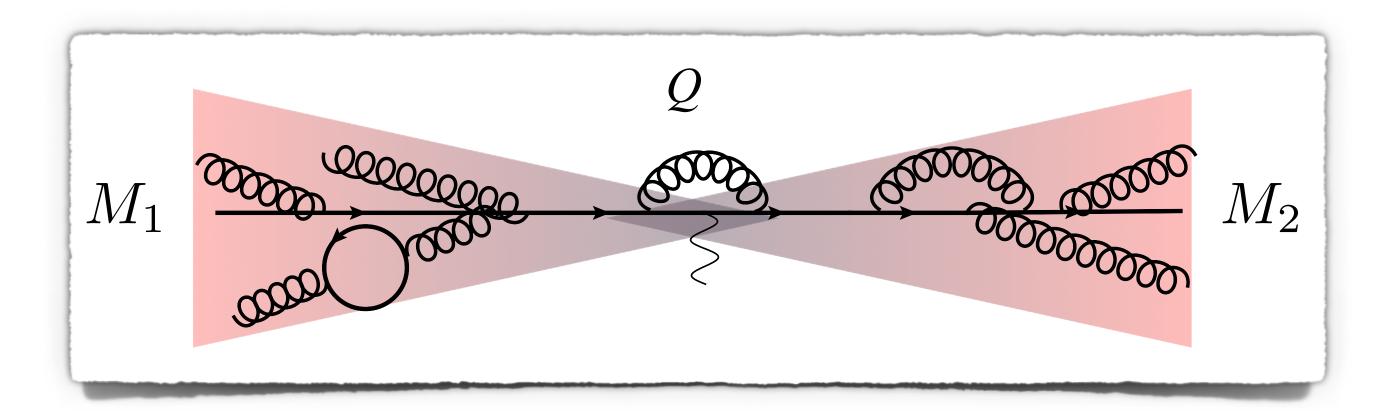


Probing Non-global Logarithm with hemisphere energy correlates

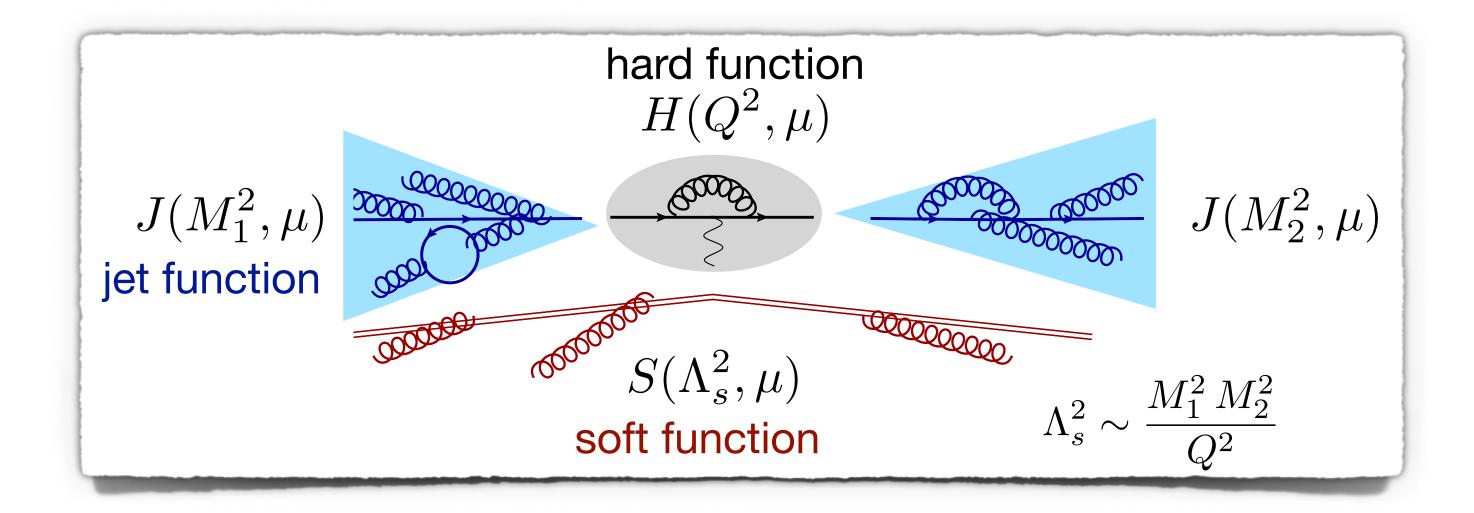
YuXuan Sun FuDan U.

QFT seminar Oct 31 2025

Soft-Collinear Factorization



For $M_1 \sim M_2 \ll Q$ the cross section $\sigma_{\text{phys}}\left(Q, M_1, M_2\right)$ factorizes:



Resummation by RG evolution

Evaluate each part at its characteristic scale, evolve to common reference scale μ

