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FIG. 4. Schematic figure of the saturation curve of nuclear
matter with a minimum at ρ0 = 0.17 fm−3 and the binding
energy given by the volume term aV in the Bethe-Weizsäcker
mass formula. An intermediate density ρ < ρ0 can be realized
as a spatial average over bubbles with the core with ρ ∼ ρ0
in the empty vacuum. Though the surface energy effect is
not considered in the above schematic figure where a simple
nucleon-gas picture is depicted, the actual bubble shapes in a
nuclear liquid depend on the surface term aS , etc.

imum as schematically shown in the upper panel of Fig. 4
it would be energetically preferable to form bubbles with
the core with ρ ∼ ρ0 rather than a homogeneous dis-
tribution of dilute ρ. If we consider the surface energy,
the density gradient (Weizsäcker) term, and the charge
neutrality, bubbles should take optimal shapes such as
the nuclear pasta (spaghetti, lasagna, etc) [26]. Such a
state of matter is nothing but a mixed phase associated
with the first-order phase transition, and importantly,
this argument already implies the existence of an inho-
mogeneous ground state near the liquid-gas transition.
In other words, if a mixed phase is characterized by a
typical wave number q, how can we strictly distinguish
such a phase from an inhomogeneous ground state? One
may think that in the case of quark matter the inhomo-
geneity is turned on not in the density only but in the
mass M unlike nuclear matter. We would stress, how-
ever, that M also controls the density and the physics is
just the same if seen in terms of the saturation curve as
in Fig. 3.

It is obvious from Fig. 3 that the vector interaction
as in Eq. (3) disfavors the first-order phase transition.
The minimum in ε/ρB is pushed up by the quadratic
term ∝ ρ2B and eventually the first-order phase transition
disappears when the minimum is lost, as demonstrated
by three solid curves in Fig. 3. In the chiral limit b =
0 the branch of M = 0 is separate, so that the first-
order phase transition survives regardless of the vector
interaction, which may change with different parameters
as we already pointed out. With finite b, however, two
branches with small and large M are smoothly connected
and the minimum diminishes for large b and gv in accord
to Fig. 2.

III. CHIRAL SPIRALS

One may find the usefulness of the saturation curve
for analyses with a wider range of model space. From
now on we shall consider the possibility to form inhomo-
geneous chiral condensates. We here utilize the simplest
Ansatz to introduce it, namely, the one-dimensional chi-
ral spiral; ⟨ψ̄ψ⟩ = χ cos(2qz) and ⟨ψ̄γ5τ3ψ⟩ = χ sin(2qz)
(see Ref. [27] for reviews). This ground state of the chi-
ral spiral can be equivalently described by a chiral ro-
tation ψ = eiγ5τ3qzψ′ with a homogeneous condensate
χ = ⟨ψ̄′ψ′⟩ in the chiral limit. Then, the quasi-particle
dispersion relation in the ψ′-basis is expressed as [27, 28]

ω̃p =
√

p2⊥ + (
√

p2z +M2 ± q)2 , (4)

where ± in front of q corresponds to the flavor and the
chirality that also depends on the sign of pz.

This type of inhomogeneity pattern has been consid-
ered repeatedly in various contexts such as the pion con-
densation in nuclear matter [28], large-Nc QCD [29], the
Overhauser instability [30], the quarkyonic spiral with
confining force [31], and so on. The dispersion rela-
tion (4) should be plugged into Ωmatter/V in Eq. (1).
Unlike the normal dispersion relation, we see that a large
part of the mass effect can be absorbed by q ∼ M , with
which ρ is no longer suppressed even at large M . This is
the reason why a first-order phase transition can occur
from the homogeneous hadronic phase to the chiral spiral
where M is substantially large. Also, we should point out
that the Ginzburg-Landau analysis in Ref. [32] to con-
clude that the chiral spiral is less favored might be inad-
equate; the largest energy gain in Ωmatter/V comes from
the region with large M where the Ginzburg-Landau ex-
pansion should not work.

