

From UV to IR, tracking information loss in open quantum systems

刘铭钧

复旦大学

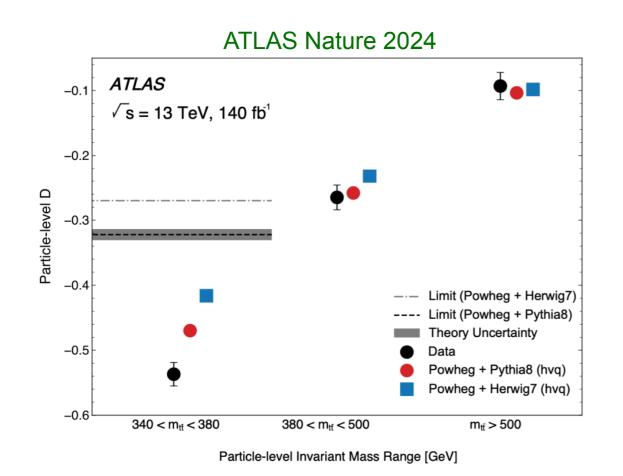
第五届量子场论及其应用研讨会

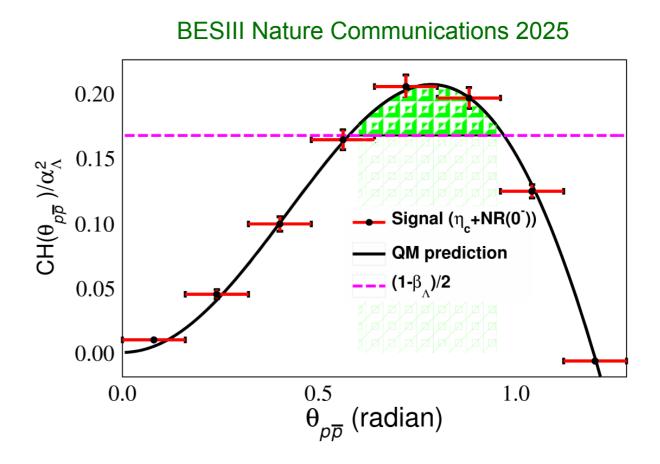
北京

Oct 31 2025

Quantum information science meets high energy physics

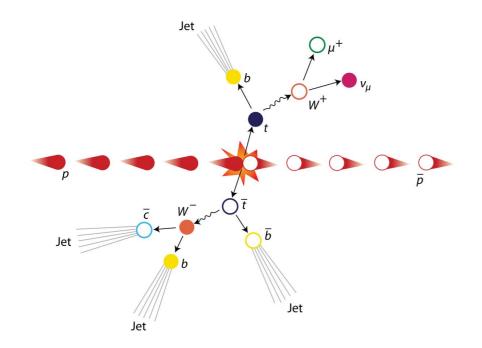
- Over the past few decades, entanglement has been observed in various macroscopic systems, but its exploration in the high-energy regime remains relatively limited.
- The study of quantum information in high-energy collider physics is rapidly transitioning from a theoretical curiosity to an experimental reality.— A recent review 2504.00086
- A recent breakthrough came when the ATLAS and CMS collaborations observed quantum entanglement by measuring the spin correlations of top quark pairs at the LHC.

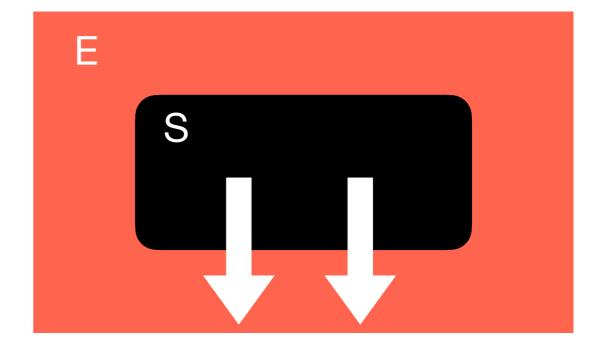




Decoherence in high energy collisions

- **Bell inequality at colliders ?** Li, Shen, Yang '24; Bechtle, Breuning, Dreiner, Duhr '25; Abel, Dreiner, Sengupta, Ubaldi '25 ...
- The Large Hadron Collider can be viewed as an open quantum system.
- Top quarks may radiate gluons or photons in the short period of time before decaying, leading to a reduction in quantum spin information, i.e., decoherence.
- Decoherence can be studied by recognizing that realistic quantum systems are always embedded in some environment.
- This interaction with the system results in 'leakage of information' to the environment, decreasing the entanglement between the components of the system.

