

Tame multi-leg Feynman integrals beyond one loop

Li-Hong Huang (Peking University)

lhhuang@pku.edu.cn

第五届量子场论及其应用研讨会, 2025/10/31

Based on works: L.H. Huang, R.J. Huang, Y.Q. Ma, arXiv: 2412.21053

Outline

- 1 Introduction
- 12 A new representation
- **13** Calculate FBIs & Integrate branch variables
- **14** Summary and outlook

Era of precision physics

1 Run III of LHC (22-25)

HL-LHC: Many observables probed at precent level precision, 30 times more data

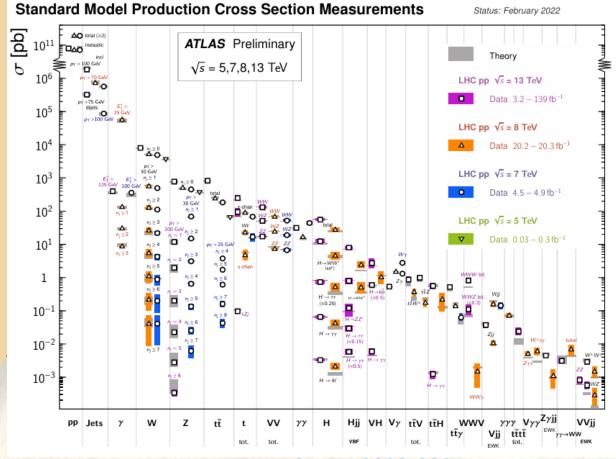
High-precision data

QCD corrections requirement ideally:

Most processes: N2LO

Many processes: N3LO

Some processes: N4LO



Current status of perturbative calculation

Amplitude generation

Feynman integrals calculation

Phase Space integration

IR Subtraction Reverse Unitarity

A key obstacle in high-order computation

Mainstream method:

• Integration-by-parts: Reduce loop integrals to a set of basis (Master Integrals) $\int \prod_{i=1}^{L} \mathrm{d}^{D} \ell_{i} \frac{\partial}{\partial \ell_{i}^{\mu}} [v^{\mu} I(\vec{v})] = 0$

Compute MIs

Legs Order	2→1	2→2	2->3	2->4	2→5	2→6
NLO	***	***	***	***	***	***
N2LO	***	**	*	•	?	?
N3LO	* *	*	•			
N4LO	*	?				
N5LO	?	/				

Planar two-loop six-particle: Johannes Henn, Yang Zhang, et al. PRL2025 See also Yang Zhang's talk_{4 /13}

Integration-by-parts reduction: the bottleneck!

$$\sum_{\vec{\nu}'} Q_{\vec{\nu}'}^{\vec{\nu}jk}(D, \vec{s}) I_{\vec{\nu}'}(D, \vec{s}) = 0$$

The state-of-the-art IBP method: very challenging

4-loop DGLAP kernel cannot be obtained

H+*t* tbar production: exact two-loop contribution is missing

Improvements for IBPs

Syzygy equations

Gluza, Kajda, Kosower, PRD2011 Böhm, Georgoudis, Larsen, Schulze, Zhang, PRD2018 NeatIBP: Wu, et al. CPC2024

Block-triangular form

Liu, YQM, PRD2019 Guan, Liu, YQM, CPC2020 Blade: Guan, Liu YQM, Wu, CPC2025

Ways to bypass IBP

Intersection number

Asymptotic expansion

Iterative reduction

Too many integration variables

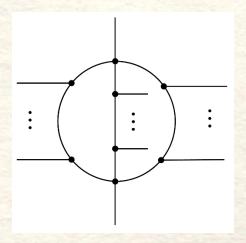
Outline

- 11 Introduction
- 12 A new representation
- **13** Calculate FBIs & Integrate branch variables
- 14 Summary and outlook

A new representation

Feynman parametrization

$$J(\vec{\nu}; D) = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\Gamma(\nu_1) \cdots \Gamma(\nu_K)} \int \prod_{i=1}^{K} (x_i^{\nu_i - 1} dx_i) \delta(1 - X) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}}{\mathcal{F}^{N_{\nu} - LD/2}}$$



U: homogeneous polynomial of degree L, independent of kinematics variables

F: homogeneous polynomial of degree L+1

Would it be simpler if we fix *U* unintegrated?

$$J(\vec{\nu}; D) = \int [d\mathbf{X}] \prod_{a=1}^{B} X_a^{\nu_a - 1} \mathcal{U}^{\nu - \frac{(L+1)D}{2}} I_{\vec{\nu}}^{\frac{LD}{2}}(\vec{X}).$$

2 loop: B-1=2

3 loop: B-1=5

Fixed-Branch Integrals (FBIs)

To fix U, we fix X_a , which is the summation of Feynman parameter for the a-th branch.

