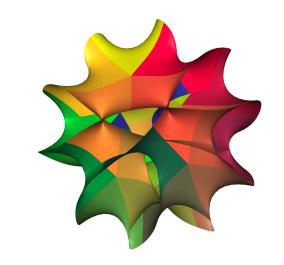
Feynman Integrals are Hard











[Snowmass review <u>2203.07088</u>], [a book by Weinzierl, '22]

Takehome Message

A unified algorithm towards deriving the ε -factorised (canonical) form of any Feynman integral, inspired by Hodge theory.

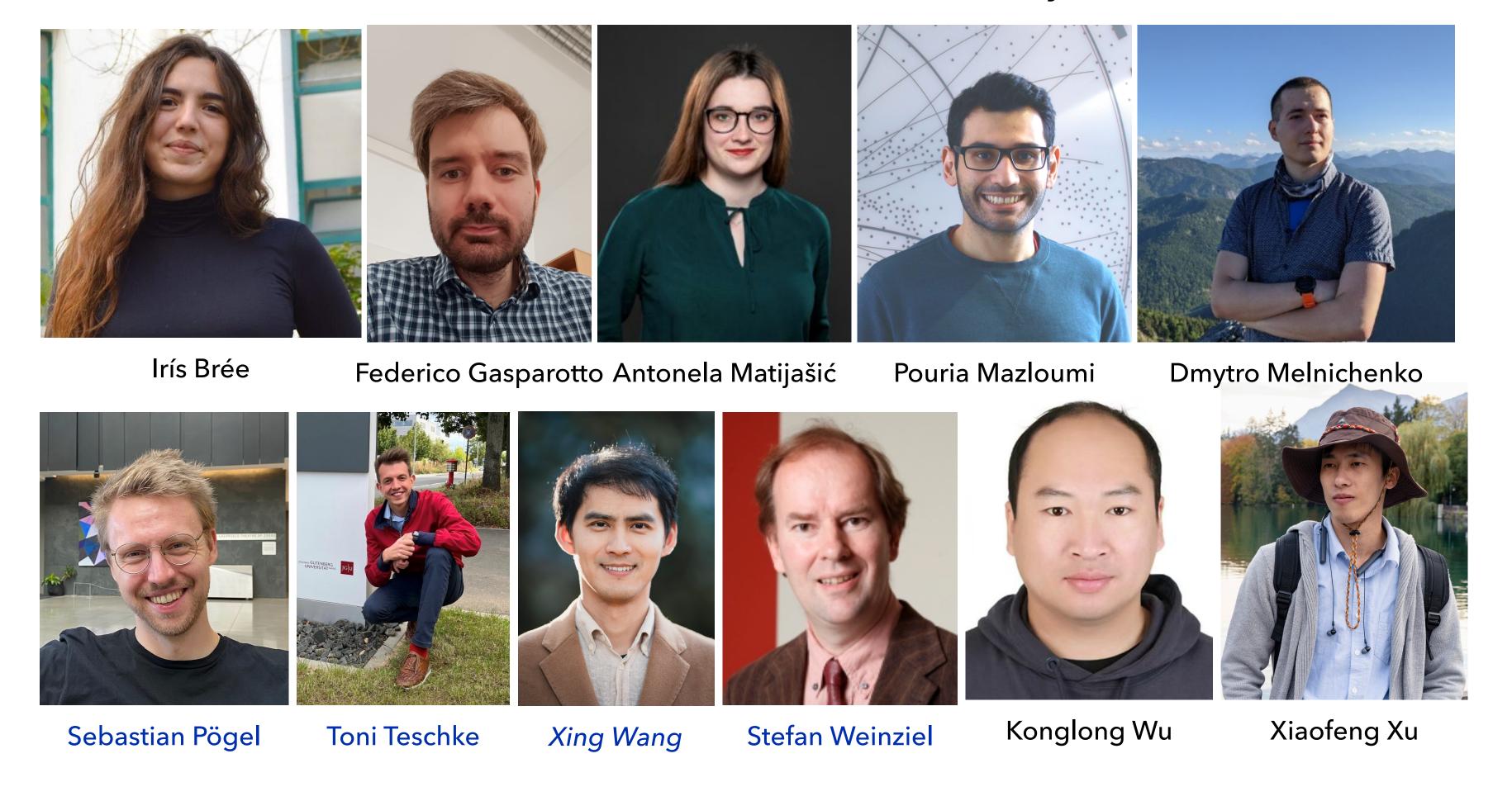
The algorithm cracks the complexity to the minimum.

figure generated by ChatGPT

- One can derive ε -factorisation (canonicalisation) step by step *without* prior knowledge of geometry;
- A unified framework!

This Talk: ε -collaboration

based on 2506.09124 and 2510.xxxxx by the ε -collaboration



and 2507.23594 by a subset of the ε -collaboration

Outline

- I. Baikov Representation and Twisted Cohomology
- II. Step 1 of the Algorithm and an Example
- III.Step 2 of the Algorithm and an Example(s)

Baikov Representation as Variable Change

- $ightharpoonup d^D l o dP_1(l)dP_2(l)\cdots$, i.e., propagators, P_i 's, as integration variables: $z_i = P_i/\mu^2$;
- → non-trivial "Jacobian", twist:

extra variables

$$I_{\nu_1 \cdots \nu_n} = C_{\text{Baikov}} \int_{\mathscr{C}} \underbrace{u(z_1, \cdots, z_n; \cdots, z_{n+N_{\nu}})}_{\text{twist}} \frac{1}{z_1^{\nu_1} z_2^{\nu_2} \cdots z_n^{\nu_n}} d^n z \wedge \mathbf{d}^{N_{\nu} z}$$

Packages: [Baikovletter, Jiang, Yang; BaikovPackage, Frellesvig; SOFIA, Correia, Giroux, Mizera]

- ► Not for calculating Fls, but rather for studying the structures!
- ► It translates FIs to twisted cohomology language.
- ▶ Perfect for (onshell) propagator cuts: $cut_i = res_{z_i=0}$.