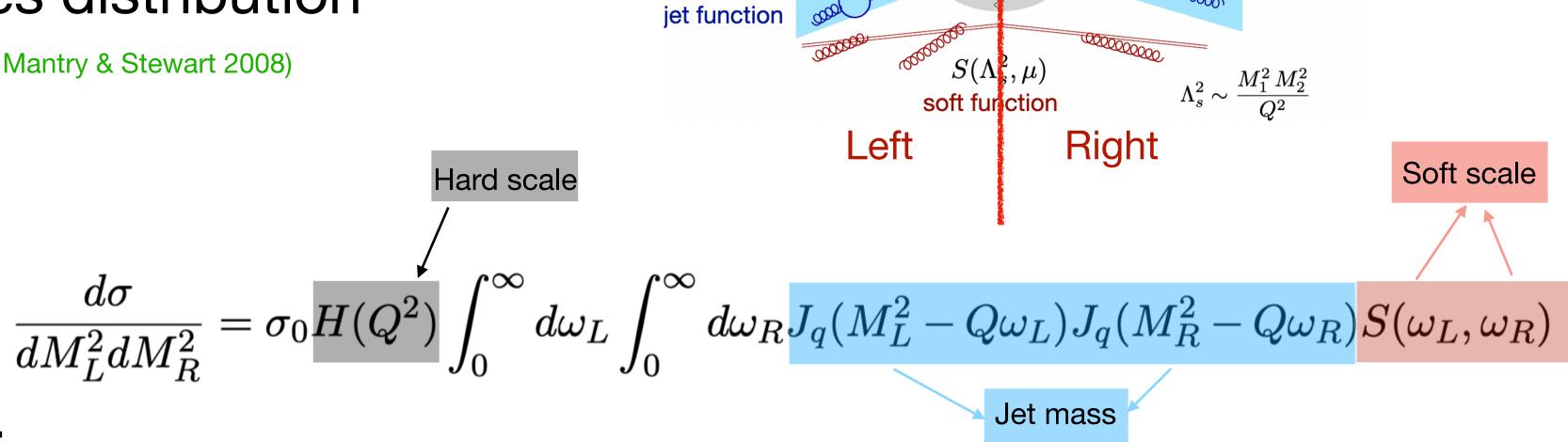


Each contribution is evaluated at its natural scale. No large perturbative logarithms.

But for region $M_L \ll M_R \ll Q$, large $\log(M_L/M_R)$ can not be resumed by RGE.

Jet masses distribution

(Fleming, Hoang, Mantry & Stewart 2008)

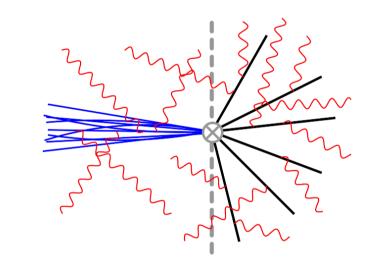


 $J(M_1^2,\mu)$

Three regions

$$M_L \sim M_R \ll Q$$
 . Standard soft function

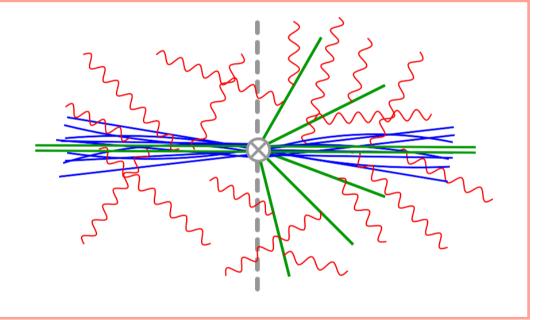
$$M_L \ll M_R \sim Q$$
 Left jet mass



 $H(Q^2,\mu)$

 $J(M_2^2,\mu)$

$$M_L \ll M_R \ll Q$$
 Can be refactorized again!



 $p_h \sim \omega_R (1, 1, 1)$ hard:

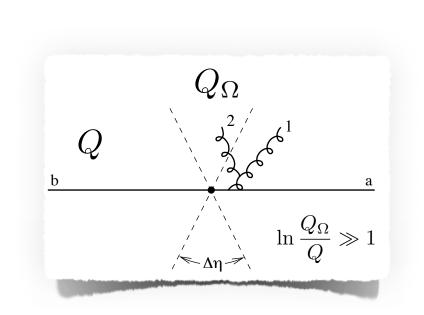
 $p_s \sim \omega_R \left(\kappa, \kappa, \kappa\right)$ soft:

 $\kappa \equiv \omega_L/\omega_R \ll 1$ NGLs!

Non-global Logarithm

Observables which are insensitive to emissions into certain regions of phase space involve additional NGLs not captured by the usual resummation formula

- from jets of intermediate energy
- reflect color flow at all scales
- do not exponentiate in a simple manner



Resummation

$$\exp\left[-4C_F\Delta\eta \int_{\alpha(Q_\Omega)}^{\alpha(Q)} \frac{d\alpha}{\beta(\alpha)} \frac{\alpha}{2\pi}\right] = 1 + 4\frac{\alpha_s}{2\pi} C_F\Delta\eta \ln\frac{Q_\Omega}{Q} + \left(\frac{\alpha_s}{2\pi}\right)^2 \left(8C_F^2\Delta\eta^2 - \frac{22}{3}C_FC_A\Delta\eta + \frac{8}{3}C_FT_Fn_f\Delta\eta\right) \ln^2\frac{Q_\Omega}{Q}$$

OUT: Inclusive

IN: Measured

NGLs
$$\left(\frac{\alpha_s}{2\pi}\right)^2 C_F C_A \left[-\frac{2\pi^2}{3} + 4\operatorname{Li}_2\left(e^{-2\Delta\eta}\right) \right] \ln^2 \frac{Q_\Omega}{Q}$$

(Dasgupta & Salam 2001)

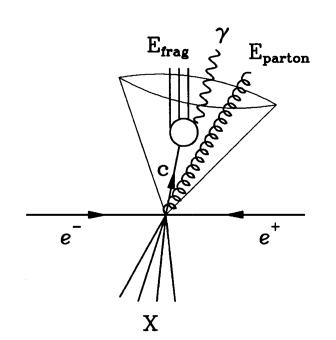
Non-linear evolution, BMS eq (Banfi, Marchesini & Smye 2002)