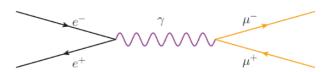




Concurrence at LO

Consider QED process

$$e^+e^- o f \bar{f}$$



The spin state of a lepton pair can be characterized by a two-qubit density operator

$$\hat{\rho} = \frac{1}{4} \left(\hat{I}_2 \otimes \hat{I}_2 + B_i^+ \hat{\sigma}_i \otimes \hat{I}_2 + B_i^- \hat{I}_2 \otimes \hat{\sigma}_i + C_{ij} \hat{\sigma}_i \otimes \hat{\sigma}_j \right)$$

· At the LO

$$\rho_{\text{LO}} = \frac{1}{4} \left(\hat{I}_2 \otimes \hat{I}_2 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} \hat{\sigma}_1 \otimes \hat{\sigma}_1 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} \hat{\sigma}_2 \otimes \hat{\sigma}_2 - \hat{\sigma}_3 \otimes \hat{\sigma}_3 \right)$$

To probe entanglement, one can calculate the concurrence C

$$\mathcal{C}[\rho_{\text{LO}}] = \frac{\sin^2 \theta}{1 + \cos^2 \theta}$$

• Maximum entanglement $cos\theta = 0$

$$\mathcal{C}[\rho_{\mathrm{LO}}] = 1$$

$$\frac{1}{\sqrt{2}}(|+-\rangle + |-+\rangle)$$

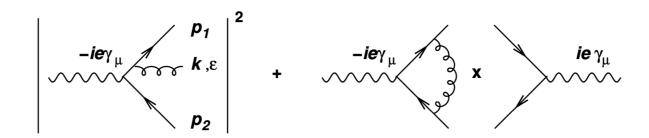
Quantum maps for open systems

Aoude, Barr, Maltoni, Satrioni '25

The evolution of an open system can represented by a quantum map (channel)

$$\mathcal{E}[
ho] = \sum_j K_j
ho K_j^\dagger, \qquad \sum_j K_j^\dagger K_j = 1,$$

Kraus operators: Kraus representation theorem



 The virtual corrections lead to the same final state Hilbert space while the real emission leads to the extra Hilbert space of the environment.

$$\rho_{\mathrm{LO}+\mathrm{NLO}}^{\mathrm{red}} = \mathsf{p}_{\mathrm{LO}} \, \mathbb{1} \rho_{\mathrm{LO}} \mathbb{1} + \bar{\mathcal{E}}_{\mathrm{V}}[\rho_{\mathrm{LO}}] + \bar{\mathcal{E}}_{\mathrm{R}}[\rho_{\mathrm{LO}}]$$

$$\bar{\mathcal{E}}_{\mathrm{V}}[\rho_{\mathrm{LO}}] = \mathsf{p}_{\mathrm{V}} \mathbb{1} \rho_{\mathrm{LO}} \mathbb{1}$$

$$\bar{\mathcal{E}}_{\mathrm{R}}[\rho_{\mathrm{LO}}] = \sum_{j} K_{j} \rho_{\mathrm{LO}} K_{j}^{j}$$
 Virtual Real

Effective field theory for decoherence

J.Y. Gu, S.J. Lin, D.Y. Shao, L.T. Wang, S.X. Yang 2510.13951

 We introduce the energy and angular resolution parameters, which is similar to Sterman-Weinberg cone jet definition (Sterman, Weinberg '77)

Two particle state events: $\delta = \tan(\alpha/2)$

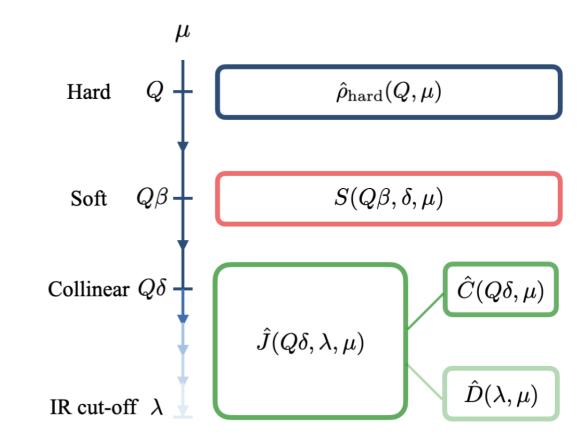
- The initial spin state generated by the short-distance hard scattering $\hat{
 ho}_{
 m hard}(Q,\mu)$
- Apply a standard multiplicative renormalization scheme to regularize both UV and IR divergences