Setup: Twist

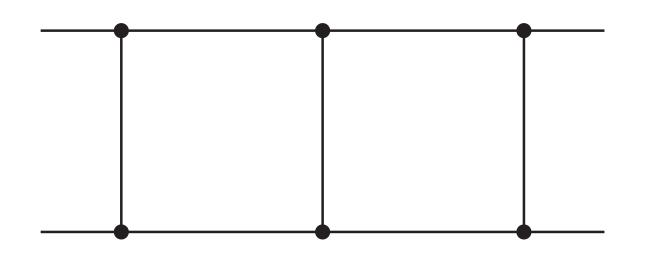
MIs in a given sector share the same (minimal) twist ($b_i, b_j \in \mathbb{Z}$):

$$u(z_1, z_2, \dots, z_{N_V}) = \prod_{i \in I_{\text{odd}}} [p_i(z)]^{-\frac{1}{2} + \frac{1}{2}b_i \varepsilon} \prod_{j \in I_{\text{even}}} [p_j(z)]^{\frac{1}{2}b_j \varepsilon}$$

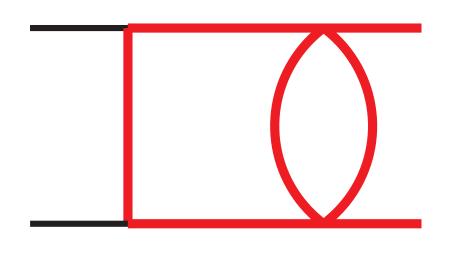
- ► Odd polynomials geometry;
- ► Even polynomials possible residues (punctures) to take;
- ▶ Different MIs → different rational parts.

$$M_i = C_{\text{Baikov}} \int_{\text{MC}} u(z) \frac{q_i(z)}{\prod_{j \in \text{all}} \left[p_j(z)\right]^{\mu_j}} \mathrm{d}z_{N_V} \wedge \cdots \wedge \mathrm{d}z_1, \qquad \mu_j \in \mathbb{Z}$$
 maximal cut

Twist: Examples



$$I_{111111100}^{\text{MaxCut}} = C_{\text{Baikov}} \int_{\mathcal{C}_{MC}} \frac{\mathrm{d}z_1}{2\pi i} \overline{z_1^{-2\varepsilon} \left(z_1 - 1\right)^{-\varepsilon} \left(z_1 - x - 1\right)^{\varepsilon}} \cdot 1$$



$$I_{111200100}^{\text{MaxCut}} = C_{\text{Baikov}} \int_{\mathcal{C}_{\text{MC}}} \frac{\mathrm{d}z_1}{2\pi i} \left[p_1(z_1) \right]^{-\frac{1}{2}} \left[p_2(z_1) \right]^{-\frac{1}{2} - \varepsilon} \left[p_3(z_1) \right]^{-\frac{1}{2} - \varepsilon} \cdot 1, \quad \mathbf{w} .$$

$$p_1 = z_1 - x_2, \ p_2 = z_1 + 4 - x_2, \quad p_3 = \left(z_1 + 1 \right)^2 - 4 \left[x_2 + \frac{\left(1 - x_2 \right)^2}{x_1} \right].$$

$$p_1 = z_1 - x_2, \ p_2 = z_1 + 4 - x_2, \ p_3 = (z_1 + 1)^2 - 4\left[x_2 + \frac{(1 - x_2)^2}{x_1}\right]$$

Setup: Twisted Cohomology

$$M_{i} = C_{\text{Baikov}} \int_{\mathcal{C}_{\text{MC}}} u(z) \frac{q_{i}(z)}{\prod_{j \in \text{all}} [p_{j}(z)]^{\mu_{j}}} dz_{N_{V}} \wedge \cdots \wedge dz_{1}, \qquad \mu_{j} \in \mathbb{Z}$$

- ▶ Given a M_i , there is a differential form $\hat{\phi}_i$ ($H_\omega^{N_V} V^{N_V}$).
- ► One needs to mod out IBP relations $\hat{\phi}_i \sim \hat{\phi}_i + \nabla_u \hat{\eta}$, which leads us to the twisted cohomology [See e.g., Mastrolia and Mizera, '18].
- ► Study the differential forms to represent the corresponding MIs.
- ► Consider $\{\infty\}$ as well: $u \to U, \hat{\phi} \to \hat{\Phi}$ using homo. coord. $\left[z_0 : z_1 : \cdots : z_{N_V}\right]$.

Step 1 of the Algorithm

For each element in $H_{\omega}^{N_V}$ ={differential forms} mod IBPs, i.e., {integrands}, we define a prefactor C_{ε} :

$$H_{\omega}^{N_{V}} = \left\{ \begin{array}{l} \Psi_{\mu_{0} \dots \mu_{N_{D}}}[Q] = C_{\varepsilon}(\{\mu\}) \, C_{\mathrm{Baikov}} \, U(z) \, \hat{\Phi}_{\mu_{0} \dots \mu_{N_{D}}}[Q] \, \eta \end{array} \right\} \, \mathrm{modulo} \, \mathrm{IBPs}$$
 vector space w./ fin. dim.
$$C_{\varepsilon} = C_{\mathrm{abs}} \, \cdot \underbrace{\varepsilon^{-|\mu|}}_{C_{\mathrm{clutch}}} \times \underbrace{\prod_{i \in I_{\mathrm{odd}}} \left(-\frac{1}{2} + \frac{1}{2} b_{i} \varepsilon \right)_{\mu_{i}} \, \prod_{i \in I_{\mathrm{even}}} \left(\frac{1}{2} b_{i} \varepsilon \right)_{\mu_{i}}}_{C_{\mathrm{rel}}} \quad (a)_{n} = \frac{\Gamma(a+1)}{\Gamma(a+1-n)}$$