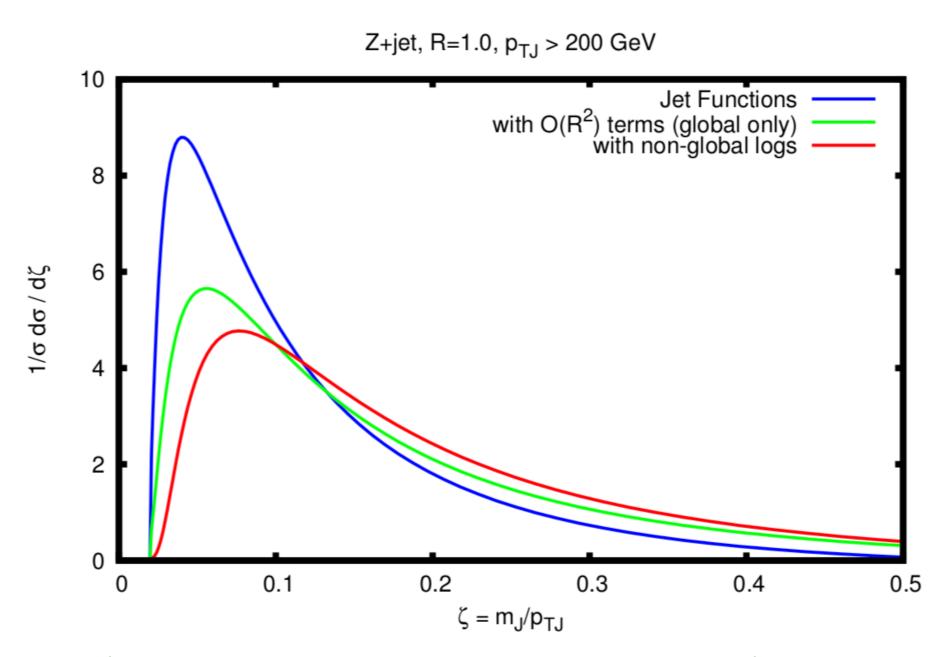
$$\partial_{\hat{L}} G_{kl}(\hat{L}) = \int \frac{d\Omega(n_j)}{4\pi} W_{kl}^j \left[\Theta_{\text{in}}^{n\bar{n}}(j) G_{kj}(\hat{L}) G_{jl}(\hat{L}) - G_{kl}(\hat{L}) \right]$$

$$W_{ij}^k = \frac{n_i \cdot n_j}{n_i \cdot n_k n_j \cdot n_k}$$

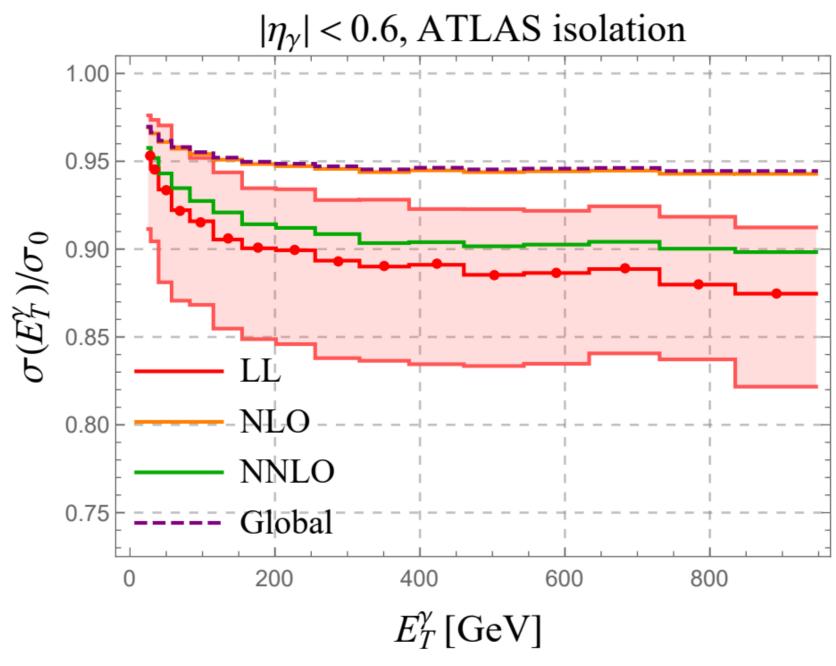
· ee, ep, pp, ...

NGLs corrections for Lead log resummation





(Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky '12)



(Balsiger, Becher, DYS '17)

Refactorization

hard: $p_h \sim \omega_R (1, 1, 1)$

soft: $p_s \sim \omega_R (\kappa, \kappa, \kappa)$

• Hemi-sphere soft function can be factorized to "hard" function and "soft" function

(Becher, Pecjak & Shao 2016)

$$S(\omega_L,\omega_R) = \sum_{m=0}^{\infty} ig\langle rac{\mathcal{H}_m^S(\{ar{n}\},\omega_R)}{ig\langle} rac{\mathcal{S}_{m+1}(\{n,ar{n}\},\omega_L)}{ig
angle} ig
angle$$

Integrate the angles for hard partons

$$\mathcal{H}_{m}^{S}(\{\underline{n}\},\omega_{R}) = \prod_{i=1}^{m} \int \frac{dE_{i} E_{i}^{d-3}}{(2\pi)^{d-2}} |\mathcal{M}_{m}^{S}(\{\underline{p}\})\rangle \langle \mathcal{M}_{m}^{S}(\{\underline{p}\})| \delta(\omega_{R} - n \cdot P_{R}) \Theta_{R}(\{\underline{p}\})$$

$$oldsymbol{\mathcal{S}}_{m+1}(\{n,\underline{n}\},\omega_L) = oldsymbol{\sum_{X_s}^\dagger} ra{0} oldsymbol{S}_a^\dagger(ar{n}) oldsymbol{S}_b^\dagger(n) oldsymbol{S}_1^\dagger(n_1) \dots oldsymbol{S}_m^\dagger(n_m) \ket{X_s}$$

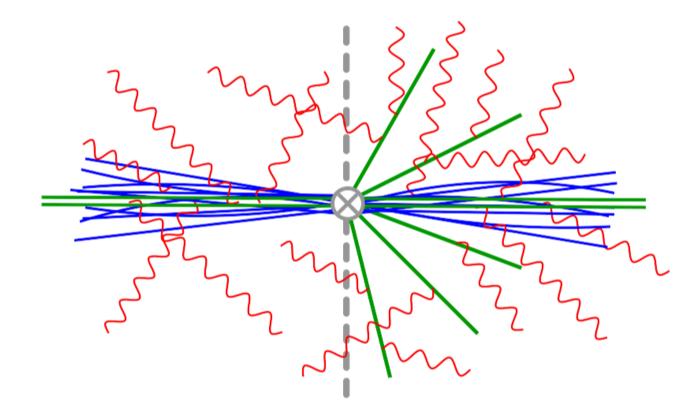
$$\times \langle X_s | \mathbf{S}_a(\bar{n}) \mathbf{S}_b(n) \mathbf{S}_1(n_1) \dots \mathbf{S}_m(n_m) | 0 \rangle \delta(\omega_L - \bar{n} \cdot P_L)$$

