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Introduction

@ Higher-order radiative corrections are more important,
with the increasing precision of measurements at the
future colliders: CEPC, ILC, HL-LHC, FCC - - -
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Introduction

@ One-loop Feynman integrals are well known analytically
in the time-space dimension D = 4 — 2¢.
However, how to perform analytically multi-loop Feynman
integrals with masses is still a challenge.

@ Considering Feynman integrals as the generalized
hypergeometric functions, one finds that the D—module of
a Feynman diagram is isomorphic to
Gel'fand-Kapranov-Zelevinsky (GKZ) D—module.

@ We can construct GKZ hypergeometric system of
multi-loop Feynman integrals with masses, to obtain the
generalized hypergeometric function solutions.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Feynman integrals involving several energy scales can be
given by some finite linear combinations of generalized
hypergeometric functions.

@ Any commonly used functions of one indeterminate of
analysis can be expressed as the Gauss function

a,b o (a), ()
’ = AN 1.1
(4] 2 e, < a1
where (a), = I'(a + n)/I'(a) is the Pochhammer notation.

@ For the given parameters a, b, c, there are 24
hypergeometric series solutions totally of the partial
differential equation (PDE) which can be written as the
GKZ-system on the Grassmannians G, ,.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ In a-parameterization, the Feynman integral of one-loop
self-energy is

iAlSE(pz,m?,mi)
_ 2 \2-D/2 [ d’q . 2 2
,—(ARE) /0 doda, /Wexp{l[a](q 7111])
+ay(@+p)’ = md)]}

iy 2-D/2
B 2-D/2 exp{m‘(ZA D) }F<2 ) (AZRE) /
B (4m)P/2

X /Sw3(t)5(t1t2 +it +t2t3)(tlt2)]_D/2t§)/2_]

D/2—2
)

X [rl m? + !2m§ + t3p2] 1.2)

@ The hyperplane S is given by the equation 7, + 1 = 0, and
w3(t) = t,dt, Ndt, — t,dt, \dt, + t.dt, A\ dt, is the volume
element in the projective plane P?, respectively.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

D/2—2

. 2 2 2 1-D/2D/2—1
iA g (P ,ml,m2) e /Sw3(t)6(rlt2 +it +050)(1t) / t3/ [
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@ The integral can be embedded in the subvariety of the
Grassmannian G, ;

1 0 0 1 r
¢ = ( 0 1 0 1 ) , (1.3)
0 0 1 1 I3
with the exponent vector
_ D D D D 5
ﬁm_( -5,2-%,%, -1, 5-1)eC,and

2 2

. _ — 2
r, —Inl, I"Z—Inz, ry =p-.

@ Row: 1: integration variable ¢, 2: t,, 3: t,, respectively.

@ Column: 1: the power function ¢!=2/2, 2: 41-P/2  3: (P/2-1,
4: § function, 5: the power ponnomlaItm + t,m? +zgp-



1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

The hypergeometric function on the general stratum of the
Grassmannian G, ; with the splitting coordinates in Eq.(1.3)
satisfies the GKZ-system as

{9,4+0,5}26, & =-520, ¢,

{9, +0,5}2B, & =-5,28, ¢,

{94+ 055 }28, & = —,2(8, &) ,

{9140+ 0,4 +0,, 128, &) = (8, - DB, &),

{9, 5+0,5 + 0,5 }28, &) = (8 — V2B, &) , 21)

where the Euler operators ¥, = &, ,0/9¢, ;, and the exponent
vector B = (B,,---, B,) € C° satisfying 3" 3, = 2.
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

Corresponding to the Grassmannian G, ; represented by the
matroid in Eq.(1.3), the exponent matrix is generally written as

51 —1 0 0 ay Qs
0 By, —1 0 ay, a5 | (22
0 0 ,83 —1 Qs y Qs

where

5 3
28=2 Y =81 Y as=p—1
i=1 Jj=1 Jj=1
Qg tos==F, j=123 (2.3)
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

Let NV = {1,---,5} denoting the set of indices of the columns in
Eqg.(1.3). Choosing the affine spanning subset 5 of the vector
subspace C? and the integer lattice, one gets the
hypergeometric function accordingly.