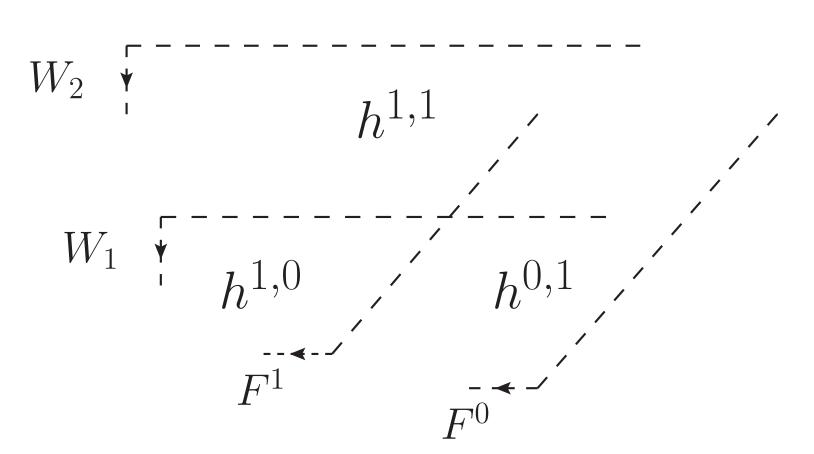
This pre-factor is entirely determined by the integrand, and it simplifies the arepsilon-complexity.

Step 1 of the Algorithm

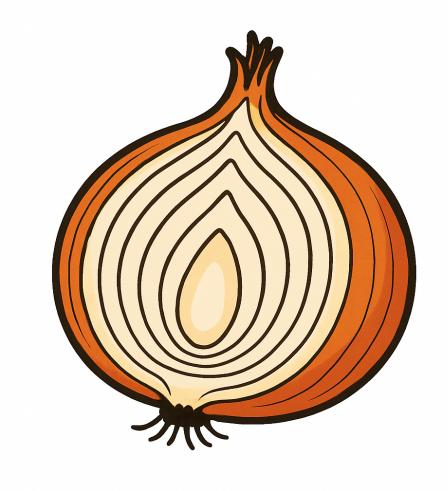
"Layered" decomposition (filtration, 滤) of $H_{\omega}^{N_{V}}$ into subspaces! (剥洋葱)

$$\cdots \subseteq F^{p+1} H_{\omega}^{N_{V}} \subseteq F^{p} H_{\omega}^{N_{V}} \subseteq \cdots$$

$$\cdots \supseteq W_{w} H_{\omega}^{N_{V}} \supseteq W_{w-1} H_{\omega}^{N_{V}} \supseteq \cdots$$



two filtrations cut an "onion" into 3 subspaces in this example

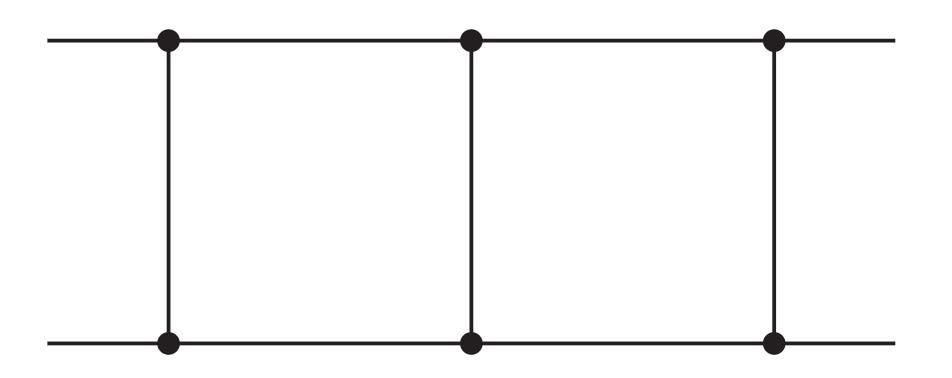


one filtration of onion

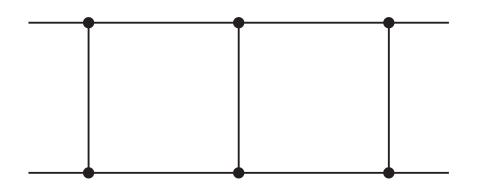
Given $\Psi_{\mu_0\cdots\mu_{N_D}}[Q]$, two more ordering criteria (two **filtrations**): pole order o, and the number of non-zero residues r. These two integers indicate "layer" numbers (两种剥洋葱的指标).

$$p = N_V - o + r;$$
 $q = o;$ $w = p + q = N_V + r.$

Appetizers Example



Appetizers Example: Twist



$$I_{111111100} = C_{\text{Baikov}} \int_{\mathcal{C}_{MC}} \frac{\mathrm{d}z_1}{2\pi i} \overline{z_1^{-2\varepsilon} \left(z_1 - 1\right)^{-\varepsilon} \left(z_1 - x - 1\right)^{\varepsilon}}$$

- ► Setting $C_{\rm abs} = \varepsilon^4 x^2$ makes $C_{\rm abs} \cdot C_{\rm Baikov}$ pure.
- ► The minimal twist in the projective space reads: $U(z_0, z_1) = z_0^{2\varepsilon} z_1^{-2\varepsilon} (z_1 z_0)^{-\varepsilon} [z_1 (1 + x)z_0]^{\varepsilon}$.
- \blacktriangleright All four polynomials are even \Longrightarrow four possible (localisations) to take non-zero resides.

$$[z_0:z_1] \in \{[0:1], [1:0], [1:1], [1:1+x]\}$$

Appetizers Example: Howto

$$H_{\omega}^{1} \ni \Psi_{\mu_{0}...\mu_{3}}[Q] = C_{\varepsilon}(\{\mu\}) U(z) \hat{\Phi}_{\mu_{0}...\mu_{3}}[Q] \eta; \qquad \eta = z_{0} dz_{1} - z_{1} dz_{0}.$$

$$U(z_0, z_1) = z_0^{2\varepsilon} z_1^{-2\varepsilon} (z_1 - z_0)^{-\varepsilon} \left[z_1 - (1+x)z_0 \right]^{\varepsilon} \Longrightarrow [z_0 : z_1] \in \left\{ [0:1], [1:0], [1:1], [1:1+x] \right\}$$

