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Motivation

 

：Feynman Integrals

O (α, {x}) = ∑
n

cn Fn

Fn

mathematics
2

precision prediction 
with QFTs

 sYM, 
string…

𝒩 = 4

formal theory

Easy-to-(re)use analytic results are crucial.



Feynman Integrals are Inevitable in QFTs

3

Pe→→e→ = + + · · ·+

Each Feynman diagram corresponds to a Feynman Integral, of which the 
complexity exploits factorially.

= ∫
dDl1
iπD/2 ∫

dDl2
iπD/2

e2εγE ⋅ (−p2)|ν|−D ⋅ Num({l})
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Kinematics Dependence
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B = {(x1, x2, · · ·)}

M1

M2

MNF

· · ·

x ∈ B
x′ ∈ B

M ′
NF

M ′
1

M ′
2

· · ·

Kinematics vary  differential equations (w. IBPs) of FIs (MIs). 

The primary method for analytic and (semi-)numerical calculation of FIs.

⟶

d

M1
M2
M3
⋮

MNF

= ANF×NF(ε, {x})

M1
M2
M3
⋮

MNF

[Kotikov ’91; Remiddi ’97; Gehrmann, Remiddi ’00]

Solving this linearly coupled PDE system is non-trivial!



-factorisation (canonicalisation)ε
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-factorisation: 
Via rotations of basis (i.e., ) and variable change, -dependence factorises  

in the connection matrix, with suitable boundary conditions. 

ε
⃗M → ⃗K ε

d

K1
K2
K3
⋮

KNF

= ε BNF×NF({q(x)})

K1
K2
K3
⋮

KNF

⟹

⃗K = ∑ εn ⃗K (n) ⟶ ⃗K (n+1) = ∫ BNF×NF
⃗K (n) + boundary

↪ ⃗K = P exp (ε∫ BNF×NF) ⃗K boundary

MIs can be written as Chen’s iterated integrals  [Chen ’77].

[Henn ’13]

Once the -factorised (canonical) form is derived, FIs (MIs) are viewed as solved.ε

Very Hard! Lots of progress recently, e.g., Baune, Bönisch, Broedel, -collaboration, Dlapa, Duhr, Frellesvig, Görges, Henn, 
Klement, Jiang, Maggio, Nega, Porkert, Sauer, Sohnle, Stawinski, Tancredi, Wager, Wilhelm, Yan, Yang, Zhang, Zhu + many more…

ε
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Feynman Integrals are Hard

· · · +⋯ [Snowmass review 2203.07088], 

[a book by Weinzierl, '22]

https://arxiv.org/abs/2203.07088


Takehome Message
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A unified algorithm towards deriving the -factorised (canonical) form 
of any Feynman integral, inspired by Hodge theory.

ε

The algorithm cracks the complexity to the minimum.

figure generated by ChatGPT

• One can derive -factorisation (canonicalisation) 
step by step without prior  knowledge of geometry; 

• A unified framework!

ε



This Talk: -collaborationε
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based on 2506.09124 and 2510.xxxxx by the -collaborationε
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Xiaofeng Xu
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Dmytro Melnichenko

Toni Teschke Xing Wang

Federico Gasparotto
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and 2507.23594 by a subset of the -collaborationε



Outline
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I. Baikov Representation and Twisted Cohomology 

II. Step 1 of the Algorithm and an Example 

III.Step 2 of the Algorithm and an Example(s)



Baikov Representation as Variable Change
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‣ , i.e., propagators, ’s, as integration variables: ; 
 non-trivial “Jacobian”, twist: 

dDl → dP1(l)dP2(l)⋯ Pi zi = Pi/μ2

↪

Iν1⋯νn
= CBaikov ∫𝒞

u(z1, ⋯, zn; ⋯, zn+Nv
)

twist

1
zν1
1 zν2

2 ⋯zνn
n

dnz ∧ dNVz

Packages: [Baikovletter, Jiang, Yang; BaikovPackage, Frellesvig; SOFIA, Correia, Giroux, Mizera]

‣Not for calculating FIs, but rather for studying the structures! 

