Differential Equations for Energy Correlators in Any Angle

work with Jianyu Gong, Jingwen Lin, Kai Yan, Gang Yang and Yang Zhang [2506.02061]

Rourou Ma

University of science and technology of China

第五届量子场论及其应用研讨会 11. Sep. 2025

Motivation

• From the phenomenological point of view, energy correlators can be used as jet observables for verify the standard model or find new physics.

• From the computability, energy correlators is perhaps the simplest infared safe observable to calculate analytically.

$$Q(q) \rightarrow P_1(p_1) + P_2(p_2) + P_3(p_3) + P_4(p_4)$$

Z boson, off-shell photon or Higgs

q qbar g g q qbar q qbar g g g g

compute energy correlator analyticly

- n-point energy correlators are finite at LO, we can define a class of finite integrals
- This structure is similar to the Feynman-parameter representation of loop integrals

$$\frac{5x_1x_2x_3x_4\left(2\zeta_{12}x_2x_1+2\zeta_{13}x_3x_1+2\zeta_{14}x_4x_1+2\zeta_{23}x_2x_3+2\zeta_{34}x_3x_4-2x_1-x_2-2x_3-x_4+1\right)}{\left(\zeta_{12}x_2+\zeta_{13}x_3+\zeta_{14}x_4-1\right)\left(\zeta_{14}x_1+\zeta_{24}x_2+\zeta_{34}x_3-1\right)\left(\zeta_{13}x_1x_3+\zeta_{23}x_2x_3+\zeta_{34}x_4x_3+\zeta_{14}x_1x_4+\zeta_{24}x_2x_4-x_3-x_4\right)\cdots}$$

• we can develop a novel integration-by-parts technique that operates directly in the energy parameter (x_i) space, and hold the finite property meanwhile.

Content

Syzygy method for IBP of Feynman Integrals

Differential equations for 3-point energy correlator

4-point energy correlator

Traditional IBP

$$0 = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{\partial}{\partial l_k^\mu} rac{v^\mu}{D_1^{lpha_1} \cdots D_n^{lpha_n}} \ = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{rac{\partial v^\mu}{\partial l_k^\mu} - v^\mu \sum_{i=1}^n rac{\partial D_i}{\partial l_k^\mu} rac{lpha_k}{D_i}}{D_1^{lpha_1} \cdots D_n^{lpha_n}} \ .$$

target integrals

$$\{G[1, 1, 1, 1, 1, 1, 1, 1, 0, -4, 0], G[1, 1, 1, 1, 1, 1, 1, 1, 0, -3, -1], \\ G[1, 1, 1, 1, 1, 1, 1, 1, 0, -2, -2], G[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, -3], \\ G[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, -4], G[1, 1, -2, 1, 1, 1, 1, 1, 0, 0, 0], \dots$$

redundant integrals G[1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0], G[1, 1, 2, 1, 1, 1, 1, 1, 1, 0, -1, 0] ...

master integrals

redundant IBPs Time consuming! Memory consuming!

IBP syzygy method

IBP operator
$$O_{IBP} = \sum_{i=1}^{L} \frac{\partial}{\partial l_k^{\mu}} (v_k^{\mu} \cdot)$$

$$0 = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{\partial}{\partial l_k^\mu} rac{v^\mu}{D_1^{lpha_1} \cdots D_n^{lpha_n}} \ = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{rac{\partial v^\mu}{\partial l_k^\mu} - v^\mu \sum_{i=1}^n rac{\partial D_i}{\partial l_k^\mu} rac{lpha_k}{D_i}}{D_i^{lpha_1} \cdots D_n^{lpha_n}} \ = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{rac{\partial v^\mu}{\partial l_k^\mu} - v^\mu \sum_{i=1}^n rac{\partial D_i}{\partial l_k^\mu} rac{lpha_k}{D_i}}{D_i^{lpha_1} \cdots D_n^{lpha_n}} \ = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{rac{\partial v^\mu}{\partial l_k^\mu} - v^\mu \sum_{i=1}^n rac{\partial D_i}{\partial l_k^\mu} rac{lpha_k}{D_i}}{D_i^{lpha_1} \cdots D_n^{lpha_n}} \ = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{\partial v^\mu}{\partial l_k^\mu} - v^\mu \sum_{i=1}^n rac{\partial D_i}{\partial l_k^\mu} rac{lpha_k}{D_i}$$