- $ightharpoonup \deg U = 0, \deg \eta = 2 \Longrightarrow \deg \hat{\Phi} = -2.$
- \blacktriangleright Ψ should localise on those 4 points after taking one residue \Longrightarrow 4 candidates.

$$\Psi_{1100}[1] = -4\varepsilon^{4}x^{2}C_{\text{Baikov}}U\frac{\eta}{z_{0}z_{1}}, \qquad \Psi_{1010}[1] = -2\varepsilon^{4}x^{2}C_{\text{Baikov}}U\frac{\eta}{z_{0}(z_{1}-z_{0})},$$

$$\Psi_{1001}[1] = 2\varepsilon^{4}x^{2}C_{\text{Baikov}}U\frac{\eta}{z_{0}(z_{1}-z_{0})}, \qquad \Psi_{0110}[1] = 2\varepsilon^{4}x^{2}C_{\text{Baikov}}U\frac{\eta}{z_{1}(z_{1}-z_{0})}.$$

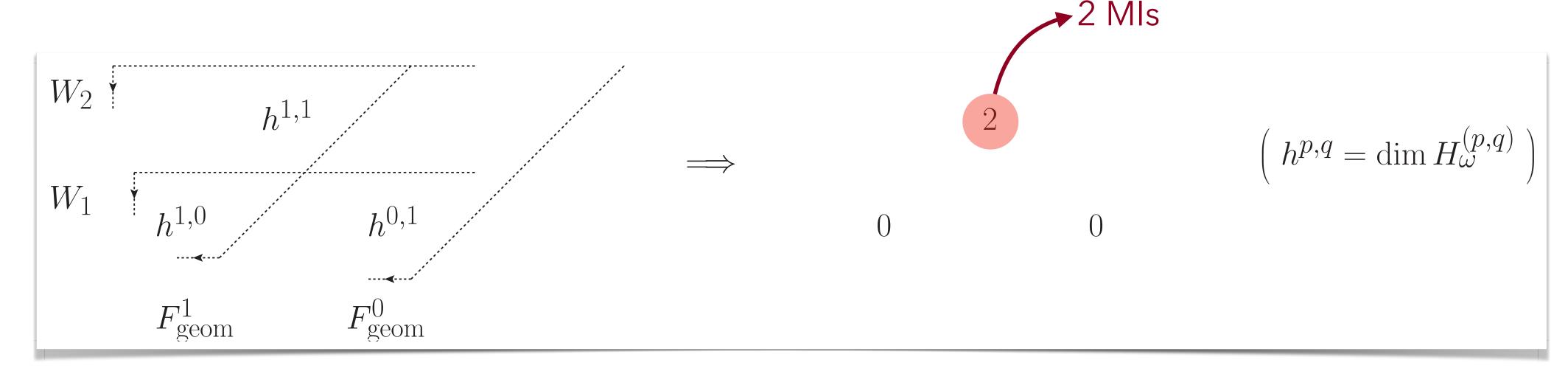
$$2\varepsilon^{4}x^{2} = \underbrace{\varepsilon^{4}x^{2}}_{C_{\text{abs}}} \cdot \underbrace{\varepsilon^{-2}}_{C_{\text{clutch}}} \cdot \underbrace{(2\varepsilon \cdot \varepsilon)}_{C_{\text{rel}}} \qquad \text{All have } (p,q) = (1,1).$$

Appetizers Example: MIs

There are IBP relations between these four candidates:

$$\{\Psi_{1100}[1], \Psi_{1010}[1], \Psi_{1001}[1], \Psi_{0110}[1]\} \Longrightarrow \{\Psi_{0110}[1], \Psi_{1010}[1]\}$$

$$\begin{array}{lll} \Psi_{0110}[1] & \iff & 2\varepsilon^4 x^2 I_{111111100} = K_1, \\ \Psi_{1010}[1] & \iff & -2\varepsilon^4 x^2 I_{1111111(-1)0} = K_2. \end{array} \implies \dim V^1 = \dim H_\omega^1 = 2.$$



This derived basis is already the
$$\varepsilon$$
-factorised: d $\binom{K_1}{K_2} = \varepsilon \, \mathbf{A}_{\mathrm{MC}}(x) \, \binom{K_1}{K_2}$

Step 2 of the Algorithm

We pick elements in $H^{N_V}_{\omega}$ by the filtration criteria, translate back to MIs, defining a new basis \vec{J} :

$$\mathbf{d} \, \vec{J} = \begin{bmatrix} \frac{1}{\varepsilon^{N_V}} \mathbf{B}^{(-N_V)}(x) + \frac{1}{\varepsilon^{N_V - 1}} \mathbf{B}^{(-N_V + 1)}(x) + \cdots + \mathbf{B}^{(0)}(x) + \varepsilon \mathbf{B}^{(1)}(x) \end{bmatrix} \, \vec{J}$$

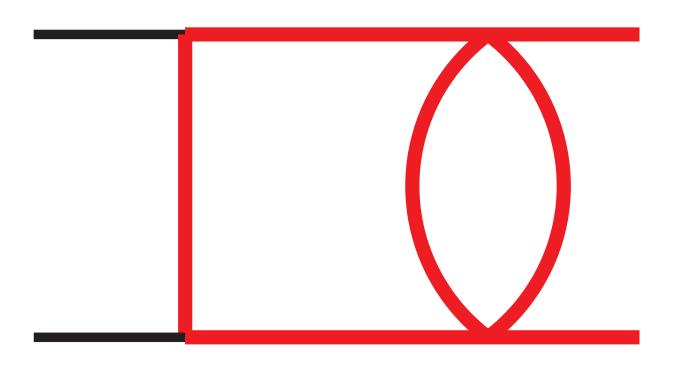
$$\vec{M} = \mathbf{R}_1 \, \vec{J}$$

$$\mathbf{B}^{(-N_V)}(x), \cdots, \mathbf{B}^{(0)}(x) \text{ are in a good block lower-triangular form!}$$

$$\mathbf{R}_{2}^{(-N_{V})}\mathbf{R}_{2}^{(-N_{V}+1)}\cdots\mathbf{R}_{2}^{(0)}\overrightarrow{K}=\overrightarrow{J}$$

- ullet Rotate away ${f B}^{(i)}$ step by step. It is systematic (the existence of arepsilon-factorisation);
- ${f R}_2^{(i)}$ is determined by (<u>simpler</u>) PDEs. In particular, ${f R}_2^{(-N_V)}$ relates to periods of geometry.