•
$$\hat{
ho}_{\mathrm{hard}}(Q,\mu) = rac{1}{4} \Big(\hat{I} \otimes \hat{I} + P_i^+ \hat{\sigma}_i \otimes \hat{I} + P_j^- \hat{I} \otimes \hat{\sigma}_j + C_{ij} \hat{\sigma}_i \otimes \hat{\sigma}_j \Big)$$

- Our production matrix can be factorized as
- $\hat{R} = S(Q\beta, \delta, \mu) \hat{J}_f(Q\delta, \lambda, \mu) \hat{R}_{hard}(Q, \mu) \hat{J}_{\bar{f}}(Q\delta, \lambda, \mu)$

Factorization of the density operator

- Soft function does not induce decoherence.
- The fragmenting jet operators J_f project the hard scattering state onto the Hilbert space of the observed particles. This effectively traces over unobserved collinear radiation, and induces decoherence
- $\hat{J}_f = \mathcal{J}_f^U \hat{I} \otimes \hat{I} + \mathcal{J}_f^L \hat{\sigma}_z \otimes \hat{\sigma}_z + \mathcal{J}_f^T (\hat{\sigma}_x \otimes \hat{\sigma}_x + \hat{\sigma}_y \otimes \hat{\sigma}_y)$



Refactorization via an operator product expansion

$$\hat{J}(Q\delta, \lambda, \mu) = \hat{C}(Q\delta, \mu) \hat{D}(\lambda, \mu)$$

Fragmentation operator

Define a effective production matrix

$$\hat{R}_{\text{eff}}(\mu) \equiv S(Q\beta, \delta, \mu) \hat{C}_f(Q\delta, \mu) \hat{R}_{\text{hard}}(Q, \mu) \hat{C}_{\bar{f}}(Q\delta, \mu)$$

• Renormalization group eqn $t \equiv \log(Q\delta/\mu)$

$$\hat{R}_{\text{eff}}(t) = \hat{U}_f(t,0) \,\hat{R}_{\text{eff}}(0) \,\hat{U}_{\bar{f}}(t,0)$$
$$U^{\mathcal{P}}(t,0) = \exp\left(\int_0^t dt \,\gamma^{\mathcal{P}}\right)$$

decoherence = RG flow anomalous dimensions determine the information loss

Measurement operator

- The final stage of the process is the projection of the evolved spin state onto a definite experimental outcome
- Define spin-dependent measurement operators $\hat{M}_f({m S}_f) \equiv \hat{D}_f \hat{P}_f$

$$\mathrm{d}\sigma(oldsymbol{S}_f,oldsymbol{S}_{ar{f}})\propto\mathrm{Tr}\left[\hat{M}_f(oldsymbol{S}_f,t)\,\hat{R}_{\mathrm{eff}}(t)\,\hat{M}_{ar{f}}(oldsymbol{S}_{ar{f}},t)
ight]$$

- Physics at different scales separated
 - Decoherence from collinear radiation are encapsulated in the RGE of the effective density matrix
 - Infrared physics of the final-state projection is contained entirely within the measurement operators (e.g. fragmentation function in QCD)

Kraus operator and Lindblad master equation

The Kraus operators in QED

$$\hat{K}_{(i,j)} = \hat{K}_i^{\ell^-} \otimes \hat{K}_j^{\ell^+}$$
 $\hat{K}_0^{\ell^-} = \hat{K}_0^{\ell^+} = \sqrt{1 - p^2} \, \mathbb{I},$ $\hat{K}_1^{\ell^-} = \hat{K}_1^{\ell^+} = p \, \hat{\sigma}_3, \quad p = \sqrt{\frac{1}{2} \left[1 - \exp\left(-\frac{\alpha}{2\pi}t\right) \right]}$

