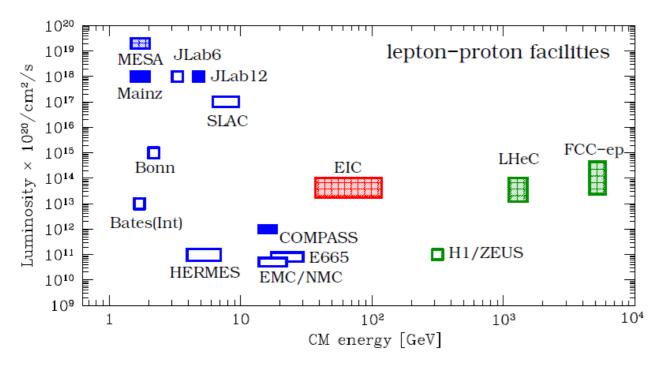
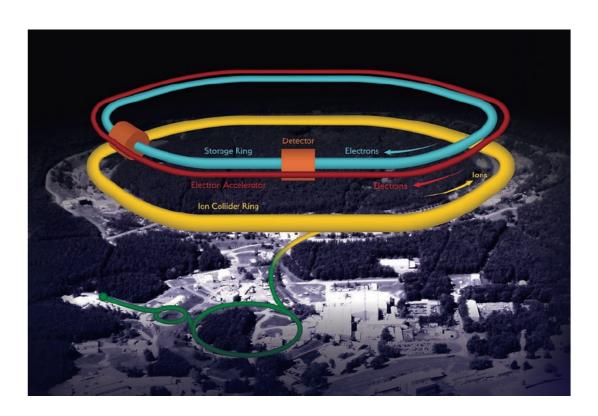


Precision Predictions for Three-Dimensional Nucleon Tomography

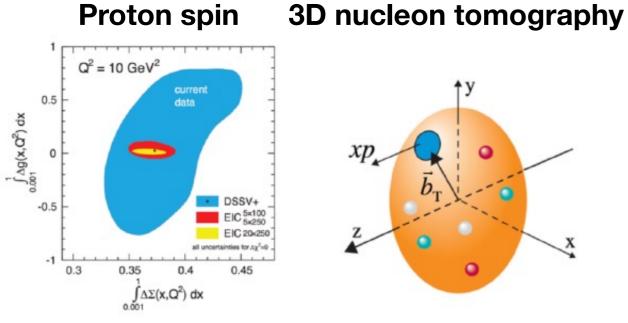
方申 Fudan University

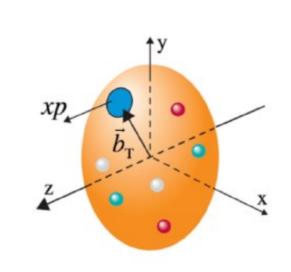

第五届量子场论及其应用研讨会 Beijing Oct 31, 2025

Collaborators: Dingyu Shao, Weiyao Ke, John Terry,

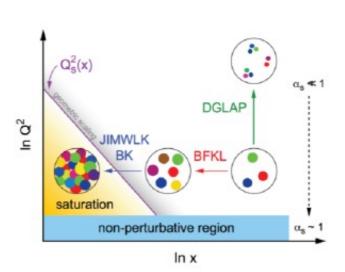

Meisen Gao, Haitao Li

Reference: JHEP05(2024)066, JHEP01(2025)029


Electron-ion collider (EIC)



Abdul et al. '22

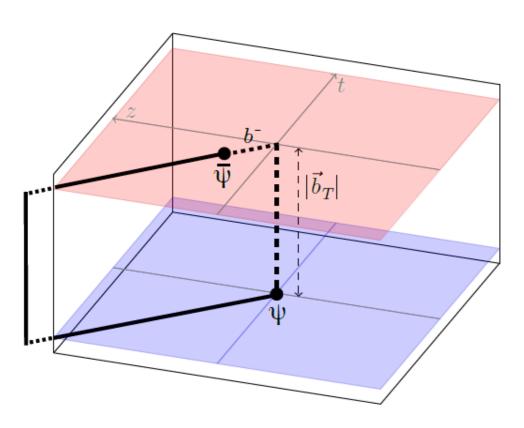


Abdul et al. '22



Gluon saturation

Hadronization in the nucleus



3D imaging of the nucleons

- Both longitudinal and transverse motion
- Correlation between nucleon spin with parton(quark, gluon) orbital angular momentum