redundant integrals

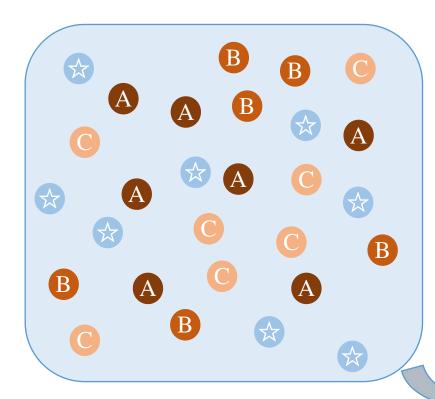
avoid increasing propagators' degree

Syzygy equation
$$\sum_{k=1}^{L} v_k^{\mu} \frac{\partial D_i}{\partial l_k^{\mu}} = g_i D_i \qquad i \in \{j \mid \alpha_j > 0\}$$

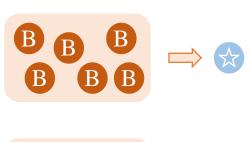
Janusz Gluza, Krzysztof Kajda, David A. Kosower: Phys.Rev.D 83 (2011) 045012

The Magic of Syzygy

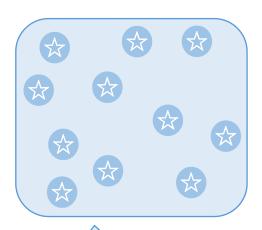
traditional IBP



syzygies make the clever selections



Syzygy IBP



Small size IBP system
Easier for IBP reduction

expansive Gaussian elimination

Content

Syzygy methoed for IBP

Differential equations for 3-point energy correlator

4-point energy correlator

n-point energy correlator

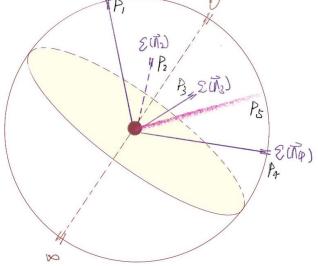
$$E^{n}C(\theta_{ij}) = \int \prod_{i=1}^{n} d\Omega_{\vec{n}_{i}} \prod_{i \neq j} \delta(\vec{n}_{i} \cdot \vec{n}_{j} - \cos(\theta_{ij})) \frac{\int d^{4}x e^{iqx} \langle 0|\mathcal{O}^{+}(x)\mathcal{E}(\vec{n}_{1}) \cdots \mathcal{E}(\vec{n}_{n})\mathcal{O}(0)|0\rangle}{(q^{0})^{n} \int d^{4}x e^{iqx} \langle 0|\mathcal{O}^{+}(x)\mathcal{O}(0)|0\rangle}$$

$$\downarrow \int d^{4}x e^{iqx} \langle X|\mathcal{O}(x)|0\rangle \equiv (2\pi)^{4} \delta^{4}(q - q_{X}) F_{X} \qquad \text{create the final state } X$$

$$\sim \sum_{(n_1, \cdots, n_n) \in X} \int d\Pi_X \left(\prod_{i=1}^n \delta^2(\vec{n}_i - \hat{p}_{n_i}) \frac{E_i}{q^0} \right) \left| F_X \right|^2$$
 form factor, depends on p_i

where $d\Pi_X$ is onshell phase-space of the finial state.

$$\frac{2\left(2q^{4}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)\cdot\left(p_{2}+p_{3}+p_{4}+p_{5}\right)+\cdots-q^{4}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)\cdot\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)+q^{6}\right)}{\left(p_{3}+p_{4}\right)^{2}\left(p_{1}+p_{5}\right)^{2}\left(p_{1}+p_{4}+p_{5}\right)^{2}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)^{2}\left(p_{3}+p_{4}+p_{5}\right)^{2}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)^{2}}$$



Kai Yan and Xiaoyuan Zhang. Three-Point Energy Correlator in N=4 Supersymmetric Yang-Mills Theory. Phys. Rev. Lett., 129(2):021602, 2022.

