Toponium Formation Time

Yu-Jie Zhang

Beihang Univeisity

2507.05703

2025.11.02 @ Beijing

Introduction

Introduction •00000

- 3 Amplitude of $e^+e^- \rightarrow b\bar{b}$ near top threshold

Introduction

Motivation

- A pronounced enhancement of the $t\bar{t}$ production cross section near threshold has been observed by CMS:2025kzt and ATLAS:2025mvr.
- CMS: $\sigma(\eta_t) = 8.8^{+1.2}_{-1.4}$ pb.
- ATLAS: $\sigma(\eta_t) = 9.0 \pm 1.3 \text{ pb.}$
- Significance: $> 5\sigma$ a new milestone in top-quark physics.

Does the $t\bar{t}$ pair require time to evolve into a physical bound state? All references say YES.

Two Competing Pictures of Toponium Formation

1. Instantaneous Formation (Quantum)

- The $t\bar{t}$ is immediately projected onto a superposition of nS and continuum.
- Green's function: Fadin:1987wz, Beneke:1999zr..., but claim finite formation time.
- Effectively assumes no formation time; bound-state components appear promptly.

2. Finite-Time Formation (Classic)

- Bound state develops over time due to QCD interactions.
- Formation time estimate: $t_n \sim n^3 \times 1.41 \times 10^{-25}$ s.
- Consistent with classical Coulombic dynamics and relativistic causality.

Different temporal evolution leads to different experimental predictions.

Toponium Formation Time 4 / 34

Why Toponium? Unique Time Scales

Toponium is an ideal laboratory due to its extreme properties:

- Production scale: Compton wavelength $\sim 1/m_t \approx 1.14$ am (pointlike).
- Bound-state size: $\langle r \rangle_{nS} \sim 13.3 \, n^2$ am.
- Formation time: Classic $t_n^C \sim 1.41 \, n^3 \times 10^{-25} \, \mathrm{s \ VS}$ Quantum $t_n^Q = 0$.
- Top quark lifetime: $au_t pprox 5.02 imes 10^{-25} ext{ s.}$

Key point: $\tau_t \sim t_1^C$, so the top decay acts as a built-in quantum clock — sensitive to whether the bound state had time to form.

 \Rightarrow Decay probability depends on formation dynamics.

5 / 34

Toponium Formation Time

Top quark and resummation

Introduction

- QCD corrections to $t \to W^+b$: CSL, Oakes, Yuan, PRD1991
- NLO FCNC t decay: JJ Zhang, CSL, J Gao, H Zhang, Z Li, PRL2009
- $t\bar{t}$ AFB and tt: Berger, QH Cao, Chuan-Ren Chen, CSL, H Zhang, PRL2011
- Top Quark Decay at NNLO: Jun Gao, CSL, Hua Xing Zhu, PRL2013
- p_T resummation for $t\bar{t}$: HX Zhu, CSL, HT Li, DY Shao, LL Yang, PRL2013
- Resummation HH at the LHC, Ding Yu Shao, CSL, Hai Tao Li, JHEP2013
- $t\bar{t}$ at small p_T : HT Li,CSL, DY Shao, LL Yang, HX Zhu, PRD2013
- ..

Toponium Formation Time 6 / 34

Discriminating Observable: R_b Ratio

Introduction

The cross-section ratio near threshold is highly sensitive to interference effects:

$$R_b = rac{\sigma(e^+e^- o bar{b})}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- o qar{q})}$$
 at $\sqrt{s} pprox 343~{
m GeV}$

- Sensitive to interference between $t\bar{t}$ and γ/Z amplitudes [?].
- The **instantaneous** model predicts strong coherent enhancement.
- The **finite-time** model suppresses early coherence due to delayed formation.
- \Rightarrow Distinct line shapes and R_b values.

Pure
$$\sigma(e^+e^- \to J_t(1S) \to b\bar{b}) \propto e^{-4t_n/\tau_t}$$

Toponium Formation Time 7 / 34

- 1 Introduction
- 2 Toponium formation time
- 3 Amplitude of $e^+e^- o bar b$ near top threshold
- 4 Collider probes
- Summary

Coulomb-like potential and Hamiltonian

• The $t\bar{t}$ interaction is governed by a Coulomb-like QCD potential:

$$V(r) = -\frac{\lambda}{r}, \qquad \lambda = 0.258.$$

The dynamics are described by the nonrelativistic Hamiltonian Sumino:1992ai:

$$\hat{H}=2m_t-i\Gamma_t-\frac{\nabla^2}{m_t}+V(r),$$

with:

$$m_t = 172.57 \text{ GeV}, \qquad \Gamma_t = 1.31 \text{ GeV}.$$

• The imaginary term $-i\Gamma_t$ accounts for the top-quark lifetime ($\tau_t \approx 5 \times 10^{-25}$ s).

