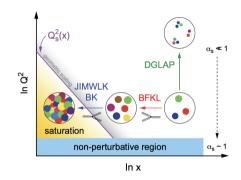
Determination of the Initial Condition for the Balitsky–Kovchegov Equation with Transformers

Meisen Gao(高梅森)

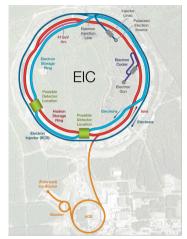

East China University of Science and Technology

with Zhong-Bo Kang (UCLA), Jani Penttala (UCLA), Ding Yu Shao (Fudan University)

arXiv:2510.26779

2025.11.02 • Beijing, China

Small-x QCD and Gluon Saturation



EIC UG (2023), EIC White Paper.

- For x ≪ 1, gluon multiplication drives high occupancies; nonlinear recombination generates a saturation scale Q_s(x) and geometric scaling.
- The Color Glass Condensate (CGC) describes this regime via Wilson lines; in DIS the key quantity is the (impact-parameter integrated) dipole amplitude N(r,x).
- Its energy evolution is governed by the BK equation: linear BFKL growth minus a nonlinear damping term ⇒ saturation (Balitsky '96; Kovchegov '99–'00).

Meisen Gao 2 / 20

From HERA to EIC: Gluon Saturation

EIC UG (2023), EIC White Paper.

- Mapping this regime is a central objective for the Electron-lon Collider program (EIC White Paper 2012; EIC Yellow Report 2021).
- Kinematic reach down to $x \sim 10^{-4} 10^{-5}$ at moderate Q^2 ; heavy nuclei amplify $Q_s(x)$, giving cleaner saturation signals.
- Key channels: inclusive/diffractive DIS, F_L , charm, di-hadrons, exclusive vector mesons— directly sensitive to N(r,x) and $Q_s(x)$.
- This talk: determine the nonperturbative initial condition $N(r, x_0)$ from **HERA** DIS.

Meisen Gao 3 / 20

Initial Condition and Fitting Challenge

- BK evolution requires a nonperturbative **initial condition** $N(r, x_0)$ at moderately small x_0 , fixed by data.
- We use a generalized MV ansatz with (Q_{s0}, γ, e_c) :

$$N(r, x_0) = 1 - \exp\left[-\left(\frac{r^2 Q_{s0}^2}{4}\right)^{\gamma} \ln\left(\frac{1}{\Lambda_{\rm QCD} r} + e e_c\right)\right].$$

- Prior small-x dipole fits (e.g., Albacete et al. 2011; Lappi & Mäntysaari 2013).
- NLO developments: Beuf et al. (2020); Hänninen et al. (2023).
- Data: H1 & ZEUS combined inclusive e^+p (EPJC **75** (2015) 580).
- This work: LO dipole DIS with rcBK (Balitsky prescription), b-integrated; fast scans via transformer emulators (cf. Casuga et al. 2024).

Meisen Gao 4 / 20

Inclusive DIS in the Dipole Picture

Neutral-current reduced cross section (at small x):

$$\sigma_r(x,y,Q^2) = F_2(x,Q^2) - \frac{y^2}{Y_+} F_L(x,Q^2), \qquad Y_+ \equiv 1 + (1-y)^2.$$

• Dipole picture: $\gamma^* \rightarrow q\bar{q}$ followed by dipole–proton scattering,

$$\sigma_{\mathcal{T},\mathcal{L}}(x,Q^2) = \sum_{f} \int_0^1 dz \int d^2\mathbf{r} \left| \Psi_{\mathcal{T},\mathcal{L}}(z,\mathbf{r};Q^2) \right|^2 \sigma_{\mathsf{dip}}(x,r),$$

with impact-parameter integration

$$\sigma_{\text{dip}}(x,r) \equiv \int d^2\mathbf{b} \, 2 \, N(\mathbf{r},\mathbf{b};x) \equiv \sigma_0 \, N(r,x), \quad \int d^2\mathbf{b} \, N(\mathbf{r},\mathbf{b};x) = \frac{\sigma_0}{2} \, N(r,x).$$

• Photon wavefunctions (massless limit):

$$|\Psi_L|^2 \propto Q^2 z^2 (1-z)^2 \, K_0^2(\bar{Q}r), \qquad |\Psi_T|^2 \propto [z^2 + (1-z)^2] \, K_1^2(\bar{Q}r),$$

with $\bar{Q}^2 = z(1-z)Q^2$ and $K_{0,1}$ modified Bessel K functions.