For example as B = {1, 2,3}, there are on the
matrix of integer lattice:

(0, £n, EY £ n,EV) (2.4)
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,5 n]Eg(l) + ”2E3(2))
0 0O —n,
=1 0 0 O —n, , (2.5)

0 00 —n—n n +n,
@ the exponents are given by the matrix

( 0 B—-1 0 0] -8,
0 0 B—1 B -1 1-8-8,

where ¢, , = a,, = 0 because n, , are nonnegative.

B, -1 0 0 0] -8,
) . (2.6)
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is

2 (B, &) =40 (B)r) T 1(r,) P2(ry) T

{1,2,3} {1,2,3}
»( LENG
{123}(ﬁ rzY rl>7
eV (B, x, ) = Z W (B )l a2 @7)
{121} » Xps Xy L{lZ}} s s My )X T, .
where
alh) (8 = [G) :
{123} D(I— B)L(I— B,)LQ2 — B, — B,)
I B (B (1= B0, )
(B, ny,ny) = . (2.8)
{123} n I, 1(2 — By — By), o
1

with the Pochhammer notation (a), = I'(a + n) /T'(a).
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,5 n]Eg(l) + ”2E3(3))
000 —n,
=100O0 n-n —-n-+n |, (2.9)
000 —n
@ the exponents are given by the matrix
e[|
B, -1 0 0 0] -8,
= 0 B, —1 0 B,+pB,—1 B, +5,—1 (2,10)
0 0 B—1 —B, 0]

where o, , = a,, = 0.

3,5
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is formulated as

@) B o =40 @)y

{1,2,3} {1,2,3}
e 8, —z —?)
saf])‘“}(ﬁ, )= > cﬁm}(ﬁ, nyom)x 2 @.11)
iy
@ Where
4O () = T(B,)T(Bs) ’
{123} T(1— B)C(1 = By)T (B, + BT (B, + B,)

28y, (B,
n i By + Bs) ) (Bs +B,)

BBy =

e (2.12)

i)

Note that 1/(a)_ = (—1)"(1 - a),.
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

A

a, b b

-
(a) (b)

Figure: 1 The geometric configurations of the hypergeometric
functions on the projective plane P?, where the points a, - - - , e denote
the indices of columns of exponent matrix.

@ Geometric representation of <I>§11)72,3} is drown in Fig.1(a) where
{a,b} = {3,4} and {c,d, e} = {1,2,5}, which determinant of any 2 x 2
minor of the submatrix consisted of the third and fourth columns is zero.
@ Geometric representation of <I>({f)72,3} is drown in Fig.1(b) where
a=2, {b,c} ={1,5} and {d, e} = {3,4}, which determinants of the

submatrices det(||ex|[, , 5, ) = det(||ex[|, 5 ,,) = O.
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ In these hypergeometric functions, ¢, i = 1,3,5,8, 10, 12
are the first Appell functions, while o9, j =2,4,6,7,9,11
are the Horn functions.

@ ltis easy to find that the convergent regions of <p§})2 o

cpglm} and gom N have nonempty intersections in a
connected component of definition domain, thus they
constitute a fundamental solution system.

@ The linear combinations of hypergeometric functions on
the different nonempty proper subsets of the parameter
space are regarded as analytic continuations of each other.
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1. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

— () ()
e o= 3 @, 0

= > el B o
i={1,5,6} 23
= 3 el (s ¢
i={3,7,8} (23
_ (i) ()

> e, B O
i={4,5,12} o
_ @) gy

> e, B o
i={8,9,10} o
= > @) s e (2.19)
i={10,11,12} -

Using the Gauss inverse relations below, we can derive the
combinatorial coefficients uniquely, then continue the analytic
expressions to the whole domain of definition of the Feynman
integral by the Gauss-Kummer relations.
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lll. Gauss

I1l. Generalized Gauss relations

@ The Gauss inverse relations include the following analytic
continuation together with its various variants

0.
%) . 3.1)

@ The Gauss inverse relations can be obtained through the
Mellin-Barnes’s contour on the corresponding complex
plane, combined with residue theorem.