The physical mechanism to lower the total energy is
the Overhauser effect as argued in Ref. [30]. In the ordi-
nary Overhauser instability the momenta of the spin-up
component are shifted up by pF and those of the spin-
down component are shifted down by pF, so that a gap
opens where two energy dispersion relations cross. In
(1+1)-dimensional NJL model the situation is completely
analogous [27]; a choice of q = 2µq eliminates the µq de-
pendence and the energy gain originates from the fact
that ρ is completely insensitive to M and thus ρ is never
suppressed by M in contrast to the homogeneous solu-
tion. In (3+1)-dimensional case, on the other hand, not
only pz but also p⊥ share the Fermi momentum, and so
the optimal q is not 2µq but rather q ∼ M which will be
confirmed by numerical calculations later.

Thus, Ωmatter always tends to favor the chiral spiral
with q ∼ M , while it is Ω0 that would hinder the growth
of q. In the leading order the vacuum part has an expan-
sion in terms of q as

Ω0[M, q]/V = Ω0[M, q = 0]/V + (αM2 + βb)q2 , (5)

where the first term with α > 0 is a “kinetic” term
against spatial modulation. This term should be van-

Self-bound fermionic systems 
     have a preferred density. 
Diluteness is realized as a 
     “mixed phase” of nuclei.

This is how this world 
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General Tendency to 1st-order PT2

a quasi-particle description. This means that we as-
sume a Fermi liquid of quark matter, which should be
valid for bulk thermodynamic quantities as long as T is
small enough and the Landau damping is a minor effect.
Strictly speaking, our strategy would work in a density
region between two onsets; one for quark deconfinement
and the other for color superconductivity. It is very hard
to quantify deconfinement and a phenomenological study
of the equation of state [18] implies that quark-hadron
crossover may start around the baryon density ρB ∼ 2ρ0
with the normal nuclear density ρ0 ≃ 0.17 fm−3. The
phase structure involving color superconductivity is more
ambiguous and severely dependent on the models around
ρB ∼ 5ρ0 [19]. Therefore we should restrict the validity
of our treatment within a range 2ρ0 ! ρB ! 5ρ0. This
is, however, a rather conservative estimate and should
be loosed at higher temperature where quarks would be
more liberated.
In this way the thermodynamic potential from quasi-

particles, ”matter, is expressed as a function of the effec-
tive mass M in a form of

”matter[M ]/V = −
∫ µq

0
dµ′ρ(µ′)

− 4NcNf T

∫
d3p

(2π)3
ln
(
1 + e−ωp/T

)
, (1)

where ρ(µ) is the quark number density defined by ρ(µ) =

2NcNf

∫ d3p
(2π)3 [nF(ωp − µ)− nF(ωp + µ)] with the Fermi-

Dirac distribution function, nF(ωp) = (eωp/T +1)−1, and

the quasi-particle energy, ωp =
√
p2 +M2. It is im-

portant to note that this µq-dependent matter part is
common in any quark models such as the (P)NJL and
the (P)QM models [14]. Then, the model uncertainty is
unavoidable in the vacuum part.
In a quasi-particle picture of quarks the vacuum part

could be expressed as ”0[M ]/V = −2NcNf

∫ Λ d3p
(2π)3 ωp +

U [M ] with a potential term. If we postulate it as
U [M ] = (M − m)2/(4gs), then ”0[M ] + ”matter[M ] ex-
actly amounts to the thermodynamic potential in the
NJL model with the bare mass m [20]. To implement
the U(1)A anomaly in the three-flavor case, we may add a
term−gd(M−m)3 in U [M ]. From now on, we shall adopt
a more general form of ”0[M ] inspired by the Ginzburg-
Landau expansion, i.e.