Renormalization separately

$$\boldsymbol{\mathcal{S}}_{l}(\{\underline{n}\},Q\beta,\delta,\mu) = \sum_{m=l}^{\infty} \boldsymbol{Z}_{lm}^{H}(\{\underline{n}\},Q,\delta,\epsilon,\mu) \,\hat{\otimes}\, \boldsymbol{\mathcal{S}}_{m}(\{\underline{n}\},Q\beta,\delta,\epsilon)$$

$$\boldsymbol{\mathcal{Z}}^{H}(\{\underline{n}\},Q,\delta,\epsilon,\mu) \sim \begin{pmatrix} 1 & \alpha_{s} & \alpha_{s}^{2} & \alpha_{s}^{3} & \dots \\ 0 & 1 & \alpha_{s} & \alpha_{s}^{2} & \dots \\ 0 & 0 & 1 & \alpha_{s} & \dots \\ 0 & 0 & 0 & 1 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\boldsymbol{\mathcal{H}}_{m}(\{\underline{n}\},Q,\delta,\epsilon) = \sum_{l=2}^{m} \boldsymbol{\mathcal{H}}_{l}(\{\underline{n}\},Q,\delta,\mu) \, \boldsymbol{\mathcal{Z}}_{lm}^{H}(\{\underline{n}\},Q,\delta,\epsilon,\mu)$$



How to observe the NGLs

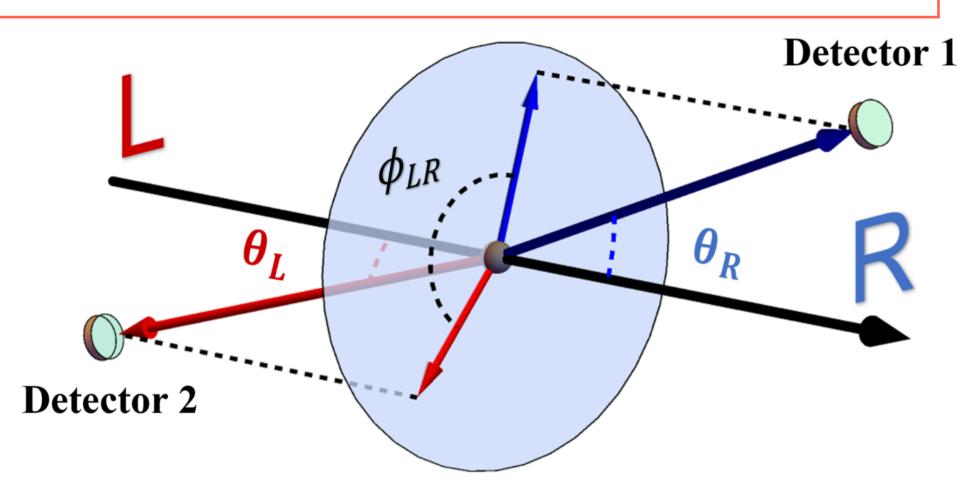
- NGLs usually appears as a correction to the global logarithms.
- Are there any dynamic effects of NGLs?
- Can we probe NGLs directly?

TMD hemi-sphere EEC

$$\text{EEC}^{\text{hemi}}(\boldsymbol{\theta}_L,\,\boldsymbol{\theta}_R,\,\phi) = \frac{\text{d}\Sigma}{\text{d}\boldsymbol{\theta}_L\,\text{d}\boldsymbol{\theta}_R\,\text{d}\phi} \ = \int \frac{\text{d}\phi_L\text{d}\phi_R\,\text{d}^2\boldsymbol{b}_L\text{d}^2\boldsymbol{b}_R}{(2\pi)^4} \delta(\phi - \phi_{LR}^q) H_{q\bar{q}}(Q) \times e^{\mathrm{i}\boldsymbol{\hat{q}}_L\cdot\boldsymbol{b}_L\theta_LQ/2} e^{\mathrm{i}\boldsymbol{\hat{q}}_R\cdot\boldsymbol{b}_R\theta_RQ/2} \mathcal{S}(\boldsymbol{b}_L,\boldsymbol{b}_R) J_q(b_L) J_{\bar{q}}(b_R)$$

- Conventional observables where NGLs enter as higher-order corrections
- Isolates the azimuthal structure arising solely from the recoil of softgluon emissions between the two hemispheres
- Thereby providing a clean and direct probe of non-global logarithm dynamics.

$$J_q(b,\mu) = \sum_h \int_0^1 \mathrm{d}z \, z \, D_{h/q}(z,b,\mu) \qquad \qquad \tilde{S}\left(oldsymbol{q}_L,oldsymbol{q}_R
ight) = rac{1}{N_c} \sum_{X_s} \mathrm{Tr}\left\langle 0 \left| Y_n^\dagger Y_{ar{n}} \right| X_s
ight
angle \left\langle X_s | Y_{ar{n}}^\dagger Y_n | 0
ight
angle \\ imes \delta\left(oldsymbol{q}_L - \sum_{i \in L} oldsymbol{k}_i^T
ight) \delta\left(oldsymbol{q}_R - \sum_{j \in R} oldsymbol{k}_j^T
ight), \\ \mathcal{S}\left(oldsymbol{b}_L,oldsymbol{b}_R
ight) = \int \mathrm{d}^2 oldsymbol{q}_L \mathrm{d}^2 oldsymbol{q}_R e^{ioldsymbol{q}_R \cdot oldsymbol{b}_R} e^{ioldsymbol{q}_L \cdot oldsymbol{b}_L} ilde{S}\left(oldsymbol{q}_L,oldsymbol{q}_R
ight)$$