Lindblad equation and jump operator

$$\frac{\mathrm{d}\hat{\rho}_{\mathrm{eff}}}{\mathrm{d}t} = -\frac{\alpha}{2\pi}\hat{\rho}_{\mathrm{eff}} + \frac{\alpha}{4\pi} \left[(\hat{\sigma}_{3} \otimes \mathbb{I}) \,\hat{\rho}_{\mathrm{eff}} \,(\hat{\sigma}_{3} \otimes \mathbb{I}) + (\mathbb{I} \otimes \hat{\sigma}_{3}) \,\hat{\rho}_{\mathrm{eff}} \,(\mathbb{I} \otimes \hat{\sigma}_{3}) \right]$$
$$\hat{L}_{1} = \sqrt{\alpha/4\pi} \,\hat{\sigma}_{3} \otimes \mathbb{I} \qquad \hat{L}_{2} = \sqrt{\alpha/4\pi} \,\mathbb{I} \otimes \hat{\sigma}_{3}$$

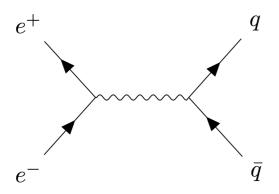
- Each "jump" corresponds to an unresolved collinear photon emission from either of the fermion legs, which induces a stochastic phase-flip
- Decay of all off-diagonal terms

$$\frac{\hat{\rho}_{\text{eff}}^{ij}(t)}{\hat{\rho}_{\text{eff}}^{ij}(0)} = \begin{cases} 1 & i = j \text{ (diagonal),} \\ e^{-\frac{\alpha}{\pi}t} & ij = 14, 23, 32, 41 \text{ (anti-diagonal),} \\ e^{-\frac{\alpha}{2\pi}t} & \text{else.} \end{cases}$$

• Concurrence in QED $\mathcal{C}(t) = \mathcal{C}(0)e^{-\frac{\alpha}{\pi}t}$

Spin correlation in Λ pair production with a thrust cut

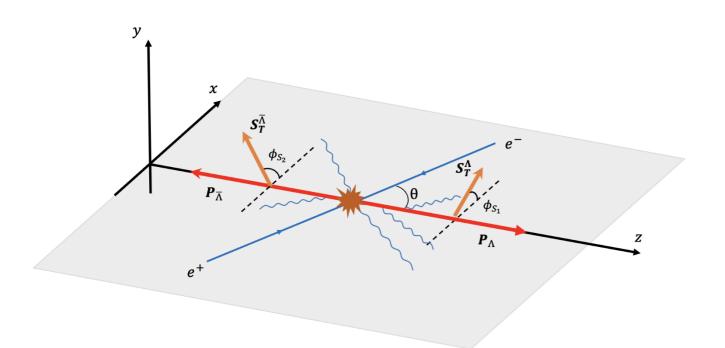
S.J. Lin, MJL, D.Y. Shao, S.Y. Wei '25



Bell variable

Parton-level

$$\mathcal{B}_{+}^{q\bar{q}} = \frac{2\sin^2\theta}{1 + \cos^2\theta}$$



Bell variable

Hadron-level

$$\mathcal{B}_+^{\Lambdaar{\Lambda}} = rac{2\,\mathrm{d}\sigma^T}{\mathrm{d}\sigma^U}$$

Parton model:

$$\frac{\mathrm{d}\sigma(\boldsymbol{S}^{\Lambda},\boldsymbol{S}^{\bar{\Lambda}})}{\mathrm{d}z_{1}\,\mathrm{d}z_{2}\,\mathrm{d}\Omega} = \sum_{q} e_{q}^{2} \left[\frac{\mathrm{d}\sigma_{0}^{U}}{\mathrm{d}\Omega} \,\mathcal{D}_{\Lambda/q}^{U}(z_{1},\mu) \,\mathcal{D}_{\bar{\Lambda}/\bar{q}}^{U}(z_{2},\mu) + P_{z}^{\Lambda} P_{z}^{\bar{\Lambda}} \, \frac{\mathrm{d}\sigma_{0}^{L}}{\mathrm{d}\Omega} \,\mathcal{D}_{\Lambda/q}^{L}(z_{1},\mu) \,\mathcal{D}_{\bar{\Lambda}/\bar{q}}^{L}(z_{2},\mu) \right]$$