Lift Differential Equations: Overview

E³ C/S³

Partial Fraction Decomposition

Classify simple finite integral families

Syzygy Equations

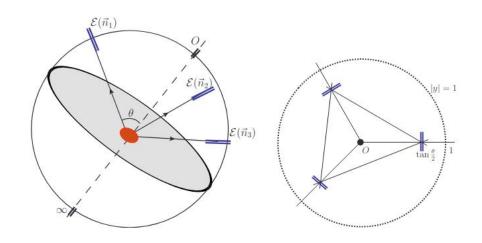
IBP and iterative boundary IBP

Lift Equations

Finite differential equations

Cubically nilpotent

Canonical differetial equations



energy parameters:
$$x_i = \frac{2 q \cdot p_i}{q^2}$$
, $i = 1, \dots, n$
angle parameters: $\zeta_{ij} = \frac{q^2 p_i \cdot p_j}{2 q \cdot p_i q \cdot p_j}$, $i, j = 1, \dots, n$

E³C Divergent Region

• Propagators
$$\mathcal{D}_1 = \frac{s_{134}}{q^2} = -1 + x_2, \ \mathcal{D}_2 = \frac{s_{124}}{q^2} = -1 + x_3, \ \mathcal{D}_3 = \frac{s_{123}}{q^2} = -1 + x_1 + x_2 + x_3, \ \mathcal{D}_4 = \frac{s_{34}}{q^2 x_3} = -1 + x_1 \zeta_{13} + x_2 \zeta_{23}, \ \mathcal{D}_5 = \frac{s_{24}}{q^2 x_2} = -1 + x_1 \zeta_{12} + x_3 \zeta_{23}.$$

Consider delta function measure

$$\delta(1 - x_1 - x_2 - x_3 + \zeta_{12}x_1x_2 + \zeta_{23}x_2x_3 + \zeta_{13}x_1x_3)$$

region 1
$$\{x_1 \to 1 + (\zeta_{12} + \zeta_{13} - 2)cx_1, x_2 \to cx_2, x_3 \to cx_3\}|_{c \to 0},$$

region 2 $\{x_1 \to cx_1, x_2 \to 1 + (\zeta_{12} + \zeta_{23} - 2)cx_2, x_3 \to cx_3\}|_{c \to 0},$
region 3 $\{x_1 \to cx_1, x_2 \to cx_2, x_3 \to 1 + (\zeta_{13} + \zeta_{23} - 2)cx_3\}|_{c \to 0}.$

Potentially
Divergent Region

• Power counting

$$\{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5\} \xrightarrow[\text{counting}]{\text{power}} \begin{cases} \text{region 1} & \{0, 0, 1, 0, 0\} \\ \text{region 2} & \{1, 0, 1, 0, 0\}. \end{cases} \xrightarrow[\text{region 3}]{\text{d}x_1 dx_2 dx_3 \delta(\mathcal{D}_{\delta})} \xrightarrow[\text{counting}]{\text{power}} 2$$

Syzygy for finite IBP

$$\operatorname{Int}[n_1, n_2, n_3, 1] = \int dx_1 dx_2 dx_3 \frac{\delta(D_{\delta})}{D_1^{n_1} D_2^{n_2} D_3^{n_3}} = \int dx_1 dx_2 dx_3 \frac{1}{D_1^{n_1} D_2^{n_2} D_3^{n_3} D_{\delta}} \Big|_{\operatorname{cut}(D_{\delta})}$$

$$\mathcal{O}_{\mathrm{IBP}} = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(a_i \cdot \right)$$

$$\sum_{i=1}^{3} a_i \frac{\partial}{\partial x_i} D_j - b_j D_j = 0, \quad \text{for divergent propagators and D}_{\delta}$$

$$a_i, b_j \in Q(\zeta_{12}, \zeta_{23}, \zeta_{13})[x_1, x_2, x_3]$$

Not increase the power of divergent propagators!