”0[M ]/V = a(M2
0 −M2)2 − bM − cM3 . (2)

Although the thermodynamic potential in hand is ex-
tremely simple, this setup sufficiently grasps the generic
features of the phase transition in cold and dense quark
matter. One may wonder if this polynomial form would
miss a logarithmic singularity as discussed in Ref. [21].
There are two reasons why this is not a serious problem
to our analysis: First of all, such a logarithmic singularity
is related to the infrared singularity of massless fermion
loops. As we will see later, we are more interested in the
massive case than the chiral limit and the effect of the
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FIG. 1. Potential shapes from Eqs. (1) and (2) at T = 0
with µq = 370 MeV. Ωmatter is model independent, while
the vacuum potential Ω0 leaves uncertainty. The parameters
in Ω0 are chosen as M0 = 340 MeV and the curvature from
a = 0.05 (≈ a value in the linear σ model) to a = 0.08 (≈ a
value in the NJL model), and b = c = 0.

logarithmic singularity is only minor then. Second, this
logarithmic term has no effect for the first-order phase
transition at large µq and T = 0 because the phase tran-
sition typically exists around M ∼ M0 (see Fig. 6), which
is far from the singularity near M = 0.

To enter the regime at higher temperature, one should
consider the meson fluctuations that may give rise to
T -dependent coefficients in Eq. (2). Therefore, strictly
speaking, our analysis is valid only in the region with
µq ≫ T . In what follows we consider only the c = 0
case, for we are interested in the mechanism in favor of
the first-order phase transition and c ̸= 0 would trivially
stabilize the first-order transition.

Figure 1 shows the typical behavior of the potential.
As discussed in Ref. [17] the matter part ”matter al-
ways has a minimum at M = 0 because the baryon
density is the largest when quasi-particles are mass-
less. Let us consider the condition for the first-
order phase transition in the case of T = 0 in which
Eq. (1) simplifies as: ”matter/V = −(NcNf/12π2)

(
pFµ3−

5
2M

2pFµ + 3
4M

4 ln[(µ + pF)/(µ − pF)]
)
θ(µ − M) with

pF =
√

µ2 −M2. In Ref. [17] the upper bound for the
curvature a was estimated under a reasonable but lim-
ited situation, µq ≃ M0. We can relax this numerically
only to find that a first-order phase transition can re-
main in the chiral limit (b = 0) unless we choose unphys-
ical parameters so that a phase transition takes place at
µq ≫ M0. Then ”matter stretches far beyond M ∼ M0

and the phase transition is no longer of first order.
This simple analysis tells us that the first-order phase

transition at T = 0 can occur since ”matter is propor-
tional to θ(µ − M) and ” does not have to contain a
M6 term, while ” is sometimes assumed to take a form
of c2M2 + c4M4 + c6M6 at T ̸= 0. Thus, the present

The grand potential is 
the sum of the vacuum 
part (symmetry breaking) 
and the matter part 

 

The sum may have a 
double-well structure 
(1st-order PT) or may 
not (crossover only).

Ωmat = − ∫
μ

m
dμ′￼n(μ)

One 
Minimum

Another Minimum?
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Inhomogeneous States?

Lifshitz 
point

the corresponding homogeneous analysis [89]. This is most likely an artifact of the cuto↵ regularization
used in these references, which spoils the GL property.11
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Figure 6: Left: Phase diagram for the NJL model, allowing for CDW-type modulations. The inhomo-
geneous phase corresponds to the the shaded region. Solid (dashed) lines indicate first (second) order
phase boundaries. The blue solid line inside the inhomogeneous region indicates the first-order phase
boundary which is obtained if the analysis is restricted to homogeneous phases. The corresponding CP,
which coincides with the LP, is marked by a dot. Right: Favored values of the amplitude � (black solid
line) and the wave number (divided by 2) Q = q/2 (red dashed line) for T = 0 as functions of µ.