Coulomb-like potential λ and excress production cross section $\sigma(\eta_t)$

• LO potential $\lambda = 4/3\alpha_s$ with $\mu = 22.3$ GeV:

$$\lambda = 0.210$$
 result $\sigma(\eta_t) = 5.45$ pb.

• NLO potential with $\mu = 22.3$ GeV:

$$\lambda = 0.210$$
 result $\sigma(\eta_t) = 6.51$ pb.

Parameterized potential:

$$\lambda = 0.258$$
 result $\sigma(\eta_t) = 9.03$ pb.

Toponium Formation Time

Properties of *nS* bound states

Spin-triplet and spin-singlet bound states:

$$J_t(nS), \quad \eta_t(nS), \qquad n=1,2,3,\ldots$$

Key parameters:

$$E_n = -\frac{\lambda^2 m_t}{4n^2} = -\frac{2.872}{n^2} \text{ GeV},$$

$$r_n = \frac{2n^2}{\lambda m_t} = \frac{n^2}{22.3} \text{ GeV}^{-1},$$

$$v_n = \frac{\lambda}{2n} = \frac{0.129}{n},$$

$$|\psi_{nS}(0)|^2 = \frac{\lambda^3 m_t^3}{8\pi n^3} = \frac{3.51 \times 10^3}{n^3} \text{ GeV}^3.$$

• Nonrelativistic condition holds: $v_n^2 \approx 0.017/n^2$.

4 D > 4 D > 4 E > 4 E > E 990

Time evolution of the wavefunction

• The time evolution includes exponential decay governed by τ_t :

$$\psi_n(\vec{r},t) = e^{-i(2m_t + E_n)t} e^{-t/\tau_t} \psi_n(\vec{r},0).$$

- ⇒ Toponium acts as a **yoctosecond-scale chronometer** of quantum coherence.
- At production $(t = 0^-)$, the system is pointlike:

$$\psi(\vec{r},0^-) \simeq \delta(\vec{r}).$$

• Large Γ_t keeps virtuality above $\sqrt{m_t\Gamma_t}$, suppressing soft-gluon divergences.

Toponium Formation Time 12 / 34

Quantum vs. classical formation

Quantum (instantaneous) picture

Immediately after creation ($t = 0^+$):

$$\psi(\vec{r}, 0^+) = \sum_{n} \psi_{nS}(0) |nS\rangle + \int d^3k \, \psi_{\vec{k}}(0) |\vec{k}\rangle.$$

The state is a coherent superposition of all bound and continuum eigenstates.

Classical (causal) picture

The $t\bar{t}$ pair evolves over a finite time into a bound state. In the CM frame, quarks produced with $r(0) \sim 1/m_t$ and $v < \sqrt{\lambda/(m_t r(0))}$ form bound states via oscillatory motion.

Toponium Formation Time 13 / 34

Classical formation time derivation

For a top quark with energy E_n:

$$E_n = m_t v^2(t) - \frac{\lambda}{2r(t)}, \qquad \frac{dr}{dt} = \sqrt{\frac{\lambda}{2m_t r(t)} + \frac{E_n}{m_t}}.$$

- Initial condition: r(0) = 0; final radius: $r(t_n^C) = 3r_n/4$.
- Solving gives:

$$t_n^C = \frac{(4\pi - 3\sqrt{3})n^3}{3m_t\lambda^2} \approx 1.41 \, n^3 \times 10^{-25} \, \mathrm{s}.$$

This provides the characteristic causal formation time of the nS state.

Toponium Formation Time

Classical formation picture

The classical mechanics have been used in modeling the toponium formation time (Strassler:1990nw,Fabiano:1997xh). As a scale, top quark lifetime is 5.02×10^{-25} s.

Group	t _n	$t_1\ (10^{-25})\ { m s}$	$t_2~(10^{-25})~{ m s}$
Strassler and Peskin	$4r_n/v_n$	9.18	73.5
Fabiano	$2\pi r_n/v_n$	14.4	115
This work	$(4\pi - 3\sqrt{3})r_n/12v_n$	1.41	11.3

Toponium Formation Time 15 / 34

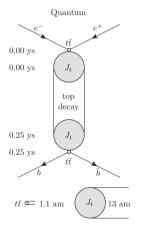
Phenomenological parameterization

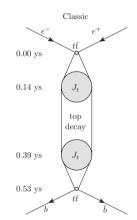
• Define the dimensionless parameter A to interpolate between scenarios:

$$t_n = A t_n^C$$
, $A = \begin{cases} 0 & \text{Quantum (instantaneous)}, \\ 1 & \text{Classical (causal)}. \end{cases}$

The amplitude of the nS state is modified by

$$e^{-At_n^C/\tau_t}$$
 \Rightarrow cross-section suppression $\sim e^{-2At_n^C/\tau_t}$.