$$\tilde{f}_{i/p_{S}}^{[\Gamma]0(u)}(x,\mathbf{b}_{T},\epsilon,\tau,xP^{+}) = \int \frac{\mathrm{d}b^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \left\langle p(P,S) \middle| \left[\bar{\psi}^{i}(b^{\mu}) W_{\square}(b^{\mu},0) \frac{\Gamma}{2} \psi^{i}(0) \right]_{\tau} \middle| p(P,S) \right\rangle$$

• Dirac structures $\Gamma \in \{ \gamma^+, \gamma^+ \gamma_5, i\sigma^{\alpha+} \gamma_5 \}$

Boussarie et al. '23

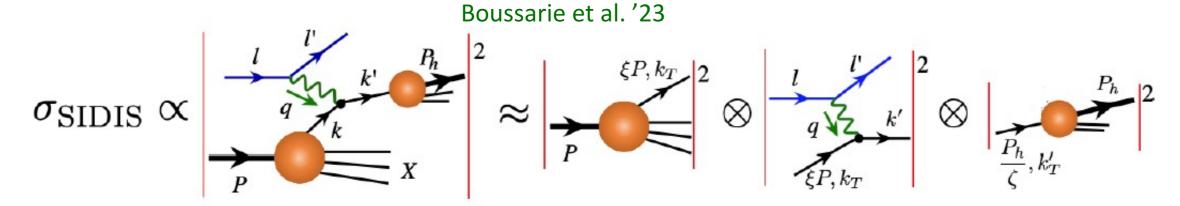
Leading Quark TMDPDFs

•	Quark	Spin
\		

		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	f_1 = \bullet Unpolarized		$h_1^{\perp} = \bigcirc - \bigcirc \bigcirc$ Boer-Mulders
	L		$g_1 = -$ Helicity	$h_{1L}^{\perp} = \bigcirc - \bigcirc \rightarrow - \bigcirc \rightarrow$ Worm-gear
	Т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{Sivers}}$	$g_{1T}^{\perp} = -$ Worm-gear	$h_1 = 1 - 1$ Transversity $h_{1T}^{\perp} = 1 - 1$ Pretzelosity

Transverse momentum distributions of quarks

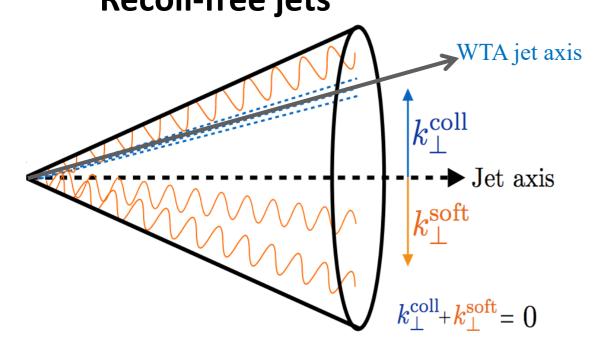
Three classical processes used to probe quark TMDs:


- Typical multi-scale problems
- Theory tools: TMD factorization

Collins, Soper & Sterman 1985 Florian & Grazzini '01

Boussarie et al. '23

(Semi-inclusive) deep inelastic scattering


Factorized SIDIS cross section in the parton model:

Liu, Ringer, Vogelsang & Yuan '18,20

New ideas: $e(\ell) + N(P) \rightarrow e(\ell') + J(P_J) + X$

Winner-Take-All jets/ Recoil-free jets Bertolini, Chan & Thaler '14

$$\mathrm{SJA}: E_{12} = E_1 + E_2 \,, \ m{P}_{12} = m{p}_1 + m{p}_2 \,.$$

5

WTA:
$$E_{12} = E_1 + E_2$$
,
 $\mathbf{P}_{12} = E_{12} \left[\frac{\mathbf{p}_1}{|\mathbf{p}_1|} \theta(E_1 - E_2) + \frac{\mathbf{p}_2}{|\mathbf{p}_2|} \theta(E_2 - E_1) \right]$.