‣It translates FIs to twisted cohomology language.  

‣Perfect for (onshell) propagator cuts: .cuti = reszi=0

extra variables



Setup: Twist

11

MIs in a given sector share the same (minimal) twist ( ): 

  

‣Odd polynomials  geometry; 

‣Even polynomials  possible residues (punctures) to take; 

‣Different MIs  different rational parts.

bi, bj ∈ ℤ

u(z1, z2, ⋯, zNV) = ∏
i∈Iodd

[pi(z)]− 1
2 + 1

2 biε ∏
j∈Ieven

[pj(z)] 1
2 bjε

⟶

⟶

⟶

Mi = CBaikov ∫MC
u(z) qi(z)

∏j∈all [pj(z)]μj
dzNV

∧ ⋯ ∧ dz1, μj ∈ ℤ

maximal cut remaning variables after MC 



Twist: Examples
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IMaxCut
111200100 = CBaikov ∫𝒞MC

dz1

2πi [p1(z1)]− 1
2 [p2(z1)]− 1

2 −ε [p3(z1)]− 1
2 −ε ⋅ 1, w .

p1 = z1 − x2, p2 = z1 + 4 − x2, p3 = (z1 + 1)2 − 4[x2 + (1 − x2)2

x1
] .

IMaxCut
111111100 = CBaikov ∫𝒞MC

dz1

2πi

u(z1)

z−2ε
1 (z1 − 1)−ε (z1 − x − 1)ε ⋅ 1



Setup: Twisted Cohomology
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‣Given a , there is a differential form  (  ). 

‣One needs to mod out IBP relations , which leads us to the 
twisted cohomology  [See e.g., Mastrolia and Mizera, ’18].  

‣Study the differential forms to represent the corresponding MIs. 

‣Consider  as well:  using homo. coord. .

Mi
̂ϕi HNV

ω ↠ VNV

̂ϕi ∼ ̂ϕi + ∇u ̂η

{∞} u → U, ̂ϕ → Φ̂ [z0 : z1 : ⋯ : zNV]

Mi = CBaikov ∫𝒞MC

u(z) qi(z)
∏j∈all [pj(z)]μj

dzNV
∧ ⋯ ∧ dz1

̂ϕi

, μj ∈ ℤ



Step 1 of the Algorithm
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For each element in ={differential forms} mod IBPs, i.e., {integrands}, we define a 
prefactor :

HNV
ω

Cε

 modulo IBPsHNV
ω = { Ψμ0…μND

[Q] = Cε({μ}) CBaikov U(z) Φ̂μ0…μND
[Q] η }

Cε = Cabs ⋅ ε−|μ|

⏟
Cclutch

× ∏
i∈Iodd

(−
1
2

+
1
2

biε)
μi

∏
i∈Ieven

( 1
2

biε)
μi

Crel

This pre-factor is entirely determined by the integrand, and it simplifies the -complexity.ε

(a)n =
Γ(a + 1)

Γ(a + 1 − n)

vector space  
w./ fin. dim.



one filtration of onion

Step 1 of the Algorithm
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Given , two more ordering criteria (two filtrations): pole order , and the number of non-zero 
residues  . These two integers indicate “layer” numbers (两种剥洋葱的指标).  

Ψμ0⋯μND
[Q] o

r
p = NV − o + r; q = o; w = p + q = NV + r .

“Layered” decomposition (filtration, 滤) of  into subspaces! （剥洋葱）HNV
ω

⋯ ⊆ Fp+1 HNV
ω ⊆ Fp HNV

ω ⊆ ⋯

⋯ ⊇ Ww HNV
ω ⊇ Ww−1 HNV

ω ⊇ ⋯

h1,1

h1,0 h0,1

F 1

F 0

W2

W1

two filtrations cut an “onion” into 3 
subspaces in this example
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Appetizers Example



Appetizers Example: Twist
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I111111100 = CBaikov ∫𝒞MC

dz1

2πi

u(z1)

z−2ε
1 (z1 − 1)−ε (z1 − x − 1)ε

‣Setting  makes  pure. 