• A captures the degree of temporal coherence in toponium formation.



Toponium Formation Time

17 / 34

Quantum VS Classic formation time

- 1 Introduction
- 2 Toponium formation time
- **3** Amplitude of $e^+e^- o bar b$ near top threshold
- 4 Collider probes
- Summary

Definition of the Observable R_b

We define the cross-section ratio (Fu:2025yft):

$$R_b = \frac{\sigma(e^+e^- \to b\bar{b})}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- \to q\bar{q})}.$$
 (1)

- Sensitive to interference and threshold dynamics.
- Clean observable for future lepton colliders (CEPC, FCC-ee).

Amplitude Decomposition Near Top Threshold

The amplitude of the process can be expressed as:

$$\mathcal{M}(e^+e^- \to b\bar{b}) = \mathcal{M}_{\gamma} + \mathcal{M}_{Z} + \mathcal{M}(t\bar{t}) + \cdots,$$
 (2)

where only the top contribution $\mathcal{M}(t\bar{t})$ is relevant near threshold.

Expanding in α_s and the relative velocity v (Kawabata:2016aya,Chen:2019fla):

$$\mathcal{M}(t\overline{t}) = \mathcal{M}^{\text{One Loop}} + \mathcal{M}^{\text{Two Loop}} + \mathcal{M}^{\text{S-wave}} - \mathcal{M}^{\text{Double Counting}} + \cdots$$
 (3)

Toponium Formation Time 20 / 34

S-wave Contribution and Green Function

The S-wave top-antitop amplitude is proportional to the Green function:

$$\mathcal{M}^{\text{S-wave}}(t\bar{t}) \propto G(0,0,E), \quad E = m_{t\bar{t}} - 2m_t.$$
 (4)

The two-point Green function $G(\vec{r}, 0, E)$ satisfies the Schrödinger equation:

$$\left[-\frac{\nabla^2}{m_t} + V(r) - (E + i\Gamma_t)\right] G(\vec{r}, 0, E) = \delta^3(\vec{r}). \tag{5}$$

It describes production and annihilation of the $t\bar{t}$ pair at the same point.

Toponium Formation Time 21 / 34

With

$$\delta^{3}(\vec{r}) = \sum_{n} |n(\vec{r})\rangle\langle n(0)| + \int d^{3}\vec{k} |\vec{k}(\vec{r})\rangle\langle \vec{k}(0)|, \qquad (6)$$

Expanding in bound and continuum states:

$$G(0,0,E) = \sum_{n} \frac{|n(0)\rangle\langle n(0)|}{E_n - (E+i\Gamma_t)} + \int d^3\vec{k} \, \frac{|\vec{k}(0)\rangle\langle \vec{k}(0)|}{E_k - (E+i\Gamma_t)}. \tag{7}$$

The continuum state wavefunction is (Sommerfeld:1931qaf,Landau:1991wop):

$$|\vec{k}(0)\rangle = \sqrt{\frac{1}{4\pi} \frac{\pi m_t \lambda/k}{1 - e^{-\pi m_t \lambda/k}}}.$$
 (8)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Explicit Form of G(0, 0, E)

Combining bound and continuum contributions:

$$G(0,0,E) = \sum_{n} \frac{(\lambda m_{t})^{3}}{8\pi n^{3}} \frac{1}{E_{n} - E - i\Gamma_{t}} + \int \frac{k^{2} dk}{2\pi} \frac{1}{k^{2}/m_{t} - E - i\Gamma_{t}} \frac{m_{t} \lambda/k}{1 - e^{-\pi m_{t} \lambda/k}}.$$
 (9)

- Real part divergent, imaginary part finite (Beneke:2013jia).
- Discrete sum reproduces Breit–Wigner peaks for *nS* states.

Toponium Formation Time 23 / 34

Analytic Form via Lippmann–Schwinger Equation

The leading-order Coulomb Green function (Hoang:1997vs,Beneke:1999qg):

$$G(0,0,E) = \frac{m_t^2}{4\pi} \left\{ i\tilde{v} + \lambda \left[-\frac{\frac{1}{\epsilon} - \gamma_E + \ln 4\pi}{2} + \ln \left(\frac{-2i\tilde{v}m_t}{\mu} \right) - \frac{1}{2} + \gamma_E + \psi \left(1 - \frac{i\lambda}{2\tilde{v}} \right) \right] \right\},$$
where $\tilde{v} = \sqrt{(E + i\Gamma_t)/m_t}$.