Boer, Jakob, Mulders '97

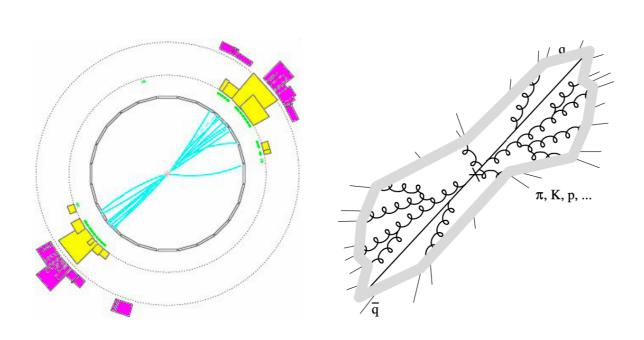
$$+|\boldsymbol{S}_{T}^{\Lambda}||\boldsymbol{S}_{T}^{\bar{\Lambda}}|\cos(\phi_{S_{1}}+\phi_{S_{2}})\,rac{\mathrm{d}\sigma_{0}^{T}}{\mathrm{d}\Omega}\,\mathcal{D}_{\Lambda/q}^{T}(z_{1},\mu)\,\mathcal{D}_{\bar{\Lambda}/ar{q}}^{T}(z_{2},\mu)$$

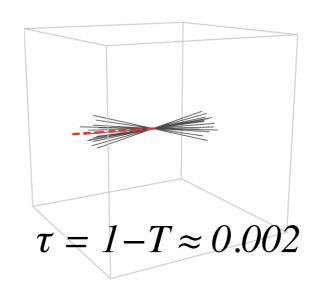
Spin correlation in Λ pair production with a thrust cut

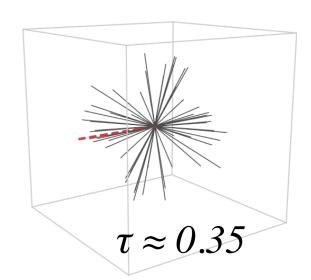
S.J. Lin, MJL, D.Y. Shao, S.Y. Wei '25

We apply the event shape thrust (T) to select two-jet configuration

$$T = rac{1}{Q} \max_{ec{n}_T} \sum_i |ec{n}_T \cdot ec{p}_i|$$







The factorized cross section in Laplace space is

$$\frac{\mathrm{d}\sigma^{\mathcal{P}}}{\mathrm{d}\tau\,\mathrm{d}z_{1}\,\mathrm{d}z_{2}\,\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_{0}^{\mathcal{P}}}{\mathrm{d}\Omega}H\left(Q^{2},\mu\right)\int_{\gamma-i\infty}^{\gamma+i\infty}\frac{\mathrm{d}u}{2\pi i}\frac{e^{u\tau/e^{\gamma_{E}}}}{e^{\gamma_{E}}}S_{T}\left(\frac{u}{Q},\mu\right) \\
\times \sum_{q}e_{q}^{2}\,\mathcal{G}_{\Lambda/q}^{\mathcal{P}}\left(z_{1},\frac{u}{Q^{2}},\mu\right)\mathcal{G}_{\Lambda/\bar{q}}^{\mathcal{P}}\left(z_{2},\frac{u}{Q^{2}},\mu\right).$$

Polarized fragmenting jet functions

$$\mathcal{G}_{\Lambda/q}^{\mathcal{P}}\left(z, \frac{u}{Q^2}, \mu\right) = \sum_{j} \int_{z}^{1} \frac{\mathrm{d}x}{x} \, \mathcal{J}_{jq}^{\mathcal{P}}\left(\frac{z}{x}, \frac{u}{Q^2}, \mu\right) \mathcal{D}_{\Lambda/j}^{\mathcal{P}}(x, \mu)$$

