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Soft-Collinear Factorization
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Evaluate each part at its characteristic scale, evolve to common reference scale μ


  


Each contribution is evaluated at its natural scale. No large perturbative logarithms. 


But for region                      , large  can not be resumed by RGE.log(ML /MR)
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Resummation by RG evolution



• Jet masses distribution

• Three regions

Standard soft function

Left jet mass

Can be refactorized again！

NGLs!

Hard scale

Jet mass

Soft scale
Left Right

(Fleming, Hoang, Mantry & Stewart 2008)



Non-global Logarithm

• from jets of intermediate energy 

• reflect color flow at all scales 

• do not exponentiate in a simple manner 

• Non-linear evolution, BMS eq  

• ee, ep, pp, …

Observables which are insensitive to emissions into certain regions of phase space involve 
additional NGLs not captured by the usual resummation formula

(Banfi, Marchesini & Smye 2002)
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.

We now plug the explicit results (5.11) for the anomalous-dimension coefficients Vm

and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain

S
(1)
2 = −4Nc

∫

Ω
3OutW

3
12 ,

S
(2)
2 =

(4Nc)
2

2!

∫

Ω

[
− 3In 4Out

(
P 34
12 −W 3

12 W
4
12

)
+ 3Out 4OutW

3
12 W

4
12

]
,

S
(3)
2 =

(4Nc)
3

3!

∫

Ω

[
3In 4Out 5Out

[
P 34
12

(
W 5

13 +W 5
32 +W 5

12

)
− 2W 3

12 W
4
12 W

5
12

]

− 3In 4In 5OutW
3
12

[(
P 45
13 −W 4

13 W
5
13

)
+

(
P 45
32 −W 4

32 W
5
32

)
−

(
P 45
12 −W 4

12 W
5
12

)]

− 3Out 4Out 5OutW
3
12 W

4
12 W

5
12

]
, (5.20)

where
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The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)

4π
W j
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[
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in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
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with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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(Dasgupta & Salam 2001)
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The subscript P on ΣΩ,P serves as a reminder that we have only taken into account primary
emissions and t is defined to be the following integral of αs,

t(QΩ, Q) =
1
2π

∫ Q/2

QΩ

dkt

kt
αs(kt) =

1
4πβ0

ln
αs(Q/2)
αs(QΩ)

, (2.6)

where the second equality holds at the one-loop level and β0 = (11CA − 2nf )/(12π).

3. Leading order calculation of non-global effects

As well as dealing with primary emissions, it is necessary to account also for contributions
from (secondary) emissions coherently radiated into Ω from large-angle soft-gluon ensem-
bles outside of Ω. We will denote the contribution from such non-global terms by the
function S(t), such that to SL accuracy

ΣΩ(t(QΩ, Q)) ≡ S(t)ΣΩ,P(t) . (3.1)

To start with, we calculate the leading order contribution to S, i.e. S2, where we define the
following series expansion for S:

b a

2 1

∆η

Figure 2: The kind of diagram to be con-
sidered for the calculation of S2 in the
case of a rapidity slice of width ∆η.

S(t) =
∑

n=2

Sntn . (3.2)

Since this kind of contribution only starts with sec-
ondary emissions, there is no S1 term. In the cal-
culation of S2, we shall be entitled to equate t with
αs
2π ln Q

2QΩ
.

The exact value of S2 depends on the geometry
of the patch Ω. Here we calculate it analytically
for the case where Ω is a slice in rapidity of width
∆η. The kind of diagram to be considered is shown in figure 2, where a and b are quarks
(they may be outgoing or incoming depending on whether for example we are dealing with
e+e− or DIS in the Breit frame) and 1 and 2 are gluons. We introduce the following
four-momenta

ka =
Q

2
(1, 0, 0, 1) , (3.3a)

kb =
Q

2
(1, 0, 0,−1) , (3.3b)

k1 = x1
Q

2
(1, 0, sin θ1, cos θ1) , (3.3c)

k2 = x2
Q

2
(1, sin θ2 sin φ, sin θ2 cos φ, cos θ2) , (3.3d)

where we have defined energy fractions x1,2 ≪ 1 for the two gluons. To our accuracy, we
can neglect the recoil of the hard particles against the soft gluons.
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(Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky ’12) 
(Balsiger, Becher, DYS ’17) 
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Breakdown of Conventional Factorization for Isolated Photon Cross Sections
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Using e1e2 ! g 1 X as an example, we show that the conventional factorization theorem in

perturbative quantum chromodynamics breaks down for isolated photon cross sections in a well-defined
part of phase space. Implications and physical consequences are discussed.
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High energy photons are considered an excellent probe
of short-distance physics in strong interactions. They
couple directly to pointlike quark constituents and do not
interact strongly once produced [1]. Photons can also
result from long-distance fragmentation of quarks and
gluons, themselves produced in short-distance hard colli-
sions. Consequently, the inclusive photon cross section at
high energy includes both short-distance direct and long-
distance fragmentation contributions, and the cross section
is not completely perturbative. Nevertheless, in accord
with the factorization theorem of perturbative quantum
chromodynamics (QCD) [2], all long-distance physics
associated with parton-to-photon fragmentation can be
represented by nonperturbative, but well-defined and uni-
versal photon fragmentation functions, and the remainder
of the theoretical expression for the cross section, calcu-
lable in QCD perturbation theory, is insensitive to the in-
frared region of the theory.
However, for observational reasons the inclusive cross