Outline

- 11 Introduction
- 12 A new representation
- Calculate FBIs & Integrate branch variables
- **14** Summary and outlook

Definition & Reduction relations for FBIs

$$I_{\vec{\nu}}^{\Delta}(\mathbf{X}) = \frac{(-1)^{\nu}\Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N}\Gamma(\nu_{\alpha})} \int [\mathrm{d}\mathbf{y}] \, \frac{\prod_{\alpha=1}^{N}y_{\alpha}^{\nu_{\alpha}-1}}{\left(\frac{1}{2}\mathbf{y}^{T}\cdot R\cdot\mathbf{y} - \mathrm{i}0^{+}\right)^{\nu-\Delta}},$$

$$Generalized Gram matrix \quad \text{if } B = 3 \text{ and } (n_{1}, n_{2}, n_{3}) = (2, 1, 1),$$

$$S = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0_{3\times 3} & 0 & 0 & 1 & 0 \\ 0_{3\times 3} & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

$$S = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0_{3\times3} & 0 & 0 & 1 & 0 \\ & & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & & & \\ 1 & 0 & 0 & & & \\ 0 & 1 & 0 & & & \\ 0 & 0 & 1 & & & \end{pmatrix}$$

Introduce $z_0 = 0$ or 1 depending on generalized Gram determinant detS = 0 or not

 $S \cdot (C_1, \dots, C_B, z_1, \dots, z_N)^T = (z_0, \dots, z_0, 0, \dots, 0)^T$. Also introduce other parameters determined by

Recursion relation

$$S \cdot (t_1, \cdots, t_B, \nu_1 I_{\vec{\nu} + \vec{e}_1}^{\Delta}, \cdots, \nu_N I_{\vec{\nu} + \vec{e}_N}^{\Delta})^T = (-I_{\vec{\nu}}^{\Delta - 1}, \cdots, -I_{\vec{\nu}}^{\Delta - 1}, I_{\vec{\nu} - \vec{e}_1}^{\Delta - 1}, \cdots, I_{\vec{\nu} - \vec{e}_N}^{\Delta - 1})^T$$

Dimension-shift relation

$$CI_{\vec{\nu}}^{\Delta-1} = (2\Delta - \nu - B) z_0 I_{\vec{\nu}}^{\Delta} + \sum_{\alpha=1}^{N} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta-1}$$

Reduce to corner FBIs, at most one MIs for each sector.

Compute master integrals of FBIs

Using auxiliary mass flow method

$$\mathcal{I}_{\vec{\nu}}^{\Delta}(\eta) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int [d\mathbf{y}] \frac{\prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha} - 1}}{\left(\frac{1}{2} \mathbf{y}^{T} \cdot R \cdot \mathbf{y} + \eta\right)^{\nu - \Delta}},$$

We have differential equations for η

$$(2z_0\eta - C)\frac{\mathrm{d}}{\mathrm{d}\eta}\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) = (2\Delta - \nu - B)z_0\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) + \sum_{\alpha=1}^{N} z_\alpha\mathcal{I}^{\Delta-1}_{\vec{\nu}-\vec{e}_\alpha}(\eta).$$

Solve it with $\eta \rightarrow \infty$ as boundary condition

Using Dimension-Change Transformation to obtain desired FBIs

$$I_{ec{
u}}^{\Delta+\delta} = rac{1}{\Gamma(\delta)} \int_{-\mathrm{i}0^+}^{-\mathrm{i}\infty} \mathrm{d}\eta \; \eta^{\delta-1} \mathcal{I}_{ec{
u}}^{\Delta}(\eta),$$
Rui-Jun Huang, Jian, YQM, Mu, Wu,PRD2025