(5 )R e

T(c)T'(a — b) b byl+b—c
FaTe—p 9 2 ( l—a+b
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lll. Gauss

[l. Generalized Gauss relations

We can give generalized Gauss inverse relations with two
variables
({1])23) By x5 %)
_ T =8, =BT =B, —B,) )@ L
TG AT sy ) ey @ )
T8, + B, — DTQ =B, — B,)

Hra sy e, e iz Rk @2)
Similarly,
e B m)
S ara a0 e :, i
e
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lll. Gauss

I1l. Generalized Gauss relations

@ Gauss-Kummer relations are derived through Kummer’s
classification, which can be written as

a, b
e

_ —a a, c—b
—a-nr (0

c—a—b c—a, c—b
x) =(1—x) i ( .

ST
=)

ﬁ) @.4)

c—a, b

=01-0"",F ( .

and its various variants.

@ For the GKZ-system on the Grassmannian, the
generalized hypergeometric solutions corresponding to the
same geometric representation are proportional to each
other in the intersection of their convergent regions.
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lll. Gauss

[l. Generalized Gauss relations

Corresponding to the geometric representation shown in
Fig.1(a) with {a,b} = {3,5}, {c,d,e} = {1,2,4}, we obtain the
generallzed Gauss-Kummer relations as

e B x )

_ B B, (1) x y
=(1—y 1 2 )
(I=y) "1(1—x)" w{l“}(ﬁ 1 5o

— Bs—1 (5) * =y
= (=05 {124}(3 xfl,xfl)

_ B5=1,(5) y y—x
=056 B = )
— (1= BaBy (1 =By S0 oy
=0=x 72 0=y Te o B 17y)
B — y—x
== B ) @5

withx =r,/r,, y=r/r,.

23/34



IV. Example

IV. The analytic expressions for 1-loop self energy

In this scheme, we can have the generally strategy:

@ Embedding the Feynman integral on Grassmannian G, ,,
we construct hypergeometric solutions from GKZ-systems
under all possible affine spanning.

@ We derive the Gauss inverse relations under the same
affine spanning, and the Gauss-Kummer relations from
different affine spanning.

@ Feynman integral can be written as a finite linear
combinations of the hypergeometric solutions.

@ The combination coefficients are obtained by Gauss
relations, then the analytic expressions of the Feynman
integral are continued to its whole domain of definition.
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IV. Example

IV. The analytic expressions for 1-loop self energy

@ In example of 1-loop self energy, its Feynman integral can
be written as linear combinations of the hypergeometric
solutions in the different definition domains below.

o \pz\ < m,zy < m?:

Ase = C({ll),z,s} (ﬁ>(m?)_ﬁl (,,,z)—f‘z (],2>1*53*ﬂ4¢i11),2,3} ® ’%, ﬁ>
, m22 1
7LC?l),z,s}(me?)iﬁ] <m§>51 +ﬁ571¢i21),2,3}(,3’ 'l:’?’ é>
2
e,y O, e e T
1 1
@ ) < m? < mif
2 2
Mise = €y BP0 26N TRl s G T
mz 2 1
+8) @)D s, ,172 =)
2 2 , m2
0, @D e 0, B T <
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IV. Example

IV. The analytic expressions for 1-loop self energy

o mg <P < m?:

3) B5=1,0) & ’"g
Age =€, BT (B T
1 1
(1 B1 () P1+8s =1, ”’§ I
+e), 5 @D, e 2 T
1
2 2
®) By, 2\1=By =By (2= B3 (8) oM
O sy O T ) TR GH T, e, 2 L
o mg < /n? < P2
2 2
_o® By 2\1—B,—B By (8 oM
Aise = €, @D )T GH TR ® e 2 D)
1
mZ m2
©) By+Bs—1,2y=B3 (9 oM
C{]“}(B)(H) @) W{l”}(ﬁi R m$)
2 2
(10) 2965 =1,(10) o
+C(y @D D B 2 ) (“4)
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IV. Example