Soft function Calculation

At NLO soft function there three color structure

$$\mathcal{S}_{2}\left(oldsymbol{b}_{L},oldsymbol{b}_{R},\epsilon
ight) \; = \; g^{4} \sum_{X=C_{A},n_{f},C_{F}} C^{(X)}\left(rac{\mu^{2}e^{\gamma_{E}}}{4\pi}
ight)^{2\epsilon} \int rac{d^{d}q}{\left(2\pi
ight)^{d}} rac{d^{d}k}{\left(2\pi
ight)^{d}} rac{\left|\mathcal{A}^{(X)}
ight|^{2}}{\left(2q_{0}2k_{0}
ight)^{lpha}} \mathcal{F}\left(oldsymbol{b}_{L},oldsymbol{b}_{R}
ight)$$

$$\mathcal{F}(\boldsymbol{b}_{L}, \boldsymbol{b}_{R}) = \frac{1}{2!} (-2\pi i)^{2} \delta^{+} (k^{2}) \delta^{+} (q^{2}) \\
\times \left[\theta (k^{-} - k^{+}) \theta (q^{+} - q^{-}) e^{i\boldsymbol{k}_{T} \cdot \boldsymbol{b}_{R}} e^{i\boldsymbol{q}_{T} \cdot \boldsymbol{b}_{L}} \right. \\
+ \theta (q^{-} - q^{+}) \theta (k^{+} - k^{-}) e^{i\boldsymbol{q}_{T} \cdot \boldsymbol{b}_{R}} e^{i\boldsymbol{k}_{T} \cdot \boldsymbol{b}_{L}} \\
+ \theta (k^{-} - k^{+}) \theta (q^{-} - q^{+}) e^{i(\boldsymbol{q}_{T} + \boldsymbol{k}_{T}) \cdot \boldsymbol{b}_{R}} \\
+ \theta (k^{+} - k^{-}) \theta (q^{+} - q^{-}) e^{i(\boldsymbol{q}_{T} + \boldsymbol{k}_{T}) \cdot \boldsymbol{b}_{L}} \right]$$

Parameterization

$$p_T = \sqrt{(k_+ + q_+)(k_- + l_-)}, \quad y = \frac{k_+ + q_+}{k_- + q_-}, \quad a = \sqrt{\frac{k_- q_+}{k_+ q_-}}, \quad b = \sqrt{\frac{k_+ k_-}{q_+ q_-}}$$

$$R_{x}(\phi_{q}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_{q} & -\sin \phi_{q} \\ 0 & \sin \phi_{q} & \cos \phi_{q} \end{pmatrix}, \quad R_{z}(\theta_{q}) = \begin{pmatrix} \cos \theta_{q} & -\sin \theta_{q} & 0 \\ \sin \theta_{q} & \cos \theta_{q} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{q}_{T} = q_{T}R_{x}(\phi_{q})R_{z}(\theta_{q})(1,0,\cdots)$$

$$\mathbf{k}_{T} = k_{T}R_{x}(\phi_{q})R_{z}(\theta_{q})(\cos \theta_{kq}, \sin \theta_{kq}\cos \phi_{k}, \cos \phi_{k}'\sin \theta_{kq}\sin \phi_{k},\cdots)$$

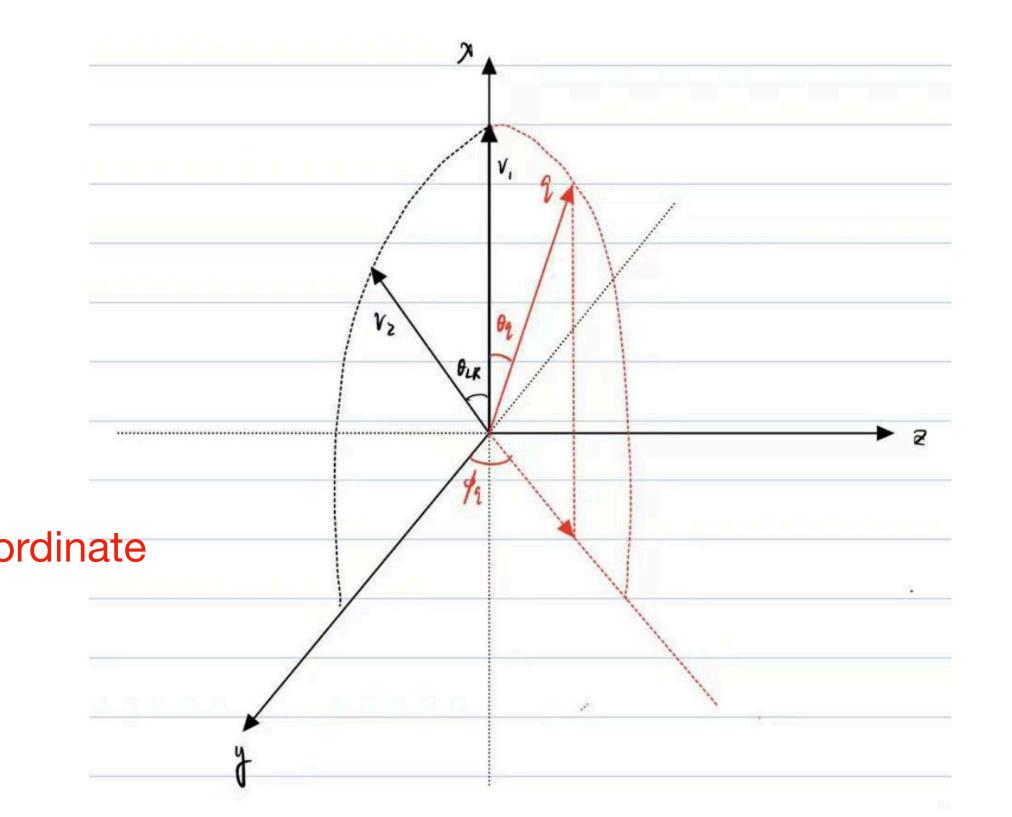
$$\mathbf{b}_{L} = b_{L}(1,0,0)$$

$$\mathbf{b}_{R} = b_{R}(\cos \theta_{LR}, \sin \theta_{LR}, 0)$$

$$\mathbf{b}_{L}, b_{R} \text{ coordinate}$$

$$\mathbf{v}_{1} = (1,0,0)$$

$$\mathbf{v}_{2} = (\cos \theta_{LR}, \sin \theta_{LR}, 0)$$



TMD Results

$$\mathcal{S}^{(2)}(b_L, b_R) = \mathcal{S}^{(2)}_{CF^2} + \mathcal{S}^{(2)}_{C_F C_A} + \mathcal{S}^{(2)}_{C_F n_f T_F}$$