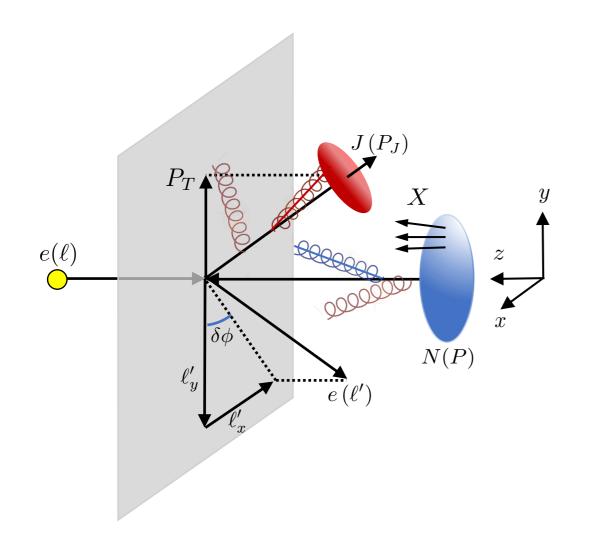
EIC wish list

Regarding DATA

- Measure cross-sections instead of ratios for a more dedicated analysis
- Release both QED corrected and uncorrected data
- Develop method for unbinned cross-sections

Regarding PDFs, FFs and other distributions

- Replication of PDF4LHC and HERA efforts for EIC : PDF4EIC
- Perform global NNLO analysis of polarized PDFs
- Impact of QED corrections on polarized PDFS
- Perform global analysis of DVCS
- Generate threshold resummed PDFS and FFs
- New set of photon PDFs (existing are outdated)


Regarding Perturbative corrections (QCD/QED)

- Jets in DIS: matched NNLO + q_T resummation
- DIS with QED/EW corrections
- Calculations for dihadron production

Regarding Theoretical Issues

- Discuss (non)universality of TMDs
- Search for ideal observables to measure Wigner distribution
- Role of lattice in PDFs (in two slides!)
- \bullet Studies for Λ polarization at EIC
- N*, Δ electro-couplings at $Q^2 > \text{GeV}^2$
- Proton structure functions from transition regime to DIS
- \bullet Small-x dipole and quadrupole amplitudes

QCD factorization

EFT modes:

$$e(\ell) + N(P) \rightarrow e(\ell') + J(P_J) + X$$

• Factorization formula:

$$\frac{d\sigma}{d^2 \ell_T' \, dy \, dq_x} = \frac{\sigma_0}{1 - y} \left[H\left(Q, \mu\right) \right] \mathcal{C}\left[B \, \mathcal{J} \, S\right] \,,$$

$$C[B \mathcal{J} S] = \sum_{q} e_q^2 \int \frac{db}{2\pi} \cos(b \, q_x) \, B_{q/N} \left(x_B, b, \mu, \zeta_B / \nu^2 \right) \\ \times \, \mathcal{J}_q(b, \mu, \zeta_{\mathcal{J}} / \nu^2) \, S(b, n \cdot n_J, \mu, \nu) \quad .$$

Observables:

$$y = 1 - P \cdot \ell' / P \cdot l$$
 $q_x = \ell'_T \delta \phi$

n-collinear: $p_c^{\mu} \sim \ell_T' (\delta \phi^2, 1, \delta \phi)$, • EFT parameters:

$$\delta\phi\ll 1$$

 n_J -collinear: $p_J^{\mu} \sim \ell_T' (\delta \phi^2, 1, \delta \phi)_J$.