The various model studies all agree that the transition from the homogeneous chirally broken phase
to the CDW phase is of first order. For T = 0 this can be seen from the right figure in Fig. 6, where the
amplitude and the half-wave number Q = q/212 of the favored solution are plotted as functions of the
chemical potential. At the onset of the inhomogeneous phase both quantities change discontinuously,
clearly signalling a first-order phase transition. In particular the wave number jumps from zero to a
finite value and grows further when the chemical potential is increased. The amplitude, on the other
hand, decreases and eventually goes to zero, marking the transition to the chirally restored phase. Since
this happens in a smooth way, we conclude that the phase transition is of second order, which is in
agreement with the findings of Sadzikowski and Broniowski [71]. In contrast, Nakano and Tatsumi
report a weak first-order transition to the restored phase [42]. Although the model details are not
completely identical, we believe that this discrepancy is more a numerical issue, since it is always a
delicate problem to distinguish a weak first-order from a second-order phase transition numerically.
In this context we remind that the GL analysis to 6th order predicts a second-order transition to the
restored phase [44, 83], although the relevance of higher-order terms cannot be excluded.13

We also note that in the “historic” phase diagram of Broniowski et al., Fig. 4, all phase transitions
are first order. Concerning the transition between CDW and restored phase this is simply due to the
fact that, for numerical reasons, the amplitude of the modulation was kept constant in the CDW, and
the thermodynamic potential was only minimized with respect to q. A second-order phase transition
to the restored phase is therefore obviously excluded by construction. The first-order phase transition
between the two homogeneous phases in Fig. 4, on the other hand, can be traced back to the omission
of the Dirac sea, as discussed in Sec. 3.2.

11In addition, Sadzikowski and Broniowski expanded the thermodynamic potential in powers of ~q 2 and neglected terms
of O(~q 4). In this way the model becomes e↵ectively a QM model where the Dirac sea is regularized by a finite cuto↵.

12 In the literature there are two standard definitions of the CDW modulations, which di↵er by a factor of 2 in the
periodicity. In this review, we reserve the letter q for the true wave number, cf. Eq. (88), while the introduction of Q = q/2
is motivated by the fact that in 1 + 1 dimensions one finds q = 2µ and hence Q = µ. In 3 + 1 dimensions Q is lower but
expected to approach µ at high chemical potentials.

13 Indeed, in Ref. [83] the 8th-order coe�cient was found to be negative in the relevant region. A similar e↵ect was
found in Ref. [72] in the context of color superconductivity.

27
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Fluctuation effects
It is known by now that phonon fluctuations wash out 
the 1-dimensional modulation but a remnant remains 
 = Quasi Long-Range Order

Hidaka-Kamikado-Kanazawa-Noumi (2015)

Finite B (magnetic) /  (rotation) breaks 3d symmetry 
 → Pseudo-1d Helical Structures

ω

Lee-Nakano-Tsue-Tatsumi-Friman (2015)

Chiral Magnetic Spirals / Kharzeev-Dunne (2010)
Chiral Soliton Lattice / Brauner-Yamamoto (2016)
Rotating CSL / Nishimura-Yamamoto (2020)



September 19, 2025 @ C3NT Wuhan

Magnetized Rotating Plasma

9

B
eB ∼ 𝒪(0.1 − 1) GeV

ω ∼ 𝒪(10) MeV
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Chiral Soliton Lattice

Quasi Long
Range Order

Primordial
Inhomogeneity

Fukushima-Hidaka-Inoue-Shigaki-Yamaguchi (2023)
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Recent analysis by Yamauchi (Hiroshima U.)
y’ = y - a cos(ky)

𝑎 = 2.5

結果2.  α = 0.1のとき
∆𝑞𝑦 = ∆𝑞𝑥 = 10MeV

200,000event

𝐶2(Δ𝑞𝑦)
𝐶2(0)

 w/mod
𝐶2(Δ𝑞𝑦)
𝐶2(Δ𝑞𝑥)

 w/mod

𝐶 2
(∆

𝑞 𝑦
) /

𝐶 2
(∆

𝑞 𝑥
or

0)

Source distribution: 
generated by AMPT 
modulated by hand

Previous (2023)

4

FIG. 4. Two-particle correlation from the AMPT data with

the spatial modulation. The tilting angle is fixed as ωn = 20
→
.