IV. The analytic expressions for 1-loop self energy

o m? < /ng < P2

_ o0 2\Bs—1_(10) oM
A =C BYP)S e B, =, =)
ISE {1,2,3} {1,2,3} P2 op?
2 2
) 2 By +Bs—1, 2 =B, (11) o™
+C{1,z,3}(ﬁ)(m2) 3757 (p%) 349{]’2’3}(3, 2 ’"§>
2 2
£ (@) T ) T ) ) e, T T )
{1,2,3} 1 2 {1,2,3} 77 p2”’ m%
o mf <P < m;:
10) 2\ =B, (218, +85—1_(4) 2 om
Algp =C“)2,3}(B)(m2) 2(p7)72 7S W{I,Z,B}('B’ mg pT)
2 m?
(5) 2\Bs =1 (5) L
FC a5y BYm)S e ) 4 (B 2’ mg)
2 2
(12) 2\ 1=B, =B, (2= By« 2y— B3 _(12) meem
+C{112,3}(ﬁ)(m|) 1R my) "207) 350{1,2’3}(6, ER m2> (4.6)
2
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IV. Example

IV. The analytic expressions for 1-loop self energy

@ The boundary conditions:

r@-2)r} 2 -1 (—pz)g_l
A2 ’

. 2
A ,0,0) =
st 5 0:0) = =BT D — 2

(()m 0) =iA (()Om)*

re-2r@G -, )%—1 7

lSE ISE
(4m)P/21r(2) (AZRE

Here A,, is the renormalization scale.
@ Using the boundary conditions in Eq.(4.7), we have

3) _ ) g -npre-9%)
c B)=cC 7(47\')17/21—‘(%)

{1,2,3} {12:}“3):

(=P —pre- %)

Cliny B) = (4m)P/2T(D — 2)

{1,2,3}

(4.8)
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IV. Example

IV. The analytic expressions for 1-loop self energy

@ Other coefficients are linear combinations of the above
coefficients through the Gauss inverse relations.

@ For example, performing the inverse transformation of
suitable variables in Eq.(4.2) and Eq.(4.3), one gets

L= 8 = BITBs) )

(6) — (P
Caan @ =D TG s T r G, + 4 02 @)
515 D@ =B, — BOT( = B, — BIT(BY) s
+(=1)FP2TFs c )
v T(8,)T(1 — B,)T (B, + B5) HED
c® _ o8y L@ =8 = BT = By = BIT(55) 3
& 8 =D TR TER (o)
+(=DA LA =B = BITBS) o) ®8) . (4.9)

T(B, + B5)T(B, + B — 1) {123}

@ Taking the time-space dimension D = 4 — 2¢ in
dimensional regularization, one finds that the ultraviolet
divergence in Eq(4.1)~EQq.(4.6) is 1/¢.
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V. Dune

V. The 2-loop Massive Dune diagram

Figure: 1 The 2-loop Massive Dune diagram.

@ The Feynman integral of the 2-loop massive Dune diagram
is embedded in Grassmannian G, .

@ Tai-Fu Feng, Yang Zhou, - - -, Hai-Bin Zhang

Feynman Integral of two-loop Dune diagram, [arXiv: 26xx.xxxxX]
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V. Dune

V. The 2-loop Massive Dune diagram

The splitting coordinates are reduced to the matroid £,

£ = ( I ‘zDU ) (5.1)

5%x8

with the exponent vector
BDU = (0’07070707 7D7D - 4; *1) S CS, and

pyom
piom
p: m . (5.2)
Py om

A2 A2

DU

SN = = e

31/34



V. Dune

V. The 2-loop Massive Dune diagram

@ For Grassmannian G, ,, there are 56 affine spanning. In
each affine spanning there are 1905 linearly independent
hypergeometric functions. In total there are 106680
hypergeometric functions.

@ The matroid £, , represent a collection of eight points in the
projective space P* which has nine geometric
configurations. Those 106680 hypergeometric functions
above are attributed to nine types of hypergeometric
functions, which are transformed into each other by the
various Gauss relations.
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VI. Summary

VI. Summary

@ In this approach, one topological diagram corresponds to
one set of hypergeometric solutions. We make the
classification among those hypergeometric solutions by the
geometric configurations.

@ GKZ-systems of Grassmannians give the analytic
expressions of multi-loop Feynman integrals with masses
in whole domain of definition, combined with generalized
Gauss relations.

@ Next we are considering how to better implement the
programmatization of this method.
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