High resolution tracking with silicon strip detectors for relativistic ions

S.R. Hou^a, G. Ambrosi^b, C. Balboni^b, W.J. Burger^b, H. Geissel^c,
U. Horisberger^d, W. Lustermann^d, G. Maehlum^e, M. Menichelli^e,
N. Produit^e, D. Rapin^b, D. Ren^d, M. Ribordy^b, H. Sann^c,
D. Schardt^c, K. Sümmerer^c, G. Viertel^d,

^aNational Central University, Chungli, Taiwan ^bUniversity of Geneva, Switzerland ^cGSI, Darmstadt, Germany ^dETH Zurich, Switzerland ^eINFN Perugia, Italy

Presented by S.R. Hou

Vertex '98

Santorini, Greece 28 September – 4 October

- Introduction
- Experimental setup ${}^{12}C$ ion beam at 1.5 GeV/u Strip detectors, 300 μ m thick VA high-dynamic range chip
- Strip cluster : Reconstruction Characteristics
- Energy loss straggling : Landau-Vavilov theory
- Spatial resolution η spectra Tracking simulations
- Multiple scattering Molière theory GEANT Gaussian approximation ¹²C with 1, 2 mm Pb targets

Ions of charge ze traversing a medium

- Energy loss : Bethe-Bloch formula $\frac{1}{\rho}\frac{dE}{dx} = z^2 \frac{L}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 W_{max}}{l^2 (1 - \beta^2)} \right) - 2\beta^2 \right]$ Thick absorber : Gaussian, width $\propto z$ Thin absorber : Landau-Vavilov theory
- Multiple Coulumb scattering : Width of the projected angular distribution

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \left[1 + 0.038 \ln(x/X_0) \right]$$

• Production of secondary particles : Delta-ray production Nuclear fragmentation ^{12}C Ion beam, GSI SIS facility:

- Beam Energy : 1.5 GeV/u
- $E({}^{12}C) = \mathbf{29.18}$ GeV, $\gamma = \mathbf{2.16}, \beta = \mathbf{0.92}$
- $\delta p/p < \mathbf{2} \times \mathbf{10}^{-4}$

Detectors :

- Reference detectors ($20 \times 20 \text{ mm}^2$) 20 mm strips, 100 μ m pitch
- Ladders : two wafers (72×41 mm²) bounded p⁺ S-side: 2×41 mm strips, 110 μm pitch n⁺ K-side: 72 mm strips, 208 μm pitch rerouted by kapton cable
- VA-hdr (AMS version) readout chip
- 12-bit ADC

Pedestal of strip signal :

- Random trigger, off beam-spill
- $\sigma_N = 2.5$ ADC counts (green lines)

- Examined by beam trigger Strips of $Q_{stp} > 8\sigma$ +neighboring excluded
- The large cluster charge causes local fluctuation

A Strip Cluster :

- Cut on peak strip charge, total charge
- Neighboring strips of descending charge to 2 σ_N
- Allow climbing up by 10% peak strip charge

Strip charge profile

Strip pitch : Ref.Det.=100 μ m, S-ladder=110 μ m, K-ladder=208 μ m

Purity

Optimizing cut on total cluster charge

- Q_{clr} of 1 cluster events (black line)
- Multi-cluster events, 1st, 2nd clusters (hatched, $Q_{clr}^1 > Q_{clr}^2$)

- Channels of geometrical defects $\sim 1\%$
- Cuts at 20 σ_N remnant cluster < 0.5 % inefficiency < 0.1 %
- Delta-ray : average $\sim 2 \ \delta$ per wafer mostly folded in the 1st cluster
- Nuclear fragmentation : $\sim 1 \ \%$

Efficiency by linear fit interpolation :

- Reference detectors for linear fit each has 1 cluster only $Q_{clr} > 500$ ADC
- Test detector cluster searched w.r.t interpolation position

Within 3σ range Detection efficiency : $\simeq 98.8$ %

For a cluster of more than 1 strip

$$\circ \quad \eta = \frac{Q_r}{Q_r + Q_l}$$

• $Q_{l,r}$ are charge sum of strips left, right to COG

• η spectrum shows the non-linear charge sharing

Three floating strips between readouts, contribute to the three bumps

Corrections to cluster charge :

- Gain of VA chips
- \circ η dependence

Cluster charge versus η , charge spectra in η intervals

Energy loss straggling :

- Momentum of ${}^{12}C$ ion is 26.95 GeV
- Traversing 300 μ m Si wafer Vavilov theory, $\beta^2=0.8532$, $\kappa=0.0169$
- Q_{clr} spectra fitted to Gaussian convoluted Vavilov distribution $f(\Delta, x) = C \sum_{\Delta - 4\sigma}^{\Delta + 4\sigma} \exp\left(-\frac{(\Delta - \Delta')^2}{2\sigma^2}\right) \phi_V(\lambda, \kappa, \beta^2) \,\delta\Delta'$
- Fitting parameters are $\Delta_{mp}, \kappa/\xi, \sigma$

η correction

- Converting X_{COG} to impact position X_{IP}
- Beam spot is ≫ strip pitch, uniform between two strips
- η has the nonlinear charge sharing versus X_{COG}

•
$$X_{IP} = \frac{\int_0^{\eta} f(\eta)}{\int_0^1 f(\eta)}$$

Alignment

- Calibrated by linear track fitting,
- for strip offset, rotation on the wafer plane