In the upper panel C(0)
2 is the correlation without!q cut. The

bottom panel show the correlation normalized by C(0)
2 .

baryon number (such as the ω meson), but the analy-
sis simply goes in the same manner (with more statistics
required). The particle distribution,

ε(p, r, t) =
∑

n

ϑ(p→ pn) ϑ(r → rn)ϑ(t→ tn) (4)

with (pn, rn, tn) the phase-space point of n-th particle
emulated by AMPT, is shifted as ε(p, r→ eya cos(ky), t)
in our simple Ansatz to implement the 1D modulation.
The modulation parameter, k, has the same meaning as
our Gaussian approach and let us choose k = 0.4 fm→1

again. The amplitude a is not dimensionless and we set
a = 5 fm in this work. This parameter of a is the least
known part in the whole discussions and should be re-
lated to the magnetic strength. In the future, we should
proceed to systematic investigations. It would be an in-
triguing question what a is the sensitivity bound for de-
tectability.

We mention that we mix 1000 events to make pairs.
Here, we consider the ϖ+-ϖ+ pairs and there are 416824
ϖ+’s from 1000 events (with the pre-selection of pz <
1GeV). Therefore, one event produces ↑ 400 ϖ+’s. If
we make pairs within each event, ↑ 8 ↓ 107 pairs are
possible from 1000 events. Since we mix 1000 events, the
number of possible pairs is ↑ 8 ↓ 1010, which e!ectively
corresponds to 1M events.

For the evaluation of ↔cos(q · r)↗ in the transport model
calculation, S(r) is approximated into the decomposed
form of s(r1)s(r2). Then, we should make a large number
of pairs, i and j, and make q = pi → pj and r = ri → rj
to take the average of cos(q · r). We note that the boost
e!ect to the rest frame is included but negligibly small.
The momentum filter is

√
q2x + q2z ↘ ”q . (5)

First, we shall consider the 1D limit of the analyses.
It is nearly impossible to find pairs with q ≃ n, i.e.,

qx = qz = 0, which corresponds to ”q = 0. Thus, we
emulate the 1D limit by computing ↔cos(qyry)↗ instead
of ↔cos(q · r)↗. Then, we see a bumpy signal in Fig. 4.
For reference, Fig. 4 also shows the two-particle corre-

lation for no ”q cut denoted by C(0)
2 which gives the

baseline not detecting the modulation.

We have numerically found that the signal is easily
washed out unless ”q is su#ciently small. In Fig. 4,
the middle curve between the 1D limit (upper) and
the no-modulation case (lower) represents the results for
”q = 3MeV. We have numerically constructed 3 ↓ 105

pairs from 416824 ϖ+’s that satisfy Eq. (5) and took the
average with the 2MeV bin in terms of Qinv =

√
|q2|.

Because qx and qz are much smaller than qy and the
boost e!ect to the pair rest frame is also small, the plots
are hardly changed if the horizontal axis is replaced from
Qinv to qy as in Fig. 3. In Fig. 4 the smoothed curves
over 20 data points (corresponding to the 40MeV bin)
are overlaid. We see that the signal is suppressed, but
still the deviation from the no-modulation case is signif-
icant. Therefore, in this scenario, we can conclude that
the HBT signature for the inhomogeneous state is su#-
ciently detectable in non-central collisions.

Finally, we mention that we have numerically checked
the ϱn dependence. Figure 3 shows strong suppression
for ϱn ⇐= 0, but we have found that the final signal can
survice. More specifically, we tilted the y-axis with ϱ =
15↑ and repeated the same calculation as in Fig. 4, and
then we confirmed that the signal (middle curve in Fig. 4)
is hardly a!ected. We also tested the signal for ϱn = 30↑,
and in this case the peak disappears. These observations
are understandable; as long as a peak is prominent at
the level in the 1D limit as seen in Fig. 3, the peak can
persist if ”q is su#ciently small.