‣The minimal twist in the projective space reads:  

‣All four polynomials are even  four possible (localisations) to take non-zero resides.

Cabs = ε4x2 Cabs ⋅ CBaikov

U(z0, z1) = z2ε
0 z−2ε

1 (z1 − z0)−ε [z1 − (1 + x)z0]ε .

⟹

[z0 : z1] ∈ {[0 : 1], [1 : 0], [1 : 1], [1 : 1 + x]}



Appetizers Example: Howto
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H1
ω ∋ Ψμ0…μ3

[Q] = Cε({μ}) U(z) Φ̂μ0…μ3
[Q] η; η = z0dz1 − z1dz0 .

‣ . 

‣  should localise on those 4 points after taking one residue  4 candidates. 

deg U = 0, deg η = 2 ⟹ deg Φ̂ = − 2

Ψ ⟹

Ψ1100 [1] = − 4ε4x2CBaikovU
η

z0z1
, Ψ1010 [1] = − 2ε4x2CBaikovU

η
z0 (z1 − z0)

,

Ψ1001 [1] = 2ε4x2CBaikovU
η

z0 [z1 − (1 + x)z0]
, Ψ0110 [1] = 2ε4x2CBaikovU

η
z1 (z1 − z0)

.

U(z0, z1) = z2ε
0 z−2ε

1 (z1 − z0)−ε [z1 − (1 + x)z0]ε ⟹ [z0 : z1] ∈ {[0 : 1], [1 : 0], [1 : 1], [1 : 1 + x]}

2ε4x2 = ε4x2
⏟

Cabs

⋅ ε−2
⏟
Cclutch

⋅ (2ε ⋅ ε)

Crel

All have . (p, q) = (1,1)



Appetizers Example: MIs
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There are IBP relations between these four candidates: 

{ Ψ1100 [1], Ψ1010 [1], Ψ1001 [1], Ψ0110 [1] }⟹ { Ψ0110 [1], Ψ1010 [1] }
Ψ0110 [1] ⟺ 2ε4x2I111111100 = K1,
Ψ1010 [1] ⟺ − 2ε4x2I1111111(−1)0 = K2 .

⟹ dim V1 = dim H1
ω = 2.

This derived basis is already the -factorised:  ε d (K1
K2) = ε AMC(x) (K1

K2)

W2

W1





 hp,q = dimH
(p,q)
ω







h1,1

h1,0 h0,1

=⇒
2

0 0

F 0
geomF 1

geom

2 MIs



Step 2 of the Algorithm
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We pick elements in  by the filtration criteria, translate back to MIs, defining a new basis :HNV
ω ⃗J

d ⃗J = [ 1
εNV

B(−NV)(x) +
1

εNV−1
B(−NV+1)(x) + ⋯ + B(0)(x) + ε B(1)(x)] ⃗J

 are in a good block lower-triangular form!B(−NV)(x), ⋯, B(0)(x)

R(−NV)
2 R(−NV+1)

2 ⋯R(0)
2

⃗K = ⃗J

• Rotate away  step by step. It is systematic (the existence of -factorisation);  

•  is determined by (simpler) PDEs. In particular,  relates to periods of geometry.

B(i) ε

R(i)
2 R(−NV)

2

⃗M = R1 ⃗J
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Dessert Example



Dessert Example: Twist
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‣Setting  makes  pure. 