Physics processes

- Multiple Coulomb scattering
- Energy loss
- Delta ray, bremsstrahlung

Strip cluster simulation

- Cluster position : mean of (enter/create and exit/stop) positions
- Cluster charge : randomly sampled on data spectrum, shared to two strips
- Detector resolution : Gaussian smearing at impact position

GEANT control

- AUTOmatic tracking parameters
- Step precision EPSIL=100 μm
- Thresholds for γ , e^{\pm} cutoff, bremsstrahlung, δ -ray

CUTGAM	CUTELE	BCUTE	DCUTE
100 keV	$100 \ \mathrm{keV}$	500 keV	$250 { m keV}$

Molière theory

- Many atomic collisions $\Omega_0 = 10K$ for ¹²C of 29.18 GeV through 300 μ m Si
- Semi-infinite homogeneous media
- No energy loss

Gaussian approximation

• The Gaussian width θ_0 of PDG, $\theta_0(t_1 + t_2) \neq \sqrt{\theta_0^2(t_1) + \theta_0^2(t_2)}$

limits to simulation steps

• GEANT Gaussian approximation [Lynch, Dahl]

$$\theta_0^2 = \frac{\chi_c^2}{1 + F^2} \left[\frac{1 + \nu}{\nu} \ln(1 + \nu) - 1 \right]$$
$$\nu = \Omega_0 / 2(1 - F)$$

F = track fraction in the sample Empirical fits for Ω_0

• Consists with Molière to better than 2%

Least square estimate for σ_{IR}

•
$$\mathbf{LS} = \frac{1}{N} \sum^{N} \left(1 - \frac{\sigma_{data}^{i}}{\sigma_{MC}^{i}} \right)^{2}$$

 $\sigma_{data}, \sigma_{MC}$: residual widths of unweighted linear fit

• Minimizing LS, iteration on σ_{IR}^i use setup of target Pb = 0 mm

Pb	Widths of data residuals (μm)				LS estimates					
	X_2	X_3	D_a	D_b	X_4	X_5	$\sqrt{\mathbf{LS}}_0^M$	$\sqrt{\mathbf{LS}}^M$	$\sqrt{\mathbf{LS}}^{ML}$	$\sqrt{\mathbf{LS}}^{GL}$
0 mm	9.9	10.6	—	_	14.4	13.3	0.25	0.011	0.014	0.040
0 mm	28.5	14.5	40.2	40.4	18.6	29.4	0.13	0.021	0.021	0.030
$1 \mathrm{mm}$	76.9	47.7	56.9	46.8	23.1	37.6	0.13	0.059	0.052	0.063
$2 \mathrm{mm}$	92.7	58.5	63.2	49.0	24.4	41.2	0.11	0.046	0.048	0.057

 $\sqrt{\mathbf{LS}}_{0}^{M}$: MC with Molière only, $\sigma_{IR} = 0$ $\sqrt{\mathbf{LS}}^{M}$: MC with Molière only $\sqrt{\mathbf{LS}}^{ML}$: MC with Molière + Energy loss $\sqrt{\mathbf{LS}}^{GL}$: MC with Gaussian + Energy loss

Intrinsic resolution determined

- Reference detectors: 7 μm
- S-ladder : 8 μ m
- K-ladder : 14 μm

Projected angle :

- Target : Pb = 0 mm
- Incident angle θ_1 : by the front two detectors
- Scattering angle θ_f : linear fit to the four down stream detectors

Projected angle

- \circ Target : Pb = 1 mm
- Incident angle θ_1 : by the front two detectors
- Scattering angle θ_f : linear fit to the four down stream detectors

Projected angle

- \circ Target : Pb = 2 mm
- Incident angle θ_1 : by the front two detectors
- Scattering angle θ_f : linear fit to the four down stream detectors

$\circ \ \mathrm{Pb} = 0 \ \mathrm{mm}$		
$\sigma_0(ext{data}) = 330 \ \pm$	$=$ 3 μ Rad	
	$\sigma({ m data})/\sigma({ m MC})$	$\chi^2/{f d.f}$
Molière+Loss	$1.010 \pm 0.009 \pm 0.030$	1.59
Gaussian+Loss	$0.976 \pm 0.010 \pm 0.030$	2.23

0	Pb = 1 mm		
	$\sigma_0(ext{data}) = 1275$	\pm 13 μ Rad	
		$\sigma({ m data})/\sigma({ m MC})$	$\chi^2/{ m d.f}$
	Molière+Loss	$0.997 \pm 0.011 \pm 0.024$	1.08
	Gaussian+Loss	$0.970 \pm 0.011 \pm 0.024$	2.03

 \circ Pb = 2 mm

σ_0	(data)) =	1561	± 11	μ Rad
------------	--------	-----	------	----------	-----------

	$\sigma({ m data})/\sigma({ m MC})$	$\chi^2/\mathbf{d.f}$
Molière+Loss	$0.956 \pm 0.008 \pm 0.024$	2.28
Gaussian+Loss	$0.952 \pm 0.008 \pm 0.024$	3.74

- Silicon strip detectors can provide high precision tracking for relativistic ion
- Multiple scattering agrees well with Molière theory and GEANT Gaussian approximation