$$S_{C_FC_A}^{(2)} = -\frac{22}{9} \left(L_L^3 + L_L^3 \right) - 7.470(28) \left(L_L^2 + L_R^2 \right)$$

$$-18.25(16) \left(L_L + L_R \right) + \frac{2\pi^2}{3} L_L L_R$$

$$+ \left(\frac{4}{3} - \frac{44}{9} \pi^2 \right) \log r + \left[\frac{22}{3} \left(L_L^2 + L_L^2 \right) \right]$$

$$-16.68(5) \left(L_L + L_R \right) + 8\zeta_3 \log r$$

$$-16.8(5) \log \left(\frac{\nu}{\mu} \right) + F_{C_A} \left(r, \phi_{L_R}^b \right)$$

$$S_{C_F n_f T_F}^{(2)} = \frac{8}{9} \left(L_L^3 + L_R^3 \right) + \frac{20}{9} \left(L_L^2 + L_R^2 \right)$$

$$+ 6.588(11) \left(L_L + L_R \right) + \left(\frac{16}{9} \pi^2 - \frac{8}{3} \right) \log r$$

$$+ 45.03(8) + \left[-\frac{8}{3} \left(L_L^2 + L_R^2 \right) + \frac{80}{9} \left(L_L + L_R \right) \right]$$

$$+ 25.386(34) \log \left(\frac{\nu}{\mu} \right) + F_{n_f} \left(r, \phi_{L_R}^b \right)$$

$$S_{C_F^2}^{(2)} = \frac{1}{2} \left[L_L^2 + L_R^2 + \frac{\pi^2}{3} + 4 \left(L_L + L_R \right) \log \left(\frac{\nu}{\mu} \right) \right]^2$$

$$+ \left[40 \left(L_L^2 + L_R^2 \right) + 16 L_L L_R + \frac{32 \pi^2}{3} \right] \log \left(\frac{\nu}{\mu} \right)^2$$

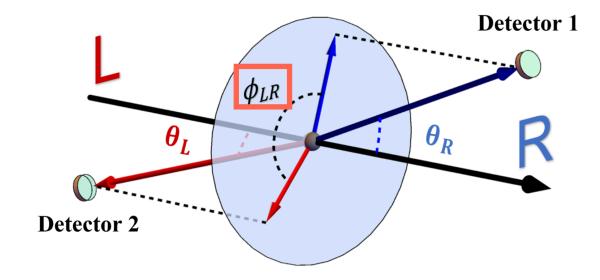
$$+ \left[L_L^4 + L_R^4 + \frac{2}{3} L_L L_R \left(L_L^2 + L_R^2 - 2 \pi^2 \right) \right]$$

$$- \frac{7 \pi^2}{3} \left(L_L^2 + L_R^2 \right) + \frac{16 \zeta_3}{3} \left(L_L + L_R \right) - \frac{17 \pi^4}{30}$$

$$+ \left[\frac{28}{3} \left(L_L^3 + L_R^3 \right) + 4 \left(L_L L_R + \pi^2 \right) \left(L_L + L_R \right) \right]$$

$$+ \frac{64}{3} \zeta_3 \log \left(\frac{\nu}{\mu} \right)$$

New structure!



Refactorization results

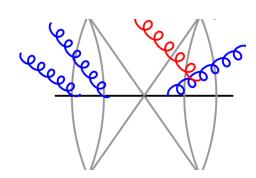
$$\mathcal{S}\left(oldsymbol{b}_{L},oldsymbol{b}_{R}
ight)=\sum_{m=0}^{\infty}\left\langle oldsymbol{\mathcal{H}}_{m}^{S}\left(\left\{ \underline{n}
ight\} ,oldsymbol{b}_{R}
ight)\otimesoldsymbol{\mathcal{S}}_{m+1}\left(\left\{ \underline{n}
ight\} ,oldsymbol{b}_{L}
ight)
ight
angle$$

$$b_L \ll b_R \ll Q$$

• Hard quark cannot be represented by a Wilson line in the effective theory, such that n_f term do not contain azimuthal structure.

$$\tilde{s}^{(2)} (\boldsymbol{b}_{L}, \boldsymbol{b}_{R}, \epsilon)
= \left[(\mu b_{L})^{4\epsilon} (\nu b_{L})^{\alpha} + (\mu b_{R})^{4\epsilon} (\nu b_{R})^{\alpha} \right]
\cdot \left[(\nu b_{L,R})^{\alpha} C_{F}^{2} h_{F}^{2} / 2 + C_{F} C_{A} (h_{A} + v_{A}) + C_{F} T_{F} n_{f} h_{f} \right]
- \left[(\mu b_{L})^{2\epsilon} (\nu b_{L})^{\alpha} + (\mu b_{R})^{2\epsilon} (\nu b_{R})^{\alpha} \right] \frac{\beta_{0}}{\epsilon} h_{F}
+ (\mu b_{L})^{4\epsilon} \left[C_{F} C_{A} \left(s_{A} - h_{A} - v_{A} \right) + C_{F} T_{F} n_{f} \left(s_{f} - n_{f} \right) \right]
+ (\mu b_{L})^{2\epsilon} (\mu b_{R})^{2\epsilon} \left[C_{F} C_{A} p_{A} + C_{F}^{2} p_{F} \right]$$