‣The minimal twist in the projective space reads ( ):  

‣  

‣3 odds, and 1 even  one possibility (localisations) to take non-zero residue: 

Cabs = ε3x1 Cabs ⋅ CBaikov

P0 = z0 U(z0, z1) = P3ε
0 P− 1

2
1 P− 1

2 −ε
2 P− 1

2 −ε
3 .

deg U = − 2, deg η = 2 ⟹ deg Φ̂ = 0.

⟹ [z0 : z1] ∈ {[0 : 1]}

I11121,MC = CBaikov ∫𝒞MC

dz1

2πi [p1(z1)]− 1
2 [p2(z1)]− 1

2 −ε [p3(z1)]− 1
2 −ε

H1
ω ∋ Ψμ0…μ3

[Q] = Cε({μ}) U(z) Φ̂μ0…μ3
[Q] η; η = z0dz1 − z1dz0 .



Dessert Example: Filtration

23

h1,1 = 1

h1,0 = 1 h0,1 = 1

       1 residue upon the only even polynomial. 

, only one choice.

w = 1 + 1 ⟶

↪ Φ̂ =
z1

z0

                                             Forms without non-zero residues. There are 2 cases:  
                            1) no pole; 2) with pole, but no residue.  

       We order them by pole order . 
⇝

o

, only one choiceΦ̂ = 1 , “three” choices.  

But IBP relations  only one choice. 

Φ̂ ∈ { z0

P1
,

z0

P2
,

z2
0

P3 }
⇝



Dessert Example: Basis  after Step 1⃗J
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J1 = j(Ψ0000[1]) = ε3x1I111200100

J2 = j(Ψ1000[z1]) = 3ε3x1I11120001(−1)0

J3 = j(Ψ0100[z0]) = −
1
2

ε2x1[c1I111200100 + c2I11120001(−1)0 + c3I21120001(−1)0]

‣Map the filtrated  to the Feynman integral side to get the step-1 basis :H1 ⃗J

‣DEQ of the above basis is good enough:

d
J1
J2
J3

=
B(−1)

11 0 0
0 0 0

1
ε B(−1)

31 B(−1)
32 B(−1)

33

+
0 0 0

B(0)
21 0 0

B(0)
31 0 0

+ εB(1)
3×3

J1
J2
J3

B(−1)
3×3 B(0)

3×3



Dessert Example: Step 2
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‣We then need two rotations to remove  and : .B(−1) B(0) R(−1) ⋅ R(0)

R(−1) =
R(−1)

11 0 0
0 0 0

1
ε R(−1)

31 R(−1)
32 R(−1)

33

, R(0) =
1 0 0

R(0)
21 1 0

R(0)
31 0 1

⇝

K1 =
J1

R(−1)
11

,

K2 = 3J2 − R(0)
21 K1

K3 = ⋯

‣All the elements are constrained by simpler differential operators; 

‣They are determined term by term. It is systematic. 

‣The matrix elements are, in fact, related to periods on the elliptic curve. 
But, we do not need to know this in advance!



Summary
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A unified algorithm towards deriving the -factorised (canonical) form 
of any Feynman integral, inspired by Hodge theory.

ε

figure generated by ChatGPT

• One can derive -factorisation step by step 
without prior knowledge of geometry; 

• A unified framework!

ε

The algorithm cracks the complexity to the minimum.

Thank you for listening.
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Feynman 
Integrals

Hidden 
Symmetry?

Mixed Hodge 
Structure

Asymptotic 
Expansion Bootstrap?

ImplementFast Numerics

Outlook
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2507.23594

Main Course Example

[See also 2507.23061 by Duhr,  Maggio, Porkert, Semper and Stawinski]



Main Course Example: Twist
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Highly non-trivial in several aspects: 

‣It involves 2 Baikov variables (3 after homo.), and is beyond elliptics. 

‣Non-trivial step-2 rotations. 

‣Super-sectors (id=31, 47) come into play.