Lift for finite differential equation

Derivative of a certain parameter ———— Lift Differential Equations

$$\mathcal{O}_{\partial \zeta_{**}} = \frac{\partial}{\partial \zeta_{**}} + \mathcal{O}_{IBP} \equiv \boxed{\frac{\partial}{\partial \zeta_{**}}} + \sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} a_{i} \qquad \qquad \frac{\partial}{\partial \zeta_{**}} D_{j} + \sum_{i=1}^{3} a_{i} \frac{\partial}{\partial x_{i}} D_{j} - b_{j} D_{j} = 0,$$

$$a_{i}, b_{i} \in O(\zeta_{12}, \zeta_{22}, \zeta_{12})[x_{1}, x_{2}, x_{2}]$$

Find the differential equations of a certain kinematic

May bring higher power of divergent propagators

$$\frac{\partial}{\partial \zeta_{**}} D_j + \sum_{i=1}^3 a_i \frac{\partial}{\partial x_i} D_j - b_j D_j = 0$$

$$a_i, b_j \in Q(\zeta_{12}, \zeta_{23}, \zeta_{13})[x_1, x_2, x_3]$$

When the Lift equation is satisfied, the integral will be finite!

Boundary IBP

$$D_1 = -1 + x_3, D_2 = -1 + x_1\zeta_{13} + x_2\zeta_{23}, D_3 = -1 + x_1\zeta_{12} + x_3\zeta_{23},$$

$$D_{\delta} = 1 - x_1 - x_2 - x_3 + x_1x_2\zeta_{12} + x_2x_3\zeta_{23} + x_1x_3\zeta_{13}$$

$$\mathcal{O}_{\text{IBP}} \operatorname{Int}[n_1, n_2, n_3, 1] = \sum_{i=1}^{3} (\operatorname{BT}_{x_i=1} - \operatorname{BT}_{x_i=0}).$$

subfamily 1
$$D_1 = -1 + x_1\zeta_{12}, D_2 = -1 + x_1\zeta_{13} + x_2\zeta_{23}, D_{\delta} = 1 - x_1 - x_2 + x_1x_2\zeta_{12};$$

subfamily 2 $D_1 = -1 + x_3\zeta_{13}, D_2 = -1 + x_1\zeta_{13}, D_{\delta} = 1 - x_1 - x_3 + x_1x_3\zeta_{13};$
subfamily 3 $D_1 = -1 + x_3\zeta_{23}, D_2 = -1 + x_2\zeta_{23}, D_{\delta} = 1 - x_2 - x_3 + x_2x_3\zeta_{23}.$

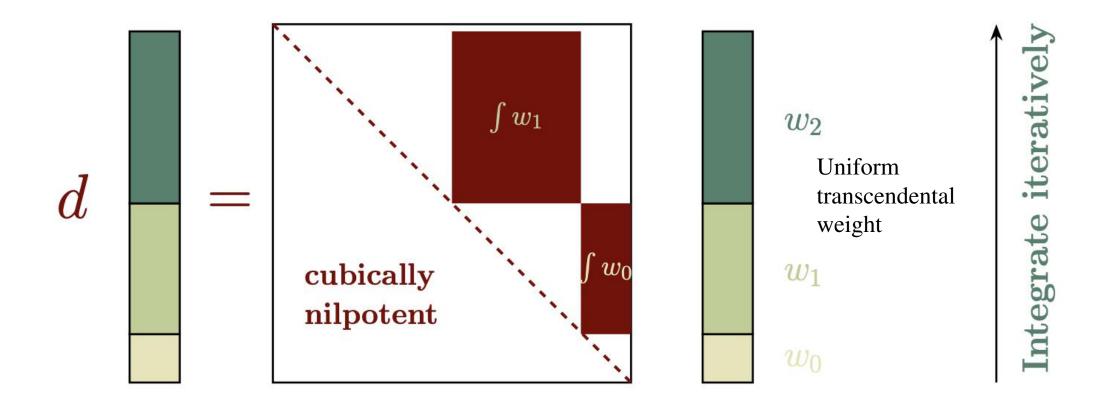
Master Integrals

$$\{ Int[1, 1, -1, 1], Int[-1, 1, 1, 1], Int[1, 1, 0, 1], Int[0, 1, 1, 1], Int[1, 0, 0, 1], Int_{2}[1, \{0, 0, 1\}], Int_{2}[2, \{0, 1, 1\}], Int_{2}[2, \{0, 0, 1\}], Int_{2}[3, \{0, 0, 1\}], 1 \}$$