Dessert Example



Dessert Example: Twist

$$I_{11121,\text{MC}} = C_{\text{Baikov}} \int_{\mathcal{C}_{\text{MC}}} \frac{\mathrm{d}z_1}{2\pi i} \left[p_1(z_1) \right]^{-\frac{1}{2}} \left[p_2(z_1) \right]^{-\frac{1}{2} - \varepsilon} \left[p_3(z_1) \right]^{-\frac{1}{2} - \varepsilon}$$

$$H_{\omega}^{1} \ni \Psi_{\mu_{0}...\mu_{3}}[Q] = C_{\varepsilon}(\{\mu\}) \, U(z) \, \hat{\Phi}_{\mu_{0}...\mu_{3}}[Q] \, \eta; \qquad \eta = z_{0} \mathrm{d}z_{1} - z_{1} \mathrm{d}z_{0} \, .$$

- ▶ Setting $C_{\text{abs}} = \varepsilon^3 x_1$ makes $C_{\text{abs}} \cdot C_{\text{Baikov}}$ pure.
- ► The minimal twist in the projective space reads ($P_0=z_0$): $U(z_0,z_1)=P_0^{3\varepsilon}\,P_1^{-\frac{1}{2}}P_2^{-\frac{1}{2}-\varepsilon}P_3^{-\frac{1}{2}-\varepsilon}$.
- $ightharpoonup \deg U = -2, \deg \eta = 2 \Longrightarrow \deg \hat{\Phi} = 0.$
- ▶ 3 odds, and 1 even \Longrightarrow one possibility (localisations) to take non-zero residue: $[z_0:z_1] \in \{[0:1]\}$

Dessert Example: Filtration

$$w=1+1\longrightarrow 1$$
 residue upon the only even polynomial.

$$\Rightarrow \hat{\Phi} = \frac{z_1}{z_0}$$
, only one choice.

Forms without non-zero residues. There are 2 cases:

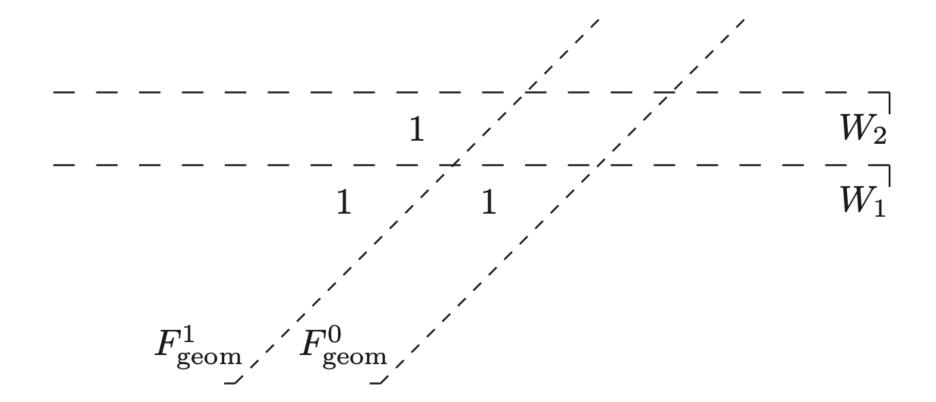
→ 1) no pole; 2) with pole, but no residue.

We order them by pole order o.

 $\hat{\Phi}=1$, only one choice

$$\hat{\Phi} \in \left\{ \frac{z_0}{P_1}, \frac{z_0}{P_2}, \frac{z_0^2}{P_3} \right\}, \text{ "three" choices.}$$

But IBP relations --- only one choice.



Dessert Example: Basis \hat{J} after Step 1

▶ Map the filtrated H^1 to the Feynman integral side to get the step-1 basis \vec{J} :

$$J_{1} = j(\Psi_{0000}[1]) = \varepsilon^{3} x_{1} I_{111200100}$$

$$J_{2} = j(\Psi_{1000}[z_{1}]) = 3\varepsilon^{3} x_{1} I_{11120001(-1)0}$$

$$J_{3} = j(\Psi_{0100}[z_{0}]) = -\frac{1}{2} \varepsilon^{2} x_{1} \left[c_{1} I_{111200100} + c_{2} I_{11120001(-1)0} + c_{3} I_{21120001(-1)0} \right]$$

► DEQ of the above basis is good enough:

$$d \begin{pmatrix} J_1 \\ J_2 \\ J_3 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} B_{11}^{(-1)} & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{\varepsilon} B_{31}^{(-1)} & B_{32}^{(-1)} & B_{33}^{(-1)} \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ B_{21}^{(0)} & 0 & 0 \\ B_{31}^{(0)} & 0 & 0 \end{pmatrix} + \varepsilon \mathbf{B}_{3\times 3}^{(1)} \end{bmatrix} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \end{pmatrix}$$

$$\mathbf{B}_{3\times 3}^{(-1)} \qquad \mathbf{B}_{3\times 3}^{(0)}$$

Dessert Example: Step 2

► We then need two rotations to remove $\mathbf{B}^{(-1)}$ and $\mathbf{B}^{(0)}$: $\mathbf{R}^{(-1)} \cdot \mathbf{R}^{(0)}$.

$$\mathbf{R}^{(-1)} = \begin{pmatrix} R_{11}^{(-1)} & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{\varepsilon} R_{31}^{(-1)} & R_{32}^{(-1)} & R_{33}^{(-1)} \end{pmatrix}, \qquad \mathbf{R}^{(0)} = \begin{pmatrix} 1 & 0 & 0 \\ R_{21}^{(0)} & 1 & 0 \\ R_{31}^{(0)} & 0 & 1 \end{pmatrix} \qquad \stackrel{K_1}{\longrightarrow} \qquad \begin{array}{c} K_1 = \frac{J_1}{R_{11}^{(-1)}}, \\ K_2 = 3J_2 - R_{21}^{(0)} K_1 \\ K_3 = \cdots \end{array}$$

- ► All the elements are constrained by simpler differential operators;
- ► They are determined term by term. It is systematic.
- ► The matrix elements are, in fact, related to periods on the elliptic curve. But, we do not need to know this in advance!