Canonical form

Chen, Feng, Zhang, JHEP2025

$$d\mathcal{I}_{2m} = c_{2m\to 2m} \mathcal{I}_{2m} + \sum_{i} c_{2m\to 2m-1;i} \mathcal{I}_{2m-1}^{(i)} +$$

$$\sum_{i \neq j} c_{2m \to 2m-2; ij} \mathcal{I}_{2m-2}^{(ij)}$$

$$d\mathcal{I}_{2m+1} = c_{2m+1\to 2m+1}\mathcal{I}_{2m+1} + \sum_{i} c_{2m+1\to 2m;i}\mathcal{I}_{2m}^{(i)} +$$

analytical
$$\sum_{i
eq j} c_{2m+1
ightarrow 2m-1; ij} \mathcal{I}^{(ij)}_{2m-1}$$

FBIs are as simple as one-loop FIs, thus a solved problem

Numerical method: Avoid IBP reduction

Integral with known integrand

$$\mathcal{M} = \int [d\mathbf{X}] \, \hat{\mathcal{M}} \, (\mathbf{X})$$

 $\mathcal{M} = \int \left[\mathrm{d}\mathbf{X} \right] \hat{\mathcal{M}} \left(\mathbf{X} \right)$ Sector Decomposition + Gaussian-Kronrod Integration Rule

Contour deformation to avoid divergences

$$\tilde{X}_b = X_b + iX_b(1 - X_b)G_b(\mathbf{X}),$$

$$G_b(\mathbf{X}) = \kappa \sum_j \lambda k_j \frac{\partial_{X_b} P_j}{P_j^2 + (\partial_{X_b} P_j)^2} \exp(-\frac{P_j^2}{\lambda^2 k_j^2}).$$
 Adjust parameters

Subtract out boundary divergences

$$\tilde{\mathcal{M}}_{\text{sub}} = \sum_{\mu(\epsilon), n_{\mu}} X_{1}^{\mu(\epsilon)} \log(X_{1})^{n_{\mu}} \sum_{i=0}^{\lfloor -\mu(0) \rfloor} X_{1}^{i} \tilde{M}_{1}^{\mu, n_{\mu}, i}(X_{2}) + \sum_{\rho(\epsilon), n_{\rho}} X_{2}^{\rho(\epsilon)} \log(X_{2})^{n_{\rho}} \sum_{j=0}^{\lfloor -\rho(0) \rfloor} X_{2}^{j} \tilde{M}_{2}^{\rho, n_{\rho}, j}(X_{1})$$

$$- \sum_{\mu(\epsilon), n_{\mu}, \rho(\epsilon), n_{\rho}} X_{1}^{\mu(\epsilon)} \log(X_{1})^{n_{\mu}} X_{2}^{\rho(\epsilon)} \log(X_{2})^{n_{\rho}} \times \sum_{i=0, j=0}^{\lfloor -\mu(0) \rfloor, \lfloor -\rho(0) \rfloor} X_{1}^{i} X_{2}^{j} \tilde{M}_{3}^{\mu, n_{\mu}, i, \rho, n_{\rho}, j}.$$

	graphs	# points	DCT time/points (ms)
	726		0.14
ļ			0.19
		726	0.34
		726	0.76
		12826	2.91

Method	Precision	Time(h)	
·····CaaDaa	3	3	
pySecDec	5	108	
AMFlow 20		1.7+2.7	
FBI	6	0.01+	

Analytical method: Reduction

Combining with series expansion See also YQM's talk

e.g.: 1/D series, $1/\eta$ series, integral with variable limits Δ : Δ series

$$\int_{a(1-\Delta)}^{a+(1-a)\Delta} dx$$

2 loops: simplifying ${}^{\sim}O(n^{10})$ to ${}^{\sim}O(n^3)$

 $n\sim O(100)$ is the terms to be obtained

Power: the number of integration parameters

More efficient

Combining with intersection theory

In collaboration with LLYang and ZWWang

Only 3 layers at two loop order

More efficient

Summary and outlook

Reveal a deep structure of Fis: simple integrand followed by integration over a few variables

2 for two-loop, and 5 for three-loop: independent of number of external legs!

The integrand (FBIs) can be fully solved, similar to one-loop FIs

All previous FIs techniques can be applied to resolve the remained integration

Either fully numerically, or via reduction + computing MIs

We look forward to potential collaborations to further explore the power of this new representation.

Thank you!