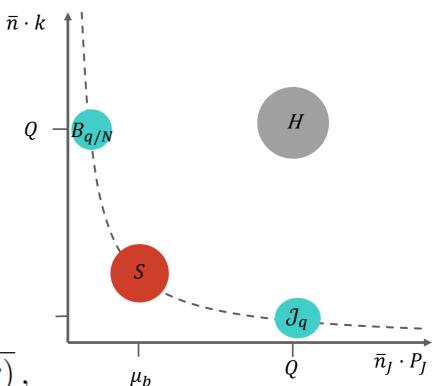
hard: $p_h^{\mu} \sim \ell_T'(1,1,1)$,

soft: $p_s^{\mu} \sim \ell_T'(\delta\phi, \delta\phi, \delta\phi)$,

RG evolution

Hierarchy Problem:

$$\mu_b = \frac{2e^{-\gamma_E}}{b} \ll Q \qquad L = \ln \frac{Q^2}{\mu_b^2} \gg 1$$


$$L = \ln \frac{Q^2}{\mu_b^2} \gg 1$$

Standard CSS formalism: Collins '13

$$f_{q/N}(x_B, b, \mu, \zeta_f) = B_{q/N}(x_B, b, \mu, \zeta_B/\nu^2) \sqrt{S_{n\bar{n}}(b, \mu, \nu)},$$

 $J_q(b, \mu, \zeta_J) = \mathcal{J}_q(b, \mu, \zeta_J/\nu^2) \frac{S(b, n \cdot n_J, \mu, \nu)}{\sqrt{S_{n\bar{n}}(b, \mu, \nu)}},$

$$\frac{\mathrm{d}}{\mathrm{d}\,\ln\mu}\ln\,\sigma_{\mathrm{phsy}}(Q,\mu_b,\mu) = 0$$

Predictions in e-A at NNLL

SF, Ke, Shao, Terry '23

non-perturbative model

$$U_{\rm NP}^f(x,b,A,Q_0,Q) = \exp\left[-g_1^A b^2 - \frac{g_2}{2} \ln \frac{Q}{Q_0} \ln \frac{b}{b_*}\right],$$

Sun, Isaacson, Yuan & Yuan '14

We apply modified nuclear TMD PDFs

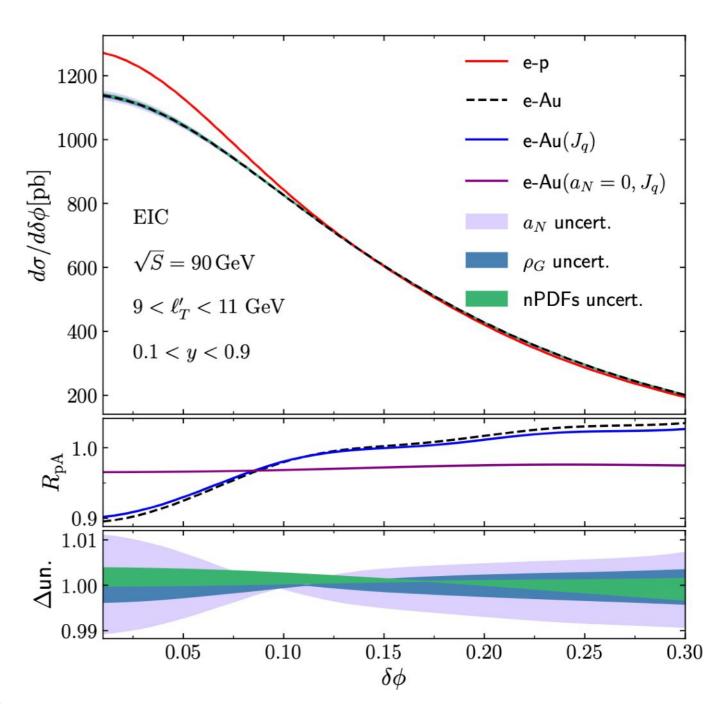
$$g_1^A = g_1^f + a_N(A^{1/3} - 1)$$
 $a_N = 0.016 \pm 0.003 \text{ GeV}^2$