V. CONCLUSION

We discussed a possibility of clustered substructures
in hot and dense matter along the axis parallel to the
magnetic field. Even if the magnetic field lives short,
the pseudo one-dimensional nature in the early dynam-
ics can favor the primordial inhomogeneity. We proposed
a novel approach to probe the inhomogeneous state us-
ing the HBT measurement. Our analytical calculation in
the Gaussian formalism exhibits a pronounced peak at
the relative momentum corresponding to the wave num-
ber of spatial modulation. To assess the feasibility we
adopted the phase-space distribution of particles gener-
ated by AMPT and computed the two-particle correla-
tion with the spatial modulation. We found that the sig-
nal peak could be suppressed but still persist under the
appropriate momentum filter. Our results are promising
enough and the HBT correlations should deserve further
systematic investigations.

Now in progress

Signal?

結果1. 𝑦′ = 𝑦 − 𝑎 cos(𝑘𝑦) : 
𝐶2(Δ𝑞𝑦)
𝐶2(Δ𝑞𝑥)

∆𝑞𝑦 = ∆𝑞𝑥 = 30MeV
𝜋+ ∶ 100,000events

𝐶2 = 1 +< cos(𝑞 ∙ 𝑟) >

Δ𝑞𝑦 ≥ 𝑞𝑥
2 + 𝑞𝑧

2 

Δ𝑞𝑥 ≥ 𝑞𝑦
2 + 𝑞𝑧

2

𝑞𝑖𝑛𝑣 = |Δ𝐸2 − 𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2 |

𝐶 2
(∆

𝑞 𝑦
) /

𝐶 2
(∆

𝑞 𝑥
)

[My Study]

𝑦′ = 𝑦 − 𝑎 cos(𝑘𝑦)
𝑎 = 2.5fm

w/o mod
w/ mod
w/ mod Fix 20°
w/ mod σ=20°

Clear Signal!

HBT detects clusters?
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have similarly. Figure 1 displays the evolution of the
maximum rest-mass density as function of time for 1.35-
1.35 M� simulations with the DD2F-SF-1 (green) and
the purely hadronic counterpart DD2F (black). The dot-
ted horizontal green lines indicate the onset density ⇢onset
of the phase transition at T = 0 and 20 MeV for beta-
equilibrium. During the inspiral phase the central density
of the stars is below the transition density and the two
systems evolve identically. The two stars merge at about
7 ms and form a single central object associated with a
steep increase of the maximum rest-mass density. For the
quark matter EOS the density rises above the threshold
for the hadron-quark phase transition, reaching the pure
quark matter phase. A quark core forms in the center
of the merger remnant. The mass enclosed inside the
quark matter core comprises about 20–30% of the to-
tal mass. The maximum density in the calculation with
the purely hadronic EOS always remains below that of
DD2F-SF-1. The stronger density increase in the model
with quark matter is a direct consequence of the density
jump across the phase transition and the sti↵ening only
at higher densities.

GW spectrum: The di↵erent evolution of the mergers
with and without phase transition to quark matter is re-
flected in the GW signal. Figure 2 shows the GW spectra
of the cross polarization at a distance of 20 Mpc along the
polar axis comparing the DD2F-SF-1 EOS (green) and
the DD2F EOS (black). During the pre-merger phase
the GW signals reach a maximum frequency of about
1.7 kHz, and the GW spectra are similar below this fre-
quency. The high-frequency content of the spectra is
shaped by the postmerger stage and significant di↵er-
ences between the two simulations are apparent. In par-
ticular, the frequency fpeak of the dominant oscillation
of the postmerger phase is clearly di↵erent. This peak
is a robust and generic feature that occurs in all sim-
ulations which do not directly form a black hole after
merging [32, 98–102].