section may not be measurable at high energy. Owing to
backgrounds from, e.g., p0 ! gg, a single high energy
photon is observed and the cross section is measured
only when the photon is relatively isolated. Isolation
procedures differ in their details in different experiments
at electron-positron and hadron-hadron collider facilities.
In this Letter, we model the essence of isolation by
drawing a cone of half-angle d about the direction of
the photon’s momentum, and we define the isolated cross
section to be that for photons accompanied by less than
a specified amount of hadronic energy in the cone, e.g.,
Econe

h # Emax. While this is but one of the possible
definitions of isolation, other choices change only the
details of our analysis, not the basic physics. Because
of isolation, the experimental cross section for isolated
photons depends explicitly on the isolation parameters d
and Emax.
A proper theoretical treatment of the cross section

for isolated photons requires careful consideration of the
origins and cancellation of both infrared and collinear
singularities in QCD perturbation theory. In a theoretical
calculation, isolation of the photon restricts the final-
state phase space accessible to accompanying quarks and
gluons. In this Letter, using e1e2 ! gX as an example,

we demonstrate that this phase space restriction inevitably
breaks the perfect cancellation of infrared singularities
between real gluon emission and virtual gluon exchange
diagrams that is required to yield finite cross sections in
each perturbative order.
Breakdown of the cancellation of infrared singularities

appears first at next-to-leading order in the fragmentation
contributions. The associated physics can be summarized
as follows. In the fragmentation contribution, sketched
in Fig. 1, hadronic energy in the isolation cone has
two sources: (a) energy from parton fragmentation Efrag
and (b) energy from nonfragmenting final-state partons
Econe

partons that enter the cone. When the maximum hadronic
energy allowed in the isolation cone is saturated by the
fragmentation energy Emax ≠ Efrag, there is no allowance
for energy in the cone from other final-state partons. In
particular, if there is a gluon in the final state, the phase
space for this gluon becomes restricted. By contrast,
isolation does not affect the virtual gluon exchange
contribution. Therefore, in the isolated case, there is a
possibility that the infrared singularity from the virtual
contribution may not be canceled completely by the
restricted real contribution. In the remainder of this

FIG. 1. Illustration of an isolation cone containing a parton c
that fragments into a g plus hadronic energy Efrag. In addition,
a gluon enters the cone and fragments giving hadronic energy
Eparton.
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NGLs corrections for Lead log resummation



Refactorization

• Hemi-sphere soft function can be factorized to “hard” function and “soft” function

Integrate the angles for hard partons

• Renormalization separately

(Becher, Pecjak & Shao 2016)



How to observe the NGLs
• NGLs usually appears as a correction to the global logarithms.


• Are there any dynamic effects of NGLs？


• Can we probe NGLs directly?



TMD hemi-sphere EEC

• Conventional observables where NGLs enter as higher-order 
corrections


•  Isolates the azimuthal structure arising solely from the recoil of soft-
gluon emissions between the two hemispheres 


• Thereby providing a clean and direct probe of non-global logarithm 
dynamics.



Soft function Calculation

• At NLO soft function there three color structure

• Parameterization

 coordinateq, k
 coordinatebL, bR



TMD Results

New structure!

NAE



Refactorization results

Emissions at same side ,These are 
exactly the same as the results of TMD

• Hard quark cannot be represented by a Wilson line in the effective 
theory, such that  term do not contain azimuthal structure.nf

Emissions at different side 

bL ≪ bR ≪ Q



• This dynamic (azimuthal structure) effect started at , which causes different RG 
evolutionary effects.


• At  only appears in the constant term, which can be extracted using angular projection


• There are different angular mode 


𝒪(α2
s )

𝒪(α2
s )

n = 1,2,3,…

• Different color structure, different azimuthal symmetry mode

Azimuthal symmetry of NGL



TMD result can derive refactorization result by taking limit 
bL ≪ bR



leading-order perturbative Sudakov factor

 non-perturbative contribution

Resummation



The approximately linear behavior and its slope arise primarily from the difference 
between the Fourier transforms involving  and  Bessel functions of an exponentially 
damped integrand in  space

J1 J0
b

Resummation

• Resummed results: a characteristic linear behavior in  and a systematic growth with the hard scale QθL



Summary and outlook
We propose the hemisphere EEC in  annihilation as a new observable that directly 
exposes the non–global structure of QCD radiation.

e+e−

• Correlating the energy flow between opposite hemispheres
• Isolates azimuthal patterns generated purely by soft–gluon recoil, offering a clean handle on non–

global dynamics that have so far been accessible only indirectly.

We computed the two-loop TMD hemisphere soft function, found new azimuthal structure 
and established its consistency with the refactorized prediction in the asymmetric limit.

• Resummed results: a characteristic linear behavior in  and a systematic growth with the hard scale QθL

• Enhanced soft recoil at larger angles and higher energies.

• Dynamic (azimuthal structure) effect started at 𝒪(α2
s )

• Only constant terms, no logarithm enhancement, consistents with the jet function

Providing a quantitatively controlled framework to study non-global logarithms
A direct connection between non-global radiation and measurable angular modulations

Azimuthal logarithm enhancement at  ? 𝒪(α3
s )



Thank you!!