Summary

A unified algorithm towards deriving the ε -factorised (canonical) form of any Feynman integral, inspired by Hodge theory.

The algorithm cracks the complexity to the minimum.

figure generated by ChatGPT

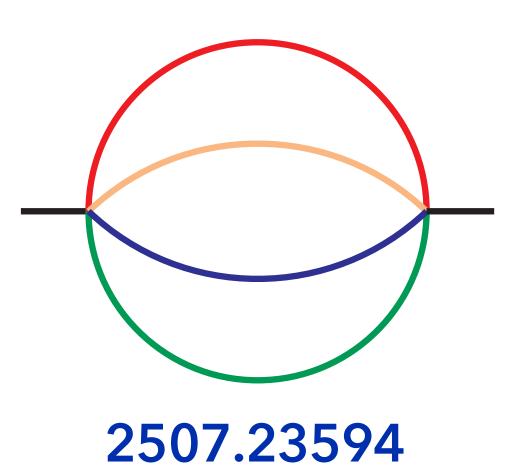
- One can derive ε -factorisation step by step without prior knowledge of geometry;
- A unified framework!

Thank you for listening.

Outlook

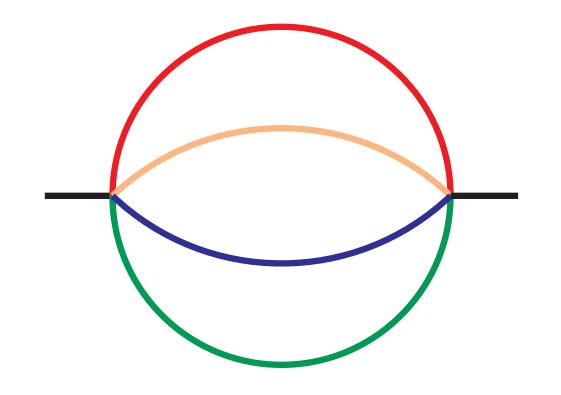


Main Course Example



[See also 2507.23061 by Duhr, Maggio, Porkert, Semper and Stawinski]

Main Course Example: Twist



Highly non-trivial in several aspects:

- ▶ It involves 2 Baikov variables (3 after homo.), and is beyond elliptics.
- ► Non-trivial step-2 rotations.
- ► Super-sectors (id=31, 47) come into play.

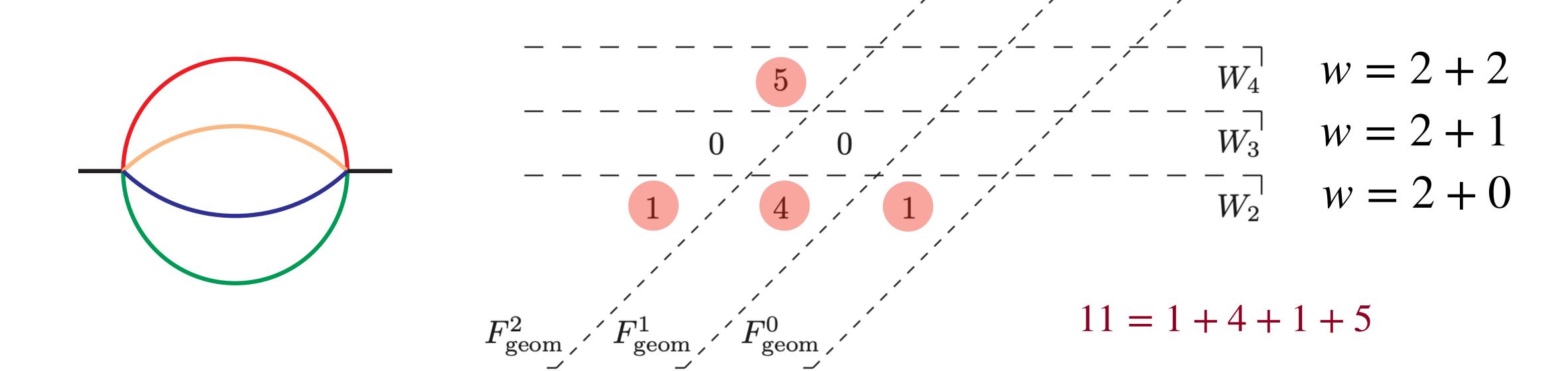
$$\begin{split} H^2_{\omega} \ni \Psi_{\mu_0...\mu_5}[Q] &= C_{\varepsilon}(\{\mu\}) \, U(z) \, \hat{\Phi}_{\mu_0...\mu_5}[Q] \, \eta; \qquad \eta = z_0 \, \mathrm{d}z_1 \wedge \mathrm{d}z_2 + \cdots, \\ U(z_0, z_1, z_2) &= z_0^{4\varepsilon} \, z_1^{\varepsilon} \, z_2^{\varepsilon} \, P_3^{-\frac{1}{2} - \varepsilon} \, P_4^{-\frac{1}{2} - \varepsilon} \, P_5^{-\frac{1}{2} - \varepsilon} \,. \end{split}$$

- $ightharpoonup \deg U = -3, \deg \eta = 3 \Longrightarrow \deg \hat{\Phi} = 0.$
- $ightharpoonup C_{\text{abs}} \Longrightarrow C_{\text{abs}} = \varepsilon^3.$
- ► Even polynomials: $\{z_0, z_1, z_2\}$; Odd polynomials: $\{P_3, P_4, P_5\}$, $\{y^2 = P_3 P_4 P_5\}$ defines a K3).