Emissions at same side, These are exactly the same as the results of TMD

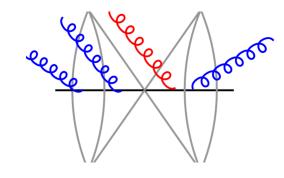


Emissions at different side

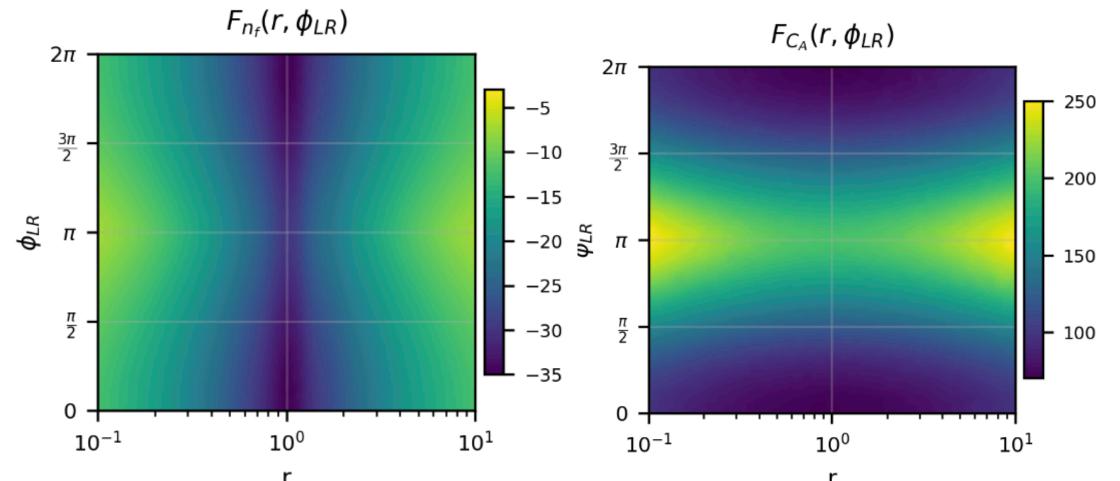
$$p_A = \frac{2\pi^2}{3\epsilon^2} + \frac{12\zeta_3}{\epsilon} + p_A^{(0)} \left(\phi_{LR}^b\right).$$

$$s_A - h_A - v_A = \frac{1}{\epsilon} \left(-\frac{2}{3} + \frac{22\pi^2}{9} - 4\zeta_3 \right) + \frac{16}{9} - \frac{134\pi^2}{27} + \frac{2\pi^4}{45} + \frac{176\zeta_3}{3},$$

$$s_f - n_f = \frac{1}{\epsilon} \left(\frac{4}{3} - \frac{8\pi^2}{9} \right) - \frac{20}{9} - \frac{64\zeta_3}{3} + \frac{64\pi^2}{27},$$



Azimuthal symmetry of NGL

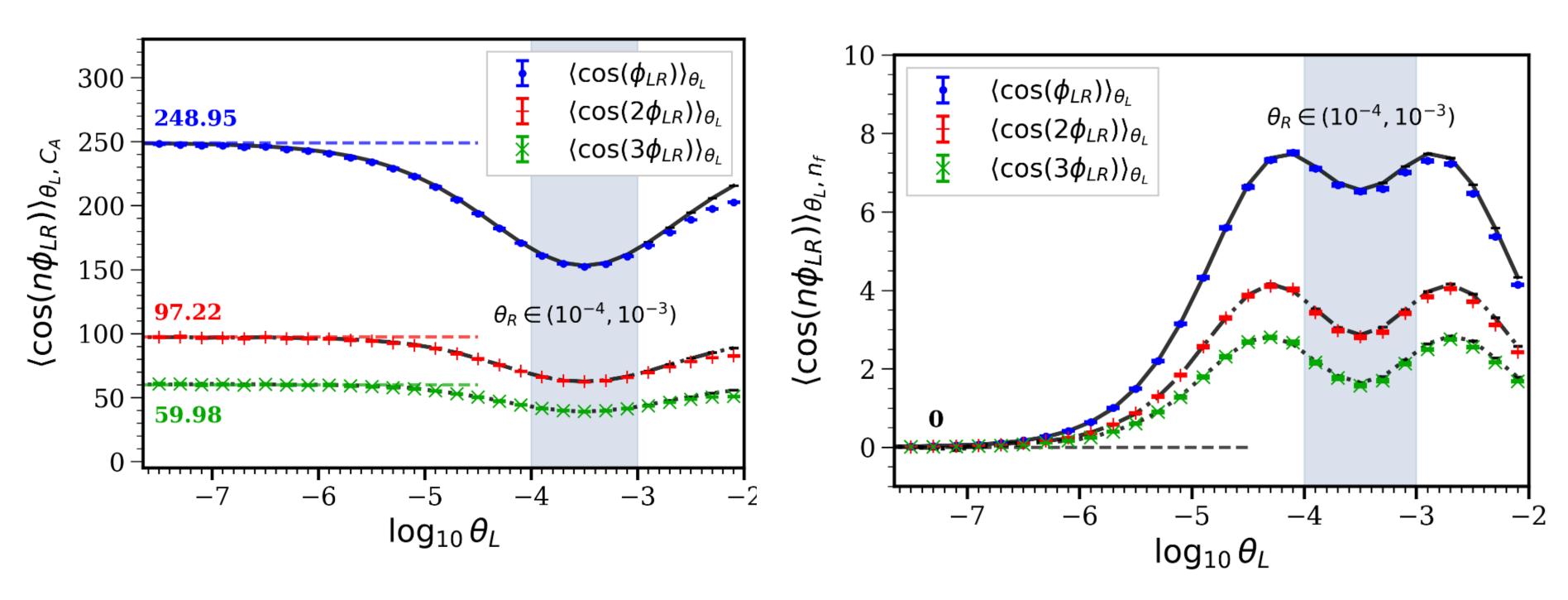


- This dynamic (azimuthal structure) effect started at $\mathcal{O}(\alpha_s^2)$, which causes different RG evolutionary effects.
- At $\mathcal{O}(\alpha_s^2)$ only appears in the constant term, which can be extracted using angular projection
- There are different angular mode n = 1, 2, 3, ...