The frequency of the main peak depends sensitively on
the EOS [98–100, 103]. It has been found [31, 32] that
fpeak scales tightly with radii R of nonrotating cold NSs
for di↵erent fixed binary masses (cf. Figs. 9–12 and 22–
24 in [32]). In turn, these relations fpeak(R) o↵er the
possibility to determine NS radii from a measurement of
the dominant postmerger GW frequency [44–48].

Moreover, during the inspiral phase of NS mergers
finite-size e↵ects are measurable and encoded in the tidal
deformability ⇤ = 2

3k2
�
R
M

�5
with the tidal Love number

k2 [21, 23]. Considering the strong dependence of ⇤ on
NS radii, it is clear that fpeak also correlates with the
tidal deformability of NSs (see Fig. 3 and [104, 105] for
plots with the tidal coupling constant including di↵erent
total binary masses). It is conceivable that ⇤ will be
measured with significantly better precision in future ob-
servations compared to GW170817, which resulted in a
measurement uncertainty on ⇤ of a 1.4 M� NS of about

1 2 3 4 5
f [kHz]

10�23

10�22

10�21

10�20

h
e�

,x
(2

0
M

p
c)

fpeak

DD2F-SF-1

DD2F

FIG. 2: GW spectrum of the cross polarization at a distance
of 20 Mpc along the polar axis comparing the DD2F-SF-1
EOS (green curve) and the DD2F EOS (black curve).

510 at the 90% level [6, 40, 41]. For instance, an event
similar to GW170817 would reduce this error by a factor
of about 3 once the detectors reach their design sensitiv-
ity [22, 24–30]. Similarly, it is expected that the dom-
inant postmerger frequency will be measured to within
a few 10 Hz in future nearby events with the projected
improvements for the current generation of detectors [44–
49].
Observational signature of phase transitions: In Fig. 3

we show the dominant postmerger frequency fpeak as
function of the tidal deformability ⇤1.35 = ⇤(1.35 M�)
for the 1.35-1.35 M� mergers for all EOSs of this study.
As anticipated, fpeak scales tightly with the tidal de-
formability for all EOS models (black symbols). There
is only one exception: the DD2F-SF EOSs lead to signif-
icantly higher peak frequencies of 3.3 kHz to 3.7 kHz
(green symbols). The purely hadronic counterpart of
these EOS models without phase transition yields a peak
frequency of only 3.098 kHz, while the tidal deformability
parameters are identical for both types of EOSs.

Excluding the hybrid models DD2F-SF, ALF2 and
ALF4 we obtain a least square fit

fpeak = (6.486 ⇥ 10�7 ⇤2 � 2.231 ⇥ 10�3 ⇤ + 4.1) kHz ,
(1)

for all purely hadronic EOSs (solid curve in Fig. 3). The
maximum deviation between data (black symbols) and
the fit Eq. (1) is 113 Hz (grey band in Fig. 3), with an
average scatter of 44 Hz [123]. In comparison, for the
DD2F-SF-1 model the peak frequency is 448 Hz above
the value which is expected from the fpeak(⇤) fit for the
given tidal deformability of this EOS.

A deviation of nearly 0.5 kHz is significant also if we
assume a measurement accuracy of the tidal deforma-
bility of 100–200 and of several tens of Hz for the peak

Bauswein-Bastian-Blaschke-Chatziioannou-Clark-Fischer-Oertel (2018)

Evidence of 
First-Order?
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Can we see the phase transition with the GW signal?
Most-Papenfort-Dexheimer-Hanauske-Schramm-Stocker-Rezzolla (2018)

CMFQ : EOS with a strong-1st PT to Quark Matter (3~4 times ) 
CMFH : EOS without quarks
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FIG. 4. Properties of the GW emission for the low- (left panels) and high-mass binaries (right panels). The top panels report the strain h22

+ for
the two EOSs, together with the instantaneous GW frequency fGW (semitransparent lines); the bottom panels show the phase difference ��
between the two signals. The inset in the top-right panel highlights the differences in the ringdown.