Example: Filtrations

$$p = N_V - o + r;$$
 $q = o;$ $w = p + q = N_V + r.$

- ► The top sector has 11 nontrivial MIs (subsector: 4 tadpoles).
- ► Step I: decompose 11 MIs into several subspaces according to complexity.



Example: MIs after Step 1

 $w = 4 \longrightarrow 2$ consecutive residues upon even polynomials

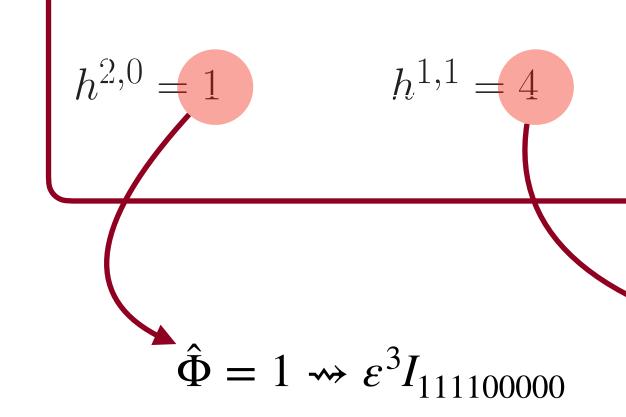
$$h^{2,2} = 5$$

$$\Rightarrow \hat{\Phi} \in \left\{ \frac{z_1}{z_0}, \frac{z_2}{z_0}, \frac{z_0}{z_1}, \frac{z_2}{z_1}, \frac{z_0}{z_2}, \frac{z_1}{z_2}, \frac{z_2^2}{z_0 z_1}, \frac{z_1^2}{z_0 z_2}, \frac{z_0^2}{z_1 z_2} \right\} . \#- IBPs - \{supersector\} = 5.$$

$$h^{2,1} = 0$$

$$h^{1,2} = 0$$

No forms with just one non-zero residue.



$$\hat{\Phi} \sim \frac{Q}{P_{3.4.5}} \Rightarrow \varepsilon^2 y_i \partial_i I_{111100000}, i = 1,2,3,4$$

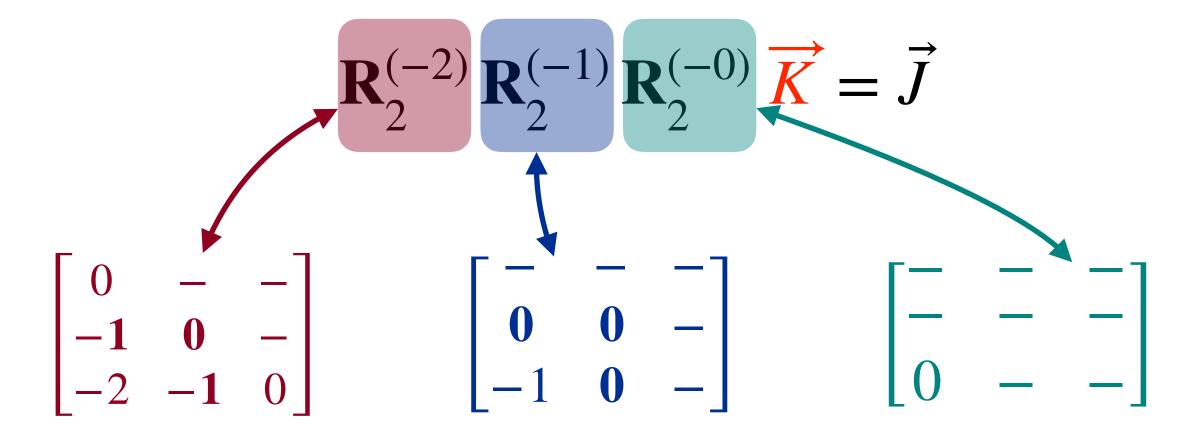
$$\frac{1}{16} \varepsilon \left(\sum_{i=1}^{4} y_i \partial_i \right)^2 I_{111100000}$$

$$U(z_0, z_1, z_2) = z_0^{4\varepsilon} z_1^{\varepsilon} z_2^{\varepsilon} P_3^{-\frac{1}{2} - \varepsilon} P_4^{-\frac{1}{2} - \varepsilon} P_5^{-\frac{1}{2} - \varepsilon}$$

Example: Step 2 Setup

	1	1	1	1	_	_	_	_	_	
$\overline{-1}$	0	0	0	0	1	1	1	1	1	1
-1	0	0	0	0	1	1	1	1	1	1
-1	0	0	0	0	1	1	1	1	1	1
-1	0	0	0	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	_	_
0	1	1	1	1	1	1	1	1	_	_
0	1			1					l	_
		1								
0	1	1	1	1	_	_	1	1	1	_
-2	-1	1 -1	-1	-1	0	0	0	0	0	0

 $arepsilon^{- ext{max}}$ terms in connection matrix elements **after step 1**



- ▶ We derive $\mathbf{R}_2^{(-2)}$ first, followed by $\mathbf{R}_2^{(-1)}$, and $\mathbf{R}_2^{(0)}$ at last, to remove ε -non-factorised terms;
- ► These three matrices are constrained by simplified differential operators.

