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Cosmological Signatures of Neutrino Seesaw mechanism
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Neutrino masses
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�m2
21 ' 7.42⇥ 10�5 eV2

Neutrino oscillation indicates massive neutrinos
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Cosmological limit 

The heavy neutrino mass should be around 0.05 eV(IO)-0.06eV(NO)

PDG
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Seesaw mechanism

Origin of neutrino masses:  seesaw mechanism 

l Natural prediction of small neutrino masses

l Explain the baryon asymmetry of the universe: leptogenesis

P. Minkowski ；T. Yanagida； S. L. Glashow；
M. Gell-Mann, P. Ramond and R. Slansky

Baryogenesis Without Grand Unification, Fukugita and Yanagida, 1986’
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Seesaw mechanism

If the Yukawa coupling is O(1)(as predicted by the GUT), the seesaw scale MR should 

be around 1013-14 GeV, which is much beyond the reach of particle experiments. 

How to test such high scale seesaw?
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Inflation

Rapid expansion of the universe in the early time

l Flatness problem

l Horizon problem

l Seeding the primordial anisotropies in CMB
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Stretching quantum fluctuations to large scale

Such small fluctuations finally develops the large structure of our universe

Inflation
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Slow-roll Inflation

Inflation is driven by a scalar field (inflaton)

l Hubble parameter is nearly constant(de Sitter universe)

l After inflation, inflaton oscillates at the bottom of the potential and finally 

decays into SM particles, then reheats the universe(still no clear how it occurs)

Slow roll condition
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Slow-roll Inflation

In a de Sitter universe, scalar fields get quantum fluctuation  

l Quantum fluctuation of inflaton induces CMB anisotropies(or curvature perturbations)

l In the single field inflation, the fluctuations should be nearly gaussian and adiabatic, 

close to scale invariant
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Inflation

l Inflaton potential should be flat enough(shift-symmetry?)

l Hubble scale could be as high as 6*1013 GeV(close to seesaw scale), providing 

access to the high scale physics
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Non-Gaussianity

l New physics could induce large non-Gaussianity : multi-field inflation models, modulated 

reheating, curvaton scenario…

l Current limit from Planck on local type fNL~ O(10),  future CMB observations, CMB S4, large scale 

structure observations DESI O(1), 21 cm tomography O(0.01-0.1)

l Non-Gaussianity could provide information to the new particle mass, spin, interactions: 

cosmological collider signals 

Non-Gaussianity is sensitive to new physics

Nima Arkani-Hamed, Juan Maldacena, arXiv:1503.08043

Xingang Chen, Yi Wang, JCAP 04 (2010) 027
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A minimal model 

l V(phi) is the potential for inflation is unknown but  denominated by the mass term after inflation

l Derivative coupling to keep the flatness of the inflaton potential(shift-symmetry, dim-4 coupling should 

be suppressed, otherwise the induced phi4 potential would destroy the flatness of the potential)

l Lambda > 60 Hubble to keep perturbative unitarity

l After inflation, inflaton oscillates at the bottom of the potential until decays into heavy neutrinos 

( mphi > 2 mN). The heavy neutrinos quickly decay into SM particles and reheat the universe 

Minimal model incorporates inflation and seesaw
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Consequence of the seesaw mechanism

l Light neutrino gets a mass

l Heavy neutrino mass are get lifted (h dependent)

What happens to h in the early universe?