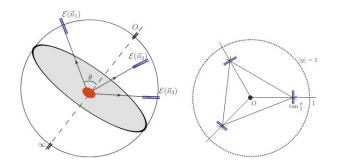
Canonical Differential Equations

Differential Equations include boundary integrals

$$\frac{\partial}{\partial \zeta_{**}} \operatorname{Int}[n_1, n_2, n_3, 1] - \mathcal{O}_{\partial \zeta_{**}} \operatorname{Int}[n_1, n_2, n_3, 1] = \sum_{i=1}^{3} (\operatorname{BT}_{x_i = 0}).$$



Analytic result



$$\zeta_{12} = -\frac{s(1-x_2)^2}{(1+s)^2 x_2}, \ \zeta_{23} = -\frac{s(1-x_1x_2)^2}{(1+s)^2 x_1 x_2}, \ \zeta_{13} = -\frac{s(1-x_1)^2}{(1+s)^2 x_1}.$$

family 1
$$s, x_1, x_2, 1+s, 1-x_1, 1-x_2, s+x_1, s+x_2, 1+sx_1, s+x_1x_2, 1+sx_1x_2, 1-x_1x_2, 1-x_1x_2, 1-x_1x_2;$$

letters family 2 s, x_1 , x_2 , 1 + s, $1 - x_1$, $1 - x_2$, $s + x_1$, $s + x_2$, $1 + sx_1$, $s + x_1x_2$, $1 + sx_1x_2$, $1 - x_1x_2$;

family 3 $s, x_1, x_2, 1+s, 1-s, 1-x_1, 1-x_2, s+x_1, s+x_2, 1+sx_1, 1+sx_2, s+x_1x_2, 1+sx_1x_2, 1-x_1x_2.$

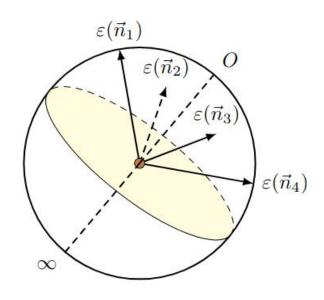
Content

Syzygy methoed for IBP

Differential equations for 3-point energy correlator

4-point energy correlator

Four Point Energy Correlator



one term in form factor

$$\frac{2\left(2q^{4}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)\cdot\left(p_{2}+p_{3}+p_{4}+p_{5}\right)+\cdots-q^{4}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)\cdot\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)+q^{6}\right)}{\left(p_{3}+p_{4}\right)^{2}\left(p_{1}+p_{5}\right)^{2}\left(p_{1}+p_{4}+p_{5}\right)^{2}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)^{2}\left(p_{3}+p_{4}+p_{5}\right)^{2}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)^{2}}$$

$$\frac{5x_1x_2x_3x_4\left(2\zeta_{12}x_2x_1+2\zeta_{13}x_3x_1+2\zeta_{14}x_4x_1+2\zeta_{23}x_2x_3+2\zeta_{34}x_3x_4-2x_1-x_2-2x_3-x_4+1\right)}{\left(\zeta_{12}x_2+\zeta_{13}x_3+\zeta_{14}x_4-1\right)\left(\zeta_{14}x_1+\zeta_{24}x_2+\zeta_{34}x_3-1\right)\left(\zeta_{13}x_1x_3+\zeta_{23}x_2x_3+\zeta_{34}x_4x_3+\zeta_{14}x_1x_4+\zeta_{24}x_2x_4-x_3-x_4\right)\cdots}$$

Dmitry Chicherin, Ian Moult, Emery Sokatchev, Kai Yan, and Yunyue Zhu. The Collinear Limit of the Four-Point Energy Correlator in $\mathcal{N}=4$ Super Yang-Mills Theory. 1 2024.