Spin correlation in Λ pair production with a thrust cut

S.J. Lin, MJL, D.Y. Shao, S.Y. Wei '25

The resummation predictions on the polarized cross section

$$\frac{\mathrm{d}\sigma^{\mathcal{P}}(\tau_{\mathrm{cut}})}{\mathrm{d}z_{1}\,\mathrm{d}z_{2}\,\mathrm{d}\Omega} = \int_{0}^{\tau_{\mathrm{cut}}} \mathrm{d}\tau \,\frac{\mathrm{d}\sigma^{\mathcal{P}}}{\mathrm{d}\tau\,\mathrm{d}z_{1}\,\mathrm{d}z_{2}\,\mathrm{d}\Omega}, \qquad \boxed{\mu_{h} = Q, \quad \mu_{J} = Q\sqrt{\tau_{\mathrm{cut}}}, \quad \mu_{s} = Q\tau_{\mathrm{cut}}.}$$

$$= \frac{\mathrm{d}\sigma_{0}^{\mathcal{P}}}{\mathrm{d}\Omega} \exp\left[4C_{F}S(\mu_{h}, \mu_{J}) + 4C_{F}S(\mu_{s}, \mu_{J}) - 2A_{H}(\mu_{h}, \mu_{s}) + 4A_{J}(\mu_{J}, \mu_{s})\right] \left(\frac{Q^{2}}{\mu_{h}^{2}}\right)^{-2C_{F}A_{\mathrm{cusp}}(\mu_{h}, \mu_{J})}$$

$$\times H(Q^{2}, \mu_{h}) \widetilde{S}_{T}(\partial_{\eta}, \mu_{s})$$

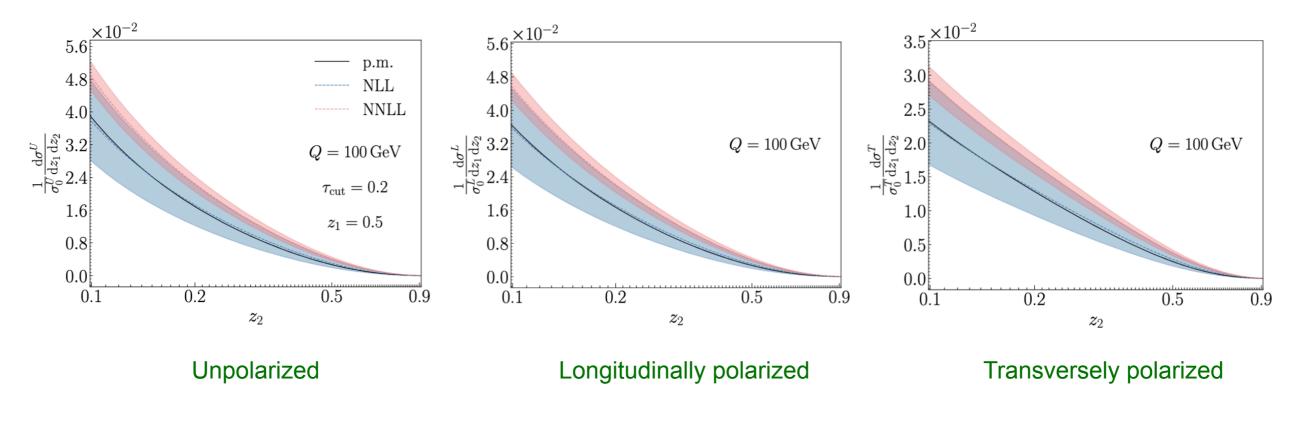
$$\times \sum_{q} e_{q}^{2} \widetilde{\mathcal{G}}_{\Lambda/q}^{\mathcal{P}}\left(z_{1}, \ln \frac{\mu_{s}Q}{\mu_{J}^{2}} + \partial_{\eta}, \mu_{J}\right) \widetilde{\mathcal{G}}_{\Lambda/\bar{q}}^{\mathcal{P}}\left(z_{2}, \ln \frac{\mu_{s}Q}{\mu_{J}^{2}} + \partial_{\eta}, \mu_{J}\right) \left(\frac{\tau_{\mathrm{cut}}Q}{\mu_{s}}\right)^{\eta} \frac{e^{-\gamma_{E}\eta}}{\Gamma(1+\eta)}\Big|_{\eta=4C_{F}A_{\mathrm{cusp}}(\mu_{J}, \mu_{s})}.$$