Decay rate of the inflaton is h dependent:

Seesaw mechanism
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Higgs during inflation

l During inflation(de-Sitter universe), Higgs also gets quantum fluctuations

l The fluctuations reach a equilibrium state

D. Buttazzo, et al arXiv:1307.3536

� = 0.01

Alexei A. Starobinsky, Jun'ichi Yokoyama,
Phys.Rev.D 50 (1994) 6357-6368
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Higgs after inflation

Inflaton oscillates at the bottom potential. If the inflaton potential is dominated by the 

mass term, the Universe is matter-dominated

A = 21/33�2/351/4 ' 0.9

! =
�2(3/4)p

⇡
21/331/351/4 ' 2.3

✓ = �3�1/321/6! � arctan 2 ' �2.9

Higgs value would oscillate and decrease
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Considering decay rate of the inflaton is h dependent

l Different patches of the universe reheat differently (modulated reheating)

l The curvature perturbation is generated by Higgs field 

l Delta N formalism (zeta=delta N~ N- <N>)

Higgs modulated reheating

Gia Dvali, Andrei Gruzinov, Matias Zaldarriaga, 
Phys.Rev. D69 (2004) 023505
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Curvature perturbation contains two parts

Higgs modulated reheating
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Taylor expansion of the curvature perturbation 
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Considering the three point correlation function

Bispectrum

First term is from Higgs self-coupling

Xingang Chen, Yi Wang, Zhong-Zhi Xianyu, JCAP 1712 (2017) 006  

Steven Weinberg, Phys.Rev.D 72 (2005) 043514, Phys.Rev.D 74 (2006) 023508 

Calculated by in-in formalism/Schwinger-Keldysh formalism

闭路格林函数方法(Closed-Time Path)
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Bispectrum
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Second term is from non-linear evolution of the Higgs

Bispectrum
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Local type non-gaussianity

The local type non-gaussianity which is defined by Bardeen Potential 
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In the limit k1~k2 >> k3, we find 
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l Colored curves indicating future searches

l Parameter space with Yukawa O(1) could be 

probed by future observations

l The contribution from self-interaction and 

non-linear term are both important 

l Interplaying with neutrino experiments(JUNO, 

DUNE for neutrino ordering)

Local type non-gaussianity
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Summary

l We propose a minimal model incorporating inflation and seesaw

l It provides new mechanism of reheating 

l High scale seesaw can be probed by the non-Gaussianity which 

could be observed in near future CMB or LSS

l Cosmological collider signals(in progress)
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Thanks!
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Slow-roll Inflation
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Leptogenesis

Baryogenesis Without Grand Unification, Fukugita and Yanagida, 1986’
G.F. Giudice, et al, 
Nucl.Phys.B 685 (2004) 89-149

Mass of the right-handed neutrino should heavier than 107 GeV 
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S-K formalism
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S-K formalism



29

S-K formalism

Bulk-to-Boundary propagator
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Cosmological collider signals

Massive particle coupling to the inflaton could induce 

l Probing new particles with mass around Hubble scale

l Signature would be highly suppressed when mass is large (except large chemical potential)

P. Daniel Meerburg, Moritz Münchmeyer, Julian B. 
Muñoz, Xingang Chen, JCAP 03 (2017) 050

Bispectrum
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Considering decay rate of the inflaton is h dependent

l Different patches of the universe reheat differently (modulated reheating)

l The curvature perturbation is generated by Higgs field 

l Delta N formalism (from the end of inflation to the time after reheating completed)

Higgs modulated reheating

Gia Dvali, Andrei Gruzinov, Matias Zaldarriaga, 
Phys.Rev. D69 (2004) 023505
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Higgs modulated reheating

Curvature perturbation in terms of the decay rate 

Equation of state:

⇣h(t > treh,x) = �N(x) = N(x)� hN(x)i

= �1
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⇥
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Reheating occurs

From matter-dominated universe to radiation dominated universe
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Higgs modulated reheating

n-point correlation function of zeta changes into n-point correlation function of hinf
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Higgs during inflation

暴胀期间，希格斯场可以分为长波和短波两部分

长波部分可以用郎之万方程描述

带自相互作用的随机游走模型

Alexei A. Starobinsky, Jun'ichi Yokoyama,
Phys.Rev.D 50 (1994) 6357-6368

During inflation(de-Sitter universe), Higgs also gets quantum fluctuations