Lift Differential Equations: Overview

4-point energy correlator

E³ C/S³

Partial Fraction Decomposition

Classify simple finite integral families

Syzygy Equations

IBP and iterative boundary IBP

Lift Equations

Finite differential equations

Cubically nilpotent

Canonical differetial equations

Combine Divergent Integrals into Finite Integrals

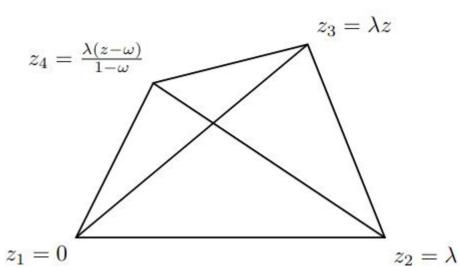
polynomial reduction integrand reduction

Difficulties of Higher Points

- Increasing number of integral variables
- Polynomial Propagators
- Complex Measurement because of the delta function

A part of letters of E⁴C (SOFIA)

$$\lambda, z, \bar{z}, w - z, \bar{z} - z, -1 + z, \bar{w} - \bar{z}, -1 + \bar{z}, 1 + \lambda^2, w - \bar{w}z, \bar{w} - \bar{z}w, -1 + \bar{z}z, 1 + \lambda^2z, 1 + \bar{z}\lambda^2, \bar{z}w - \bar{w}z, \bar{w}w - \bar{z}z, 1 + \bar{z}\lambda^2z, -1 + \bar{z}\lambda^4z, \bar{w}w - \bar{z}w - \bar{w}z, -1 + w + \lambda^2w - \lambda^2z, -1 + \bar{z} + z + \bar{z}\lambda^2z, \bar{z} + z - \bar{z}z + \bar{z}\lambda^2z, -1 + \bar{w} + \bar{w}\lambda^2 - \bar{z}\lambda^2, -1 + w + \lambda^2w - \bar{z}\lambda^2z, -1 + \bar{w} + \bar{w}\lambda^2 - \bar{z}\lambda^2z, \bar{w} - w - \bar{z}\lambda^2w + \bar{w}\lambda^2z, -1 + w + \bar{z}\lambda^2w - \bar{z}\lambda^2z, -1 + \bar{w} + \bar{w}\lambda^2 - \bar{z}\lambda^2z, -1 + \bar{w} + \bar{w}\lambda^2z, -1 + w + \bar{w}\lambda^2z, -1 + \bar{w} + \bar{w}\lambda^2z, -1 + \bar{w}\lambda^2z, -1 + \bar{w} + \bar{w}\lambda^2z, -1 + \bar{w}\lambda^2z$$



Four-Point Energy Correlators

$$\delta(1 - x_1 - x_2 - x_3 - x_4 + x_1x_2\zeta_{12} + x_1x_3\zeta_{13} + x_1x_4\zeta_{14} + x_2x_3\zeta_{23} + x_2x_4\zeta_{24} + x_3x_4\zeta_{34}).$$

$$D_1 = -1 + x_1\zeta_{14} + x_2\zeta_{24} + x_3\zeta_{34}, \quad D_2 = -1 + x_2\zeta_{12} + x_3\zeta_{13} + x_4\zeta_{14},$$

$$D_3 = -1 + x_1, \quad D_4 = -1 + x_2, \quad D_5 = -1 + x_4, \quad D_6 = -1 + x_1 + x_2 + x_3 + x_4,$$

$$D_7 = -1 + x_1 + x_2 - x_1x_2\zeta_{12}, \quad D_8 = -1 + x_2 + x_3 - x_2x_3\zeta_{23}, \quad D_9 = -1 + x_3 + x_4 - x_3x_4\zeta_{34},$$

$$D_{10} = x_1x_2\zeta_{12} + x_1x_3\zeta_{13} + x_2x_3\zeta_{23}, \quad D_{11} = x_2x_3\zeta_{23} + x_2x_4\zeta_{24} + x_3x_4\zeta_{34}.$$

$$\{D_{10}, D_{11}\}$$

elliptic

hyperelliptic g=2

Summary

syzygy IBP and lift DE

the UT integrals of leading order $E^3 C$ in N = 4 SYM.

% + integrand relations

the master integrals of leading order $E^4 C$ in N = 4 SYM.

syzygy + lift

avoid divergent integrals, shrink IBP system.

E³ C Canonical differential equations for analytic result.