Example: $R_2^{(-2)}$ Structure

$R_{55}^{(-2)}$	0	0	0	0	0	0	0	0	0	0
$\frac{1}{\varepsilon}R_{65}^{(-2)}$	$R_{66}^{(-2)}$	$R_{67}^{(-2)}$	$R_{68}^{(-2)}$	$R_{69}^{(-2)}$	0	0	0	0	0	0
$\frac{1}{\varepsilon}R_{75}^{(-2)}$	$R_{76}^{(-2)}$	$R_{77}^{(-2)}$	$R_{78}^{(-2)}$	$R_{79}^{(-2)}$	0	0	0	0	0	0
$\frac{1}{\varepsilon}R_{85}^{(-2)}$	$R_{86}^{(-2)}$	$R_{87}^{(-2)}$	$R_{88}^{(-2)}$	$R_{89}^{(-2)}$	0	0	0	0	0	0
$\frac{1}{\varepsilon}R_{95}^{(-2)}$	$R_{96}^{(-2)}$	$R_{97}^{(-2)}$	$R_{98}^{(-2)}$	$R_{99}^{(-2)}$	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1	0
$\frac{1}{\varepsilon^2}R_{F5}^{(-2)}$	$\frac{1}{\varepsilon}R_{F6}^{(-2)}$	$\frac{1}{\varepsilon}R_{F7}^{(-2)}$	$\frac{1}{\varepsilon}R_{F8}^{(-2)}$	$\frac{1}{\varepsilon}R_{F9}^{(-2)}$	0	0	0	0	$R_{FE}^{(-2)}$	$R_{FF}^{(-2)}$

- ► The index starts from 5, since tadpoles (4 MIs) are suppressed here;
- ▶ A posteriori, we can show that $R_{55}^{(-2)} = \psi$ is a period of the K3-surface.

Example: $R_2^{(-2)}$ Details

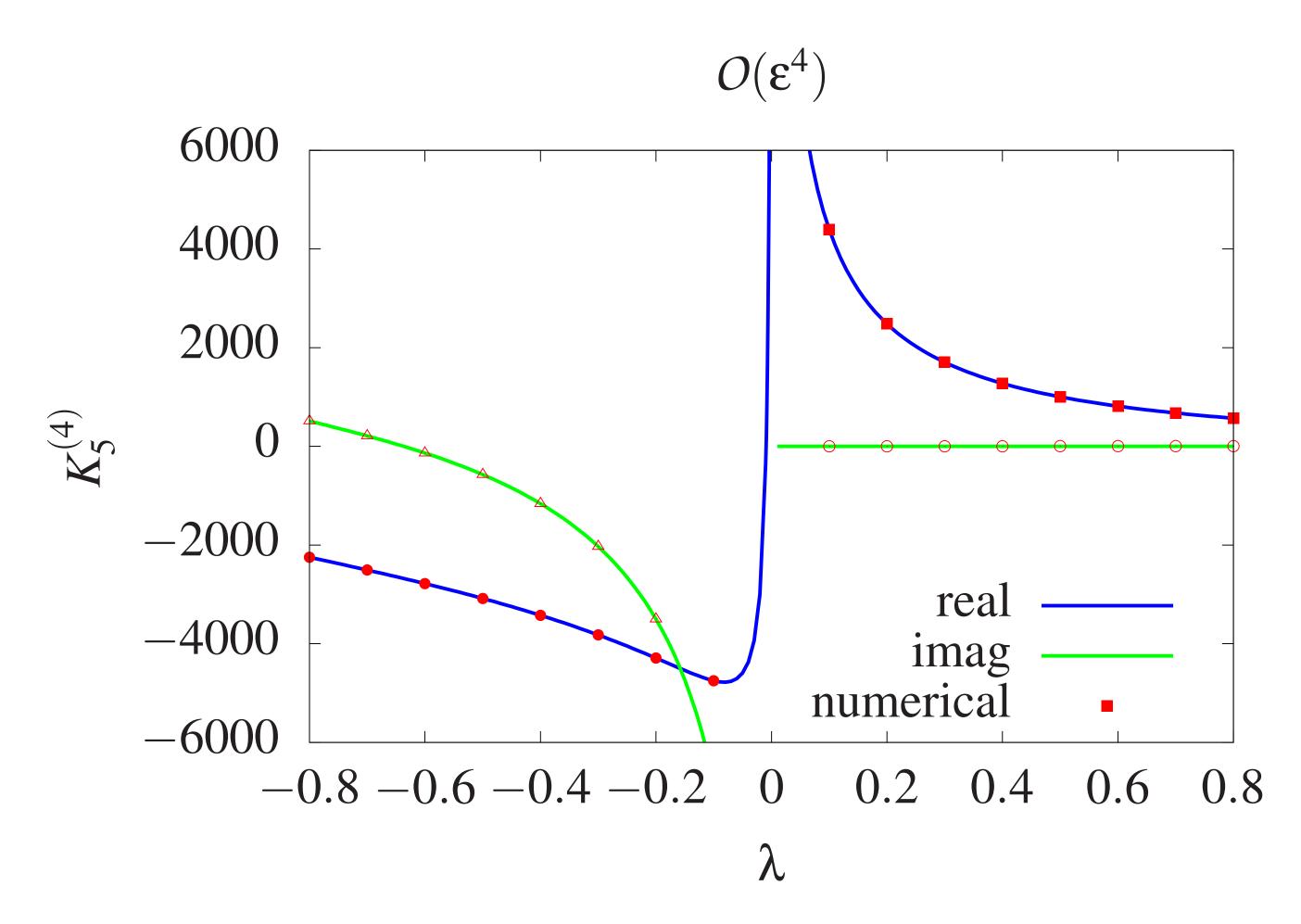
► The constraints in the first column, in fact, generate the Picard-Fuchs ideal for ψ . Normally, we take ψ to be the holomorphic solution, ψ_0 . Then it turns out:

$$R_{(i+5)5}^{(-2)} = y_i \frac{\partial}{\partial y_i} \psi_0, \quad i = 1, 2, 3, 4.$$

$$R_{F5}^{(-2)} = -\frac{1}{64} \sum_{i=1}^4 \left(y_i \frac{\partial^2}{\partial y_i^2} + (8y_i + 1) \frac{\partial}{\partial y_i} + 1 \right) \psi_0$$

- ► To proceed, we need other (meromorphic) solutions by which we can define new kinematic variables (turns out to be the mirror map).
- ► Remark: One can ignore the concepts of periods and the mirror map and focus on the constraints step by step in general!

Example: Results



$$K_5 = \varepsilon^3 \left[16\zeta_3 + \cdots \right] + \varepsilon^4 K_5^{(4)} + O\left(\varepsilon^5\right)$$

$$\lambda = \frac{(m_W + m_Z + m_H + m_t)^2}{-p^2}$$