Collinear dynamics using EPPS16

Alrashed, Anderle, Kang, Terry & Xing '22

We include LO momentum broadening of the jet within SCET_G

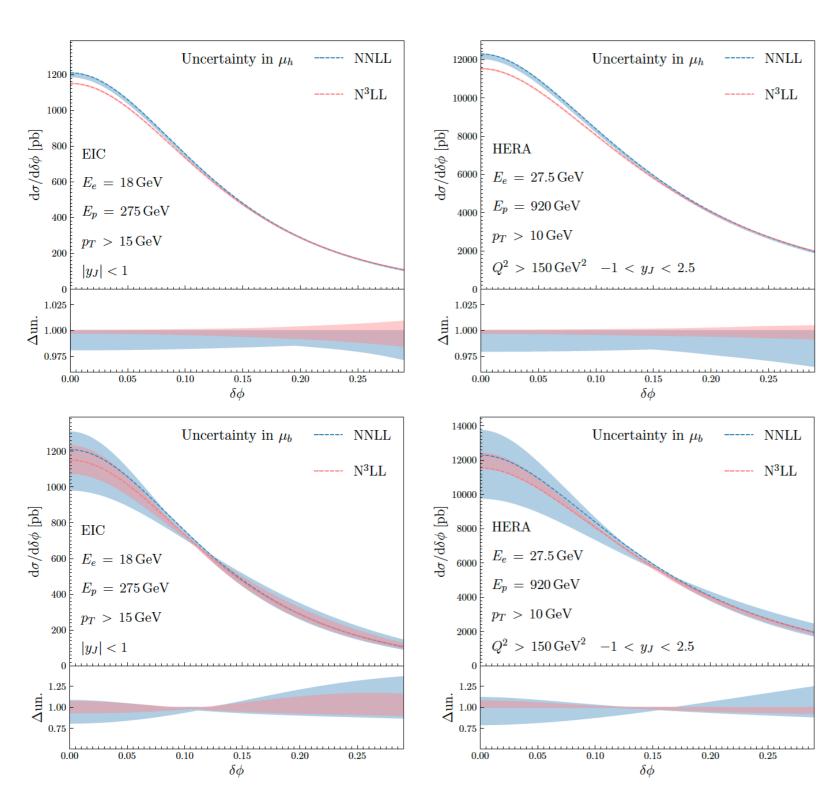
$$J_q^A(b, \mu, \zeta_J) = J_q(b, \mu, \zeta_J)e^{\chi[\xi bK_1(\xi b)-1]}$$


Opacity parameter
$$\ \chi = \frac{
ho_G L}{\xi^2} lpha_s(\mu_{b_*}) C_F$$

Gyulassy, Levai & Vitev '02

 ρ_G : density of the medium

 ξ : the screening mass

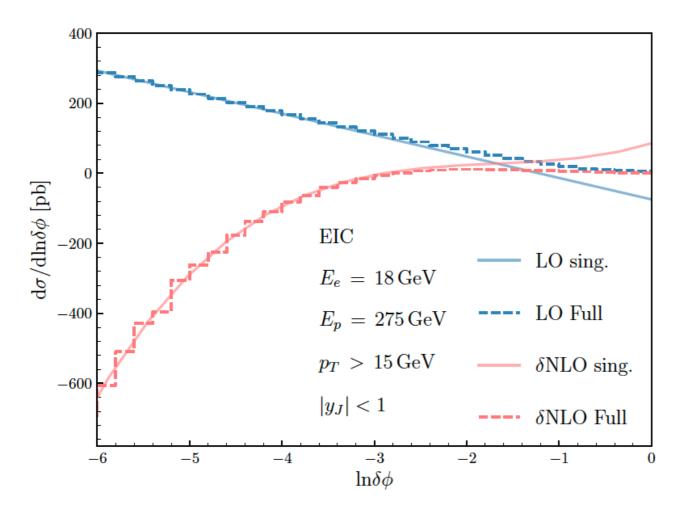

L: the length of the medium

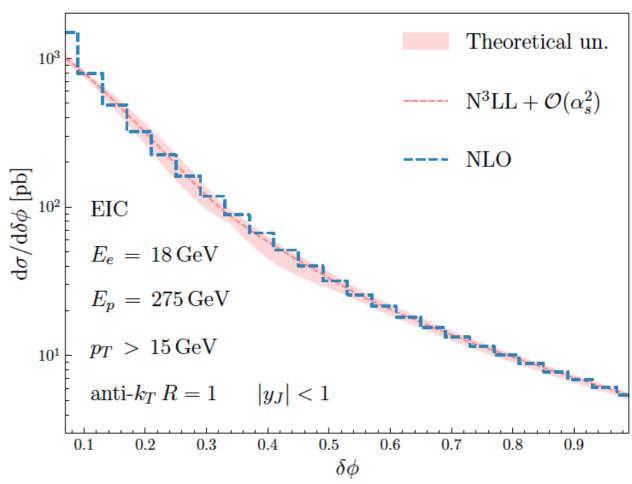
The process is primarily sensitive to the initial state's broadening effects, thereby serving as a clean probe of nTMD PDFs.