$$\langle \cos\left(n\phi\right)\rangle_{\theta_L\theta_R} \equiv \frac{1}{\sigma_0} \int_0^{2\pi} \mathrm{d}\phi_L^q \mathrm{d}\phi_R^q \, \frac{\mathrm{d}\Sigma}{\mathrm{d}\theta_L \mathrm{d}\theta_R \mathrm{d}\phi} \cos\left(n\phi_{LR}^q\right) = (-1)^n \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{Q^4}{16} \int \mathrm{d}b_L^2 \mathrm{d}b_R^2 \, J_n \left(b_L\theta_L \frac{Q}{2}\right) \times J_n \left(b_R\theta_R \frac{Q}{2}\right) \int \frac{\mathrm{d}\phi_{LR}^b}{2\pi} \mathcal{S}^{(2)} \left(\frac{b_L}{b_R}, \phi_{LR}^b\right) \cos(n\phi_{LR}^b)$$

$$A_n^b(r) = \int_0^{2\pi} d\phi_{LR}^b \cos(n\phi_{LR}^b) \mathcal{S}^{(2)}\left(r, \phi_{LR}^b\right) \qquad \langle \cos(n\phi) \rangle_{\theta_L \theta_R} = \frac{(-1)^n}{2\pi} \left(\frac{\alpha_s}{4\pi}\right)^2 \left[\frac{n^2 A_n^b \left(\theta_L/\theta_R\right)}{\theta_L \theta_R}\right]$$
$$-\frac{A_n^{b'}\left(\theta_L/\theta_R\right)}{\theta_R^2} - \frac{\theta_L A_n^{b''}\left(\theta_L/\theta_R\right)}{\theta_R^3}\right]$$

$$\langle \cos(n\phi) \rangle_{\theta_L} = \int_{\theta_{\min}}^{\theta_{\max}} d\theta_R \langle \cos(n\phi) \rangle_{\theta_L \theta_R}$$



TMD result can derive refactorization result by taking limit $b_L \ll b_R$

Resummation

$$A_{n,\, heta_L}^{
m Hemi} = rac{\left<\cos\left(n\phi
ight)
ight>_{ heta_L}}{\left<\Sigma
ight>_{ heta_L}}$$

$$\begin{split} \langle \Sigma \rangle_{\theta_L} = & \int_{\theta_{\min}}^{\theta_{\max}} \mathrm{d}\theta_R \frac{1}{\sigma_0} \frac{\mathrm{d}\Sigma}{\mathrm{d}\log\theta_L} \\ & = \int_{\theta_{\min}}^{\theta_{\max}} \mathrm{d}\theta_R \int \mathrm{d}b_L \mathrm{d}b_R \, b_L b_R \, H_{q\bar{q}} J_q(b_L) J_{\bar{q}}(b_R) \\ & \times \mathcal{S}(b_L, b_R) J_0(b_L Q \theta_L/2) e^{-S_{\mathrm{pert}}(b_L, Q) - S_{\mathrm{NP}}(b_L, Q)} \\ & \times J_0(b_R Q \theta_R/2) e^{-S_{\mathrm{pert}}(b_R, Q) - S_{\mathrm{NP}}(b_R, Q)} \end{split}$$

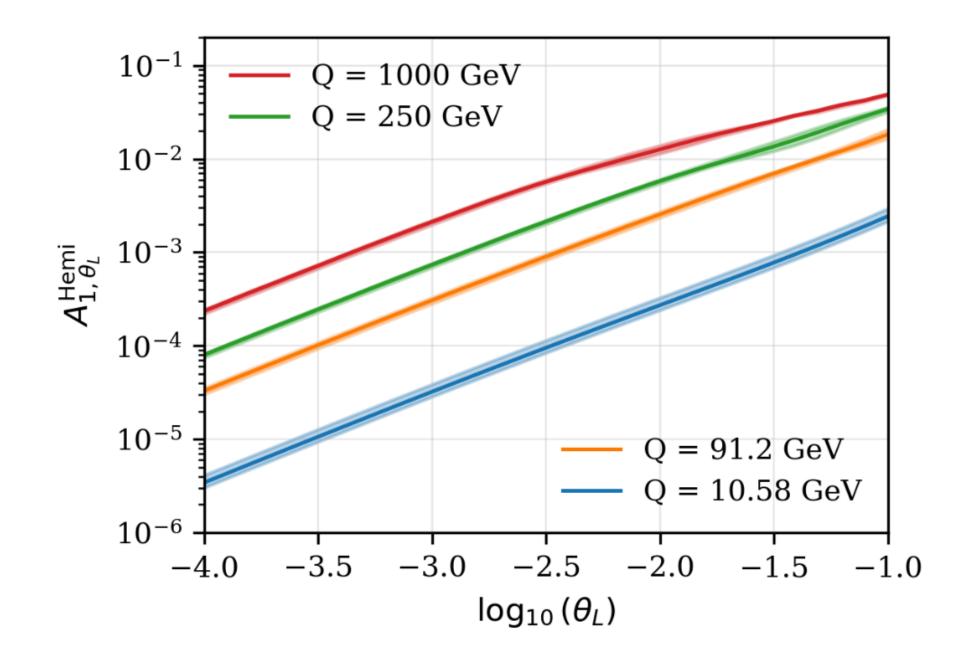
 $S_{
m pert}$ leading-order perturbative Sudakov factor

$$S_{\mathrm{NP}}(b,Q) = a_1 b^{a_2} + g_2 b b^* \log \left(\frac{Q}{\mu_b^*} \right)$$
 non-perturbative contribution

$$a_1 = 0.530$$
, $a_2 = 1.152$, and $a_2 = 0.076$.

Resummation

• Resummed results: a characteristic linear behavior in θ_L and a systematic growth with the hard scale Q



The approximately linear behavior and its slope arise primarily from the difference between the Fourier transforms involving J_1 and J_0 Bessel functions of an exponentially damped integrand in b space

Summary and outlook

We propose the hemisphere EEC in e^+e^- annihilation as a new observable that directly exposes the non–global structure of QCD radiation.

- Correlating the energy flow between opposite hemispheres
- Isolates azimuthal patterns generated purely by soft-gluon recoil, offering a clean handle on nonglobal dynamics that have so far been accessible only indirectly.

We computed the two-loop TMD hemisphere soft function, found new azimuthal structure and established its consistency with the refactorized prediction in the asymmetric limit.

- Dynamic (azimuthal structure) effect started at $\mathcal{O}(\alpha_s^2)$
- Only constant terms, no logarithm enhancement, consistents with the jet function
- Resummed results: a characteristic linear behavior in $heta_L$ and a systematic growth with the hard scale Q
- Enhanced soft recoil at larger angles and higher energies.

Providing a quantitatively controlled framework to study non-global logarithms

A direct connection between non-global radiation and measurable angular modulations

Azimuthal logarithm enhancement at $\mathcal{O}(\alpha_s^3)$?

Thank you!!