4 D > 4 D > 4 E > 4 E > E 900

Toponium Formation Time 24 / 34

Perturbative Expansion of G(0, 0, E)

Expanding in powers of λ (or α_s):

$$G(0,0,E) = G^{LO} + G^{NLO} + G^{>NLO},$$
 (11)

$$G^{\mathrm{LO}}(0,0,E) = \frac{m_t^2}{4\pi} i\tilde{v},\tag{12}$$

$$G^{\text{NLO}}(0,0,E) = \frac{m_t^2}{4\pi} \lambda \left[\frac{1}{2} \left(\frac{1}{\epsilon} - \gamma_E + \ln 4\pi \right) - \ln \left(\frac{-2i\tilde{v}m_t}{\mu} \right) + \frac{1}{2} \right]. \tag{13}$$

- G^{LO} and G^{NLO} correspond to one- and two-loop amplitudes.
- Higher terms encoded in $G^{>NLO}$.

Avoiding Double Counting

To prevent overlap between perturbative and bound-state terms:

$$\mathcal{M}^{\mathrm{Double\ Counting}}(t\bar{t}) \propto G^{\mathrm{LO}}(0,0,E) + G^{\mathrm{NLO}}(0,0,E),$$
 (14)

and the corrected amplitude becomes

$$\mathcal{M}^{\text{S-wave}}(t\bar{t}) - \mathcal{M}^{\text{Double Counting}}(t\bar{t}) \propto G^{\text{NLO}}(0,0,E).$$
 (15)

Including Finite Formation Time

The finite toponium formation time modifies each nS term in G(0,0,E) as

$$\frac{|n(0)\rangle\langle n(0)|}{E_n - (E + i\Gamma_t)} \longrightarrow e^{-2An^3t_1^C/\tau_t} \frac{|n(0)\rangle\langle n(0)|}{E_n - (E + i\Gamma_t)}.$$
 (16)

- A = 0: instantaneous (quantum) formation.
- A = 1: finite causal (classical) formation.
- Leads to observable suppression in R_b spectrum.

Toponium Formation Time 27 / 34

- 3 Amplitude of $e^+e^- \rightarrow b\bar{b}$ near top threshold
- 4 Collider probes

Collider simulations at future lepton colliders

We perform pseudo-experiments at future lepton colliders such as CEPC and FCC-ee. The total uncertainty on R_b at each energy point $\sqrt{s_i}$ is estimated as:

$$\Delta R_b^{\text{PEX}}(i) = \pm 1.1 \times 10^{-4} \, (\text{sys}) \pm \frac{83.2 \times 10^{-4}}{\sqrt{\mathcal{L}_i \, [\text{fb}^{-1}]}} \, (\text{stat}),$$
 (17)

Main uncertainty sources:

- Potential scheme: 9.8×10^{-5}
- Beam energy spread: 3.6×10^{-5}
- Other effects (detector, background, luminosity): smaller by an order of magnitude

Toponium Formation Time 29 / 34

Global χ^2 construction

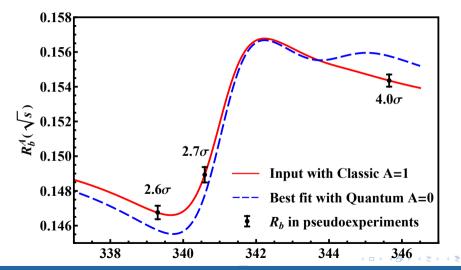
We construct a global χ^2 function incorporating mass constraints:

$$\chi^{2} = \frac{(m_{t} - m_{t}^{c})^{2}}{(\Delta m_{t})^{2}} + \sum_{i=1}^{2} \left(\frac{R_{b}^{\text{PEX}}(i) - R_{b}^{A}(i; m_{t}, \lambda)}{\Delta R_{b}^{\text{PEX}}(i)} \right)^{2}, \tag{18}$$

with parameters:

- $m_t^c = 172.57 \,\text{GeV}$
- $\Delta m_t = 25 \text{ MeV (CEPC)}$, 40–75 MeV (FCC-ee)
- Degrees of freedom: ndf = 2

Interpretation


The fit compares theoretical predictions under different formation scenarios:

$$A = 0$$
 Quantum, $A = 1$ Classic.

Toponium Formation Time 30 / 34

Discrimination power between scenarios (tobe updated)

Toponium Formation Time 31 / 34

- 3 Amplitude of $e^+e^- \rightarrow b\bar{b}$ near top threshold
- **5** Summary

Summary

- We have introduced a **collider-accessible framework** to experimentally probe the toponium formation time at the yoctosecond scale $(10^{-24} s)$.
- Test whether quantum states: emerge instantaneously, or evolve over a finite causal time.

Toponium Formation Time 33 / 34

Discussion

Thanks