H2
ω ∋ Ψμ0…μ5

[Q] = Cε({μ}) U(z) Φ̂μ0…μ5
[Q] η; η = z0 dz1 ∧ dz2 + ⋯,

U(z0, z1, z2) = z4ε
0 zε

1 zε
2 P− 1

2 −ε
3 P− 1

2 −ε
4 P− 1

2 −ε
5 .

‣  

‣ . 

‣Even polynomials: ; Odd polynomials: , (  defines a K3). 

deg U = − 3, deg η = 3 ⟹ deg Φ̂ = 0.

CBaikov ⟹ Cabs = ε3

{z0, z1, z2} {P3, P4, P5} y2 = P3 P4 P5



Example: Filtrations

30

w = 2 + 1
w = 2 + 0

w = 2 + 2

 

‣The top sector has 11 nontrivial MIs (subsector: 4 tadpoles). 

‣Step I: decompose 11 MIs into several subspaces according to complexity. 

p = NV − o + r; q = o; w = p + q = NV + r .

11 = 1 + 4 + 1 + 5



Example: MIs after Step 1
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U(z0, z1, z2) = z4ε
0 zε

1 zε
2 P− 1

2 −ε
3 P− 1

2 −ε
4 P− 1

2 −ε
5

h2,2 = 5

h2,1 = 0 h1,2 = 0

h2,0 = 1 h0,2 = 1h1,1 = 4

       2 consecutive residues upon even polynomials 

  

w = 4 ⟶

↪ Φ̂ ∈ {z1

z0
,

z2

z0
,

z0

z1
,

z2

z1
,

z0

z2
,

z1

z2
,

z2
2

z0z1
,

z2
1

z0z2
,

z2
0

z1z2 } . # − IBPs − {supersector} = 5.

                  No forms with just one non-zero residue.

                                         Forms without non-zero residues: there are 3 cases,  
         and we order them by pole order.

Φ̂ = 1 ⇝ ε3I111100000 Φ̂ ∼
Q

P3,4,5
⇝ ε2 yi∂iI111100000, i = 1,2,3,4 1

16
ε(

4

∑
i=1

yi∂i)2I111100000



Example: Step 2 Setup
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R(−2)
2 R(−1)

2 R(−0)
2

⃗K = ⃗J

 terms in connection matrix elements after step 1ε−max

0 − −
−1 0 −
−2 −1 0 [

− − −
0 0 −

−1 0 −] [
− − −
− − −
0 − −]

‣We derive  first, followed by  , and 
 at last, to remove -non-factorised terms; 

‣These three matrices are constrained by 
simplified differential operators.

R(−2)
2 R(−1)

2
R(0)

2 ε



Example:  StructureR(−2)
2
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0 − −
−1 0 −
−2 −1 0

to remove

‣The index starts from 5, since tadpoles (4 MIs) are suppressed here; 

‣A posteriori, we can show that   is a period of the K3-surface.R(−2)
55 = ψ



Example:  DetailsR(−2)
2
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R(−2)
(i+5)5 = yi

∂
∂yi

ψ0, i = 1, 2, 3, 4.

R(−2)
F5 = −

1
64

4

∑
i=1

(yi
∂2

∂y2
i

+ (8yi + 1) ∂
∂yi

+ 1)ψ0

‣The constraints in the first column, in fact, generate the Picard-Fuchs ideal for . Normally, 
we take  to be the holomorphic solution, . Then it turns out:

ψ
ψ ψ0

‣To proceed, we need other (meromorphic) solutions by which we can define new 
kinematic variables (turns out to be the mirror map).

‣Remark: One can ignore the concepts of periods and the mirror map and focus on the 
constraints step by step in general!



Example: Results
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K5 = ε3[16ζ3 + ⋯] + ε4 K(4)
5 + O (ε5)

O(ε4)

λ

K
(4
)

5

numerical
imag
real

0.80.60.40.20−0.2−0.4−0.6−0.8

6000

4000

2000

0

−2000

−4000

−6000

compare with AMFLOW

λ =
(mW + mZ + mH + mt)2

−p2