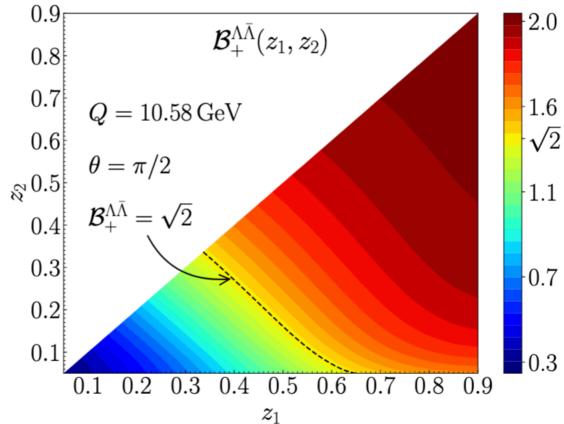
- For the non-perturbative Λ FFs, we employ the DSV parameterization for the unpolarized
 Λ FF (de Florian, Stratmann, Vogelsang '97)
- We can utilize theoretical positivity bounds to define their maximal contribution (Soffer '94; Vogelsang '97)

$$|\mathcal{D}^L(z,\mu_0)| \leq \mathcal{D}^U(z,\mu_0), \qquad |\mathcal{D}^T(z,\mu_0)| \leq \frac{1}{2} \left[\mathcal{D}^U(z,\mu_0) + \mathcal{D}^L(z,\mu_0) \right]$$

Bell nonlocality and decoherence

S.J. Lin, MJL, D.Y. Shao, S.Y. Wei '25





- We observe that under these ideal hadronization assumptions, the Bell variable is suppressed below the partonic maximum of 2
- As expected, this decoherence is reduced at large z, where the hadron carries most of the parent parton's spin information

Bell nonlocality and decoherence

S.J. Lin, MJL, D.Y. Shao, S.Y. Wei '25

- We construct three corresponding models for the polarized FFs:
 - Scenario 1 (Static quark model scenario)

$$\mathcal{D}_{s}^{T}(z,\mu_{0}) = z \mathcal{D}_{s}^{U}(z,\mu_{0}) \text{ and } \mathcal{D}_{u}^{T}(z,\mu_{0}) = \mathcal{D}_{d}^{T}(z,\mu_{0}) = 0$$

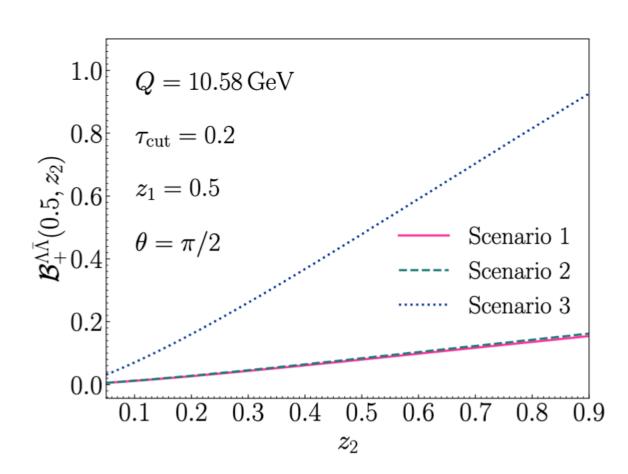
Scenario 2 (Burkardt-Jaffe scenario)

$$\mathcal{D}_{u/d}^{T}(z,\mu_0) = -0.1 \, z \, \mathcal{D}_{u/d}^{U}(z,\mu_0) \text{ and } \mathcal{D}_{s}^{T}(z,\mu_0) = z \, \mathcal{D}_{s}^{U}(z,\mu_0)$$

Scenario 3 (SU(3) symmetric scenario)

$$\mathcal{D}_{u/d/s}^T(z,\mu_0) = z \, \mathcal{D}_{u/d/s}^U(z,\mu_0)$$

- The results from Scenario 1 and Scenario
 2 are comparable.
- In all three scenarios, the hadronic Bell variable remains far below the violation threshold.



Summary and outlooks

- We have established a systematic framework for calculating spin decoherence by unifying SCET with the formalism of open quantum systems.
- Our central finding is that the renormalization group evolution constitutes a quantum channel, where the RG flow parameter, rather than time, drives a Markovian loss of quantum coherence.
- Using the thrust event shape, we studied hyperon—antihyperon production, linked experimentally accessible spin correlations to the Bell inequality, and confirmed decoherence effects during hadronization.
- Quantum information science meets fragmentation.

Thank you