E⁴ C differential equations for function space.

differential equations may not suitable for higher point energy correlators

Setup

energy parameters:
$$x_i = \frac{2 q \cdot p_i}{q^2}$$
, $i = 1, \dots, n$
angle parameters: $\zeta_{ij} = \frac{q^2 p_i \cdot p_j}{2 q \cdot p_i q \cdot p_j}$, $i, j = 1, \dots, n$

$$\begin{split} \mathbf{E}^{\mathbf{n}}\mathbf{C}(\vec{\zeta_{ij}})\big|_{\mathbf{LO}} \sim & \int d^4p_{n+1}\delta^4(q-p_1-\cdots-p_{n+1})\,\delta_+(p_{n+1}^2) \\ & \times \int_0^1 dx_1\cdots dx_n\,(x_1\cdots x_n)^2 \big[|F_{n+1}^{(0)}|^2(p_1,\cdots,p_{n+1}) + \mathrm{perm.}(1,\cdots,n+1)\big] \\ & \qquad \qquad \\ & \text{integrate out } p_{n+1} \end{split}$$

$$E^{n}C(\vec{\zeta}_{ij})\big|_{LO} \sim \int_{0}^{1} dx_{1} \cdots dx_{n} (x_{1} \cdots x_{n})^{2} \delta(1 - Q_{n}) |F_{n+1}^{(0)}|^{2}_{sym.}$$
where $Q_{n} = \sum_{i} x_{i} - \sum_{(ij)} x_{i}x_{j}\zeta_{ij}$.

Verify finite integrals by power counting

Finite integral: power counting of c is positive

$$I(x_0, y_0) = \int_0^{x_0} dx \int_0^{y_0} dy \frac{1}{x+y} \qquad \{x \to c, y \to c\} \quad \text{when } c \to 0$$

$$= (x_0 + y_0) \log(x_0 + y_0) - x_0 \log(x_0) - y_0 \log(y_0)$$

$$cPower[I(x_0, y_0)] = cPower[\int_0^{x_0} dcx \int_0^{y_0} dcy \frac{1}{cx + cy}] = 1 > 0$$

$$D_1 = -1 + x_3, D_2 = -1 + x_1\zeta_{13} + x_2\zeta_{23}, D_3 = -1 + x_1\zeta_{12} + x_3\zeta_{23},$$

$$D_{\delta} = 1 - x_1 - x_2 - x_3 + x_1x_2\zeta_{12} + x_2x_3\zeta_{23} + x_1x_3\zeta_{13}$$

$$\operatorname{Int}[1, 1, -1, 1] = \int dx_1 dx_2 dx_3 \frac{D_3 \, \delta(D_{\delta})}{D_1 D_2}$$

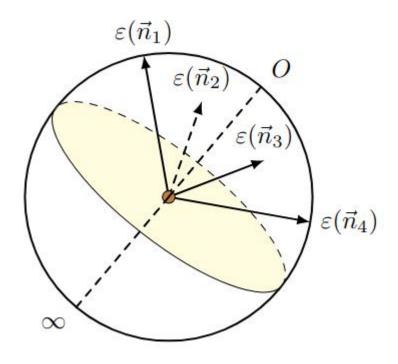
$$\operatorname{region:} \{x_1 \to 0, \, x_2 \to 0, \, x_3 \to 1\}$$

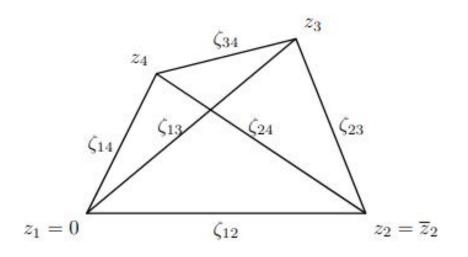
$$dx_1 dx_2 dx_3 \delta(D_{\delta}) \xrightarrow{\text{power}} 2$$

$$\{D_1, \, D_2, \, D_3\} \xrightarrow{\text{power}} \{1, 0, 0\}$$

Four point energy correlator

$$E^{4}C(\vec{\zeta}_{ij})|_{LO} = \int_{0}^{1} dx_{1} \cdots dx_{4}(x_{1} \cdots x_{4})^{2} \delta(1 - Q_{4}) |F_{5}^{(0)}|_{sym}^{2}$$





$$\zeta_{ij} = \frac{|z_i - z_j|^2}{(1 + |z_i|^2)(1 + |z_j|^2)}, \quad z_1 = 0, \ \bar{z}_2 = z_2$$