Meisen Gao 5 / 20

Balitsky-Kovchegov (BK) Evolution

- Goal: describe the $x\downarrow$ (energy \uparrow) evolution of the **dipole amplitude** N(r,x) in the CGC/dipole picture.
- In rapidity $Y = \ln(1/x)$ the (impact-parameter integrated) LO BK equation reads

$$\begin{split} \frac{\partial \textit{N}(\mathbf{x}_{01},\textit{Y})}{\partial \textit{Y}} &= \frac{\alpha_s \textit{N}_c}{2\pi^2} \int \textit{d}^2 \mathbf{x}_2 \, \textit{K}_{\mathrm{LO}}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2) \, \Big[\textit{N}(\mathbf{x}_{02},\textit{Y}) + \textit{N}(\mathbf{x}_{12},\textit{Y}) - \textit{N}(\mathbf{x}_{01},\textit{Y}) - \textit{N}(\mathbf{x}_{02},\textit{Y}) \textit{N}(\mathbf{x}_{12},\textit{Y}) \Big], \\ \textit{K}_{\mathrm{LO}}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2) &= \frac{x_{01}^2}{x_{02}^2 \, x_{12}^2}, \qquad x_{ij} \equiv |\mathbf{x}_i - \mathbf{x}_j| \,, \quad r \equiv x_{01}. \end{split}$$

- The first three (linear) terms reproduce BFKL gluon radiation; the last (nonlinear) term subtracts
 double counting of simultaneous scatterings ⇒ gluon recombination ⇒ saturation.
- **Limits:** color transparency $r \rightarrow 0$: $N \propto r^2$ (weak scattering); black-disk $r \rightarrow \infty$: $N \rightarrow 1$ (unitarity bound).
- This work: we solve and emulate the running–coupling BK (rcBK) with the Balitsky prescription; the $\alpha_s(r^2)$ choice follows the standard rcBK practice.

Meisen Gao 6 / 20

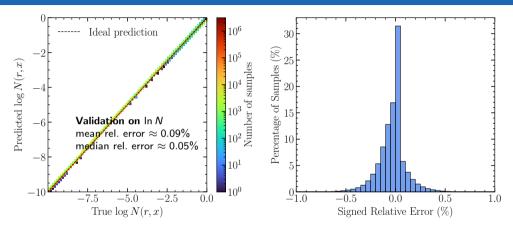
Generating BK Solutions for Training

- To enable a fit, we first generate a large set of BK solutions spanning the parameter space:
- We consider two possible starting points for evolution: $x_0 = 0.01$ (standard) and a higher $x_0 = 0.05$ (to test sensitivity to the starting scale).
- For each x_0 , we sample $\sim 10^4$ random initial parameter sets (Q_{s0}^2 , γ , e_c , C^2) using Latin Hypercube sampling to cover the space efficiently.
- For each sampled set, we solve the running-coupling BK equation (rcBK, Balitsky prescription) numerically (using a custom Julia solver):
 - $N(r, x_0)$ given by the initial model (MV-type) with those parameters.
 - Evolve N(r,x) to lower x up to $Y \equiv \ln(x_0/x) \approx 16$ (i.e. down to $x \simeq x_0 e^{-16}$; for $x_0 = 0.01$ this is $\sim 10^{-9}$).
 - Compute N(r,x) on a grid of r from 10^{-6} to 10^2 GeV⁻¹ (covers all relevant dipole sizes).
- This yields a comprehensive dataset of $\mathcal{O}(10^7)$ points $\{r, x, N(r, x)\}$ (about 4.7×10^7 values of N in total) covering wide ranges of parameters and kinematics.

Meisen Gao 7 / 20

Transformer Network for N(r,x) Emulation

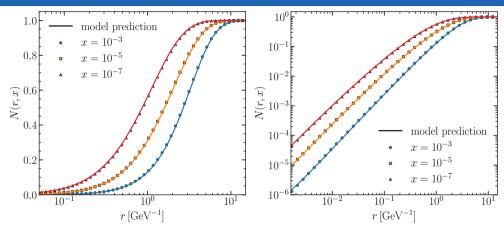
- Inputs (6 scalars): $(\log_{10} Q_{s0}^2, \gamma, e_c, \log_{10} C, \log_{10} r, x)$; standardized per-dimension.
- Tokenization & PE: each scalar → shared linear projection (token); add sinusoidal positional encodings.
- **Encoder:** Transformer encoder (4 layers, 8 heads, d_{model} =128, FF=512, dropout 0.1; pre-norm + residual).
- Head & constraint: mean-pool tokens o 2-layer MLP o logit z; apply sigmoid so $0 < N_{\rm pred} = \sigma(z) < 1$ (unitarity).
- Loss (log-MSE):


$$\mathcal{L} = \text{MSE}(\log N_{\text{pred}}, \log N_{\text{true}}),$$

robust in both dilute ($N \ll 1$) and saturation ($N \rightarrow 1$) regimes.