Comparison of resummation results at NNLL and N³LL

SF, Gao, Li, Shao '24

 The uncertainty bands are narrower at N³LL (red) compared to NNLL (blue)


• At N³LL the dominant scale uncertainties are from μ_b variation


$N^3LL + \mathcal{O}(\alpha_s^2)$ predictions on lepton-jet azimuthal correlation

SF, Gao, Li, Shao '24

- In the back-to-back limit ($\delta \phi \to 0$) the singular contributions in DIS are consistent with the fixed-order results from NLOJET++ up to ${\cal O}(\alpha_s^2)$
- In the large $\delta \phi$ region the resummation formula receives significant matching corrections
- It is necessary to switch off the resummation and instead employ fixed-order calculations

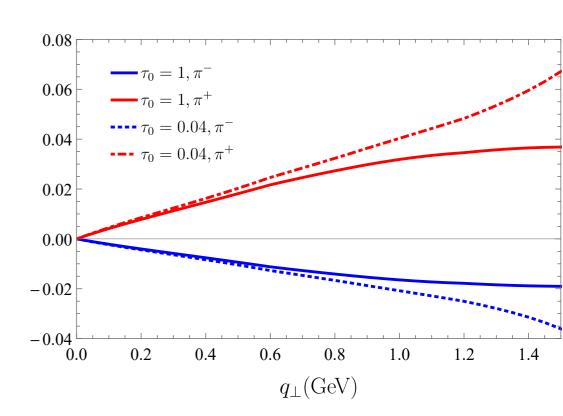
$$d\sigma_{add}$$
 (NNNLL + $\mathcal{O}(\alpha_s^2)$) $\equiv d\sigma(NNNLL) + \underbrace{d\sigma(NLO) - d\sigma(NLO \text{ singular})}_{d\sigma(NLO \text{ non-singular})}$

Single spin asymmetry for 1-jettiness

SF, Lin, Shao, Zhou '25

1-jettiness:

$$\tau_1 \equiv \frac{2}{Q^2} \sum_{k} \min\{q_B \cdot p_k, q_D \cdot p_k\}$$


Single spin asymmetry (SSA) at NLL:

$$\begin{split} A_{N} &= \frac{F_{UT}}{F_{UU}} \\ &= \frac{\int_{0}^{\infty} \frac{b^{2} db}{4\pi} J_{1}(\frac{bq_{\perp}}{z_{h}}) \sum_{q} e_{q}^{2} T_{F}(x_{B}, x_{B}, \mu_{b}) D_{h/q}(z_{h}, \mu_{b}) e^{-S_{P}(b)}}{\int_{0}^{\infty} \frac{b db}{2\pi} J_{0}(\frac{bq_{\perp}}{z_{h}}) \sum_{q} e_{q}^{2} f_{q}(x_{B}, \mu_{b}) D_{h/q}(z_{h}, \mu_{b}) e^{-S_{P}(b)}} \end{split}$$

Qiu-Sterman function:

$$T_{F,q}(x,x,\mu) = \mathcal{N}_q(x) f_q(x,\mu)$$

Echevarria, Kang, Terry '14,20

Summary

- We have studied on the lepton-jet correlation in both e-p and e-A collisions.
 Utilizing SCET, we derived a factorization theorem for back-to-back lepton-jet configurations.
- In e-A collisions, we discussed the utility of our approach in disentangling intrinsic non-perturbative contributions from nTMDs and dynamical medium effects in nuclear environments. We find the process is primarily sensitive to the initial state's broadening effects.
- TMD resummation accuracy has been improved to N³LL + $\mathcal{O}(\alpha_s^2)$ accuracy in e-p collisions. It is good to have the measurement at the HERA to make a comparison.
- Our work sets the groundwork for future experiments at the EIC, offering a robust framework for measuring nTMDs and polarized TMDs.

Thank you!