- Training setup: 90/10 train/val; AdamW (Ir $3 \times 10^{-4} \rightarrow 3 \times 10^{-6}$, cosine anneal), weight decay 10^{-4} , early stopping; AMP mixed precision; gradient clipping (max-norm 1.0).
- Rationale: self-attention captures interactions among (Q_{s0}, γ, e_c, C) and kinematics (r, x) without hand-crafted features; highly parallelizable.

Meisen Gao 8 / 20

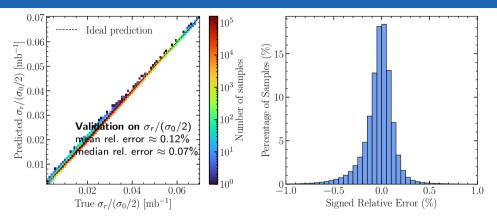

BK Dipole Amplitude Emulator Performance

- **Left:** parity plot ($\ln N_{\rm pred}$ vs. $\ln N_{\rm true}$) tightly follows the diagonal.
- **Right:** signed relative-error histogram for N (zoomed to $\pm 1\%$); most entries are per-mille.

Meisen Gao 9 / 20

Example: Emulator vs. Exact BK Solution

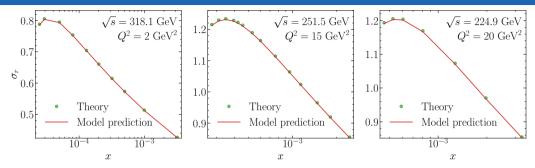
- Points: exact BK: Lines: transformer emulator.
- Agreement is essentially pointwise across many decades in r and all three x. The emulator reproduces both the *dilute* limit $(N \ll 1)$ and the *saturation* limit $(N \to 1)$.


Meisen Gao 10 / 20

Emulating the DIS Cross Section

- Goal: compare to data via the reduced cross section $\sigma_r(x, Q^2)$.
- Direct evaluation requires integrating N(r,x) with photon wavefunctions; scanning many parameter sets makes this costly.
- **Solution:** a second Transformer directly emulates $\sigma_r/(\sigma_0/2)$ from the 6 inputs $(\log_{10} Q_{s0}^2, \gamma, e_c, \log_{10} C, \log_{10} x, \log_{10} Q^2)$.
- Training data: from each BK solution, compute σ_r (both T and L) on kinematics covering HERA; total $\sim 4 \times 10^6$ examples.
- **Model:** same encoder as for N(r,x); regression target is $\sigma_r/(\sigma_0/2)$.
- Loss: mainly MSE with a small Smooth- L_1 term for robustness to occasional large residuals.
- Accuracy: $\approx 0.1\%$ mean relative error on held-out data, sufficient for precision fits.

Meisen Gao 11 / 20


DIS Cross Section Emulator Performance

- Left: parity plot closely follows the diagonal (near-perfect prediction).
- **Right:** signed relative-error histogram; most entries well below 10^{-3} .
- Precision comfortably exceeds experimental needs (data uncertainties are at the few-percent level).

Meisen Gao 12 / 20

Validating Cross Section Predictions

- Representative parameter set not used during training.
- Green markers: direct dipole-model integration; Red curves: emulator prediction.
- Near pointwise agreement across the full x range and all Q^2 bins \Rightarrow emulator reproduces the $x-Q^2$ dependence of σ_r .

• Supports using the surrogate for fast scans and a comprehensive HERA fit.

Meisen Gao 13 / 20

Fitting to HERA Data: Setup

- **Dataset:** HERA combined inclusive e^+p DIS (H1+ZEUS, 2015), $x \lesssim 10^{-2}$ with $1 \lesssim Q^2 \lesssim 50 \text{ GeV}^2$.
- Objective: minimize

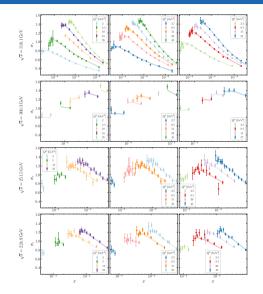
$$\chi^2 = \sum_{i} \frac{\left[\sigma_{r,i}^{\text{data}} - \sigma_{r,i}^{\text{th}}(\boldsymbol{\theta})\right]^2}{(\delta \sigma_{r,i}^{\text{data}})^2},$$

where $\theta = (\sigma_0/2, Q_{s0}^2, e_c, \gamma, C^2)$.

- Fast evaluation: emulators make $\sigma_r^{\rm th}$ essentially instantaneous \Rightarrow robust scans/uncertainty estimates.
- Minimizer: Minuit (iminuit).
- **Uncertainties:** replica method (200 pseudo-datasets with Gaussian fluctuations); fit each replica, use the spread for parameter/prediction bands.
- Fit variants (4): $x_0 = 0.01$ with γ fixed/free; $x_0 = 0.05$ with γ fixed/free.
- Goal: compare x_0 choices and assess sensitivity/validity of rcBK when starting at $x_0 = 0.05$.

Meisen Gao 14 / 20

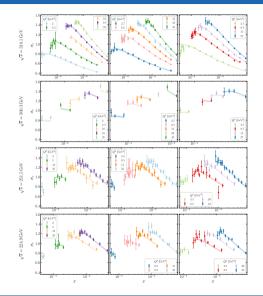
Fit Results: Extracted Parameters


		$x_0 = 0.01$		$x_0 = 0.05$	
Parameter	Prior Range	4-param ($\gamma=1$)	5-param (γ free)	4-param ($\gamma=1$)	5-param (γ free)
Q_{s0}^2 [GeV ²]	[0.01, 0.11]	$0.063^{+0.001}_{-0.004}$	$0.068^{+0.024}_{-0.015}$	$0.025^{+0.0035}_{-0.0025}$	$0.045^{+0.0021}_{-0.0017}$
e_c	[0.5, 70.0]	$29.0^{+8.7}_{-3.1}$	$18.7^{+20.1}_{-9.6}$	$34.0^{+35.3}_{-3.2}$	$41.0^{+9.2}_{-2.6}$
C^2	[2.0, 20.0]	$4.45^{+0.99}_{-0.59}$	$4.82^{+1.56}_{-2.63}$	$17.4_{-6.1}^{+2.\overline{5}}$	$10.2^{+1.6}_{-0.8}$
$\sigma_0/2~[{\sf mb}]$	[12.0, 20.0]	$14.5^{+0.6}_{-0.4}$	$14.8^{+0.9}_{-2.4}$	$19.4^{+0.5}_{-2.0}$	$16.6^{+0.2}_{-0.4}$
γ	[0.9, 1.3]	1.00 (fixed)	$1.006^{+0.037}_{-0.019}$	1.00 (fixed)	$1.138^{+0.033}_{-0.012}$
χ^2/dof	_	0.854	0.857	1.471	1.195

- ullet Uncertainties are 95% credible intervals from 200 replicas. "4-param" fixes $\gamma=1$; "5-param" lets γ float.
- For $x_0 = 0.01$: $Q_{c0}^2 \approx 0.06 \text{ GeV}^2$, $C^2 \approx 4-5$, $\sigma_0/2 \approx 14-15 \text{ mb}$; $\gamma \simeq 1$.
- For $x_0=0.05$: smaller Q_{s0}^2 (later evolution start), preference for larger C^2 ; in 5-param, $\gamma \approx 1.14$.

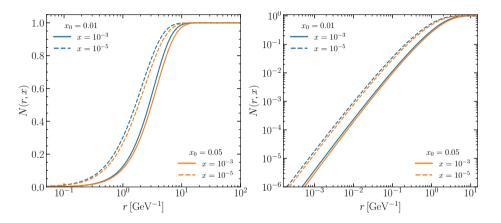
• Fit quality: $\chi^2/\text{dof} \approx 0.86$ at $x_0 = 0.01$; ~ 1.20 at $x_0 = 0.05$ (5-param).

Meisen Gao 15 / 20


Comparison to HERA Data ($x_0 = 0.05$ fit)

- Reduced cross section σ_r vs. x at fixed Q^2 , compared to HERA combined e^+p data (points with errors).
- Curves/bands show the $x_0=0.05$ fit (5-parameter, γ free); bands indicate 2σ from replicas.

Meisen Gao 16 / 20


Comparison to HERA Data ($x_0 = 0.01$ fit)

- Reduced cross section σ_r vs. x at fixed Q^2 , compared to HERA combined e^+p data (points with errors).
- Excellent agreement with HERA data; $\chi^2/\mathrm{dof} \approx 0.86$.

Meisen Gao 17 / 20

Dipole Amplitude from Different x_0 Fits

• Evolving both fits to a common x yields nearly identical N(r,x); the small residuals around $r \sim 1 \text{ GeV}^{-1}$ are minor and largely absorbed by the fitted normalization $\sigma_0/2$ in σ_r .

Meisen Gao 18 / 20

Summary & Outlook

Summary

- Transformer emulators deliver fast, high-fidelity predictions for BK N(r,x) and DIS σ_r .
- Enable an efficient fit to HERA small-x data; best performance at $x_0 = 0.01$.
- Extracted parameters are consistent with prior studies; uncertainties quantified via replicas.

Outlook

- Include NLO ingredients in the BK kernel and DIS wavefunctions.
- Introduce impact-parameter dependence N(r, b; x).
- Toward global analyses: inclusive & diffractive DIS, heavy flavor, and pA.

Meisen Gao 19 / 20

Thank you!

Meisen Gao 20 / 20