As can be seen from the last marker of the density evolu-
tion in Fig. 3, the HMNS core undergoes a complete PT to
quarks and the whole HMNS collapses immediately after the
PT. Note that the region of highest temperature is initially at
densities smaller than ⇠ nsat, but the temperature is suffi-
ciently high for quarks to appear in small amounts. After the
HMNS core crosses the PT boundary, the maximum temper-
ature rises steeply and thus the fluid elements with maximum
density and temperature coincide.

We complete our discussion of the PT by considering its
signatures on the GW emission by means of the strain, fre-
quency and phase difference, which are reported in Fig. 4 for
the low- and high-mass binary. Note that because the den-
sities and temperatures during the inspiral are too small to
cause the formation of quarks, the GW signal is identical for
the two EOSs and for both masses. This is radically differ-
ent from what happens when comparing merger simulations
using EOSs with and without hyperons, as these show differ-
ences in the GW signal already during the inspiral [9, 10], due
to the softening caused by the presence of hyperons. For such
EOSs, a dephasing is thus always present, both during the in-
spiral and after the merger, since there are always portions of
the stars with intrinsically different EOSs. In our case, in-
stead, it is only after the merger that differences arise due to
the presence of quarks.

For the low-mass binary, and after ⇠ 5 ms from the merger,
the GWs from the remnants start to show a linear dephasing
that reaches about three radians by the time the binary with the
CMFQ EOS collapses to a black hole (bottom-left panel). The
start of the phase difference, which is essentially zero even af-
ter the merger, coincides with the formation of the two hot
spots and, thus, with the appearance of quarks. In fact, al-
though Yquark is very small at those times, it is sufficient to
produce changes in the pressure of ⇠ 5%, that are responsi-
ble for the changes in the GW emission, both in amplitude
and in frequency (top-left panel), thus producing a mismatch

between two post-merger spectra [42–47]. These changes in
pressure also lead to a small damping of the GW amplitude
prior to collapse, which is triggered by the first-order PT for
the CMFQ EOS. Hence, the lifetime of the HMNS is shorter
than in the purely hadronic case.

In many respects, the left panels of Fig. 4 are a representa-
tive example of the signatures of a PT in a binary merger. In
an idealized scenario where the GW signal from the inspiral
is measured with great precision and can be associated with
confidence to a purely hadronic EOS (the inspiral can only
probe comparatively low-density regions of the EOS), the
unexpected dephasing of the template-matched post-merger
signal [48, 49], together with the anticipated collapse of the
HMNS, would provide evidence that a PT at several times
nsat, possibly of the type described here, has taken place in
its core. Of course, a single detection could still be accomo-
dated via a tweaking of the EOS in the high-density part of
a hadronic EOS. However, the “tweaking” would be increas-
ingly hard with multiple detections as it cannot describe the
complex nonlinear occurrence of the PT.

The right panels of Fig. 4 report the properties of the GW
signal for the high-mass binaries, both of which collapse very
rapidly for EOSs with and without quarks. The differences in
this case are harder to detect since the dephasing starts only
after ⇠ 5 ms, but is very quickly suppressed by the collaps-
ing signal. The latter, however, is different, as shown in the
small inset in the top-right panel of Fig. 4, where the two
ringdown signals are suitably aligned. These differences are
caused by distinct free-fall times of the cores of the HMNSs,
which are shorter in the case of the ultra-softened EOS with
quarks. Although these differences are not large (the relative
difference in the ringdown-frequency is . 25%, yielding an
overlap of only O = 0.92 [50, 51]) they are large enough
to be distinguishable if detected by third-generation GW de-
tectors [52, 53]. As a final remark, we point out that all of
the dynamics reported above is found also when simulating

Quark matter shortens the 
lifetime of post-merger 
supramassive/hypermassive 
     ( uniform / differential ) 
neutron star.

What if the transition is only a smooth crossover?
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Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)
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Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)
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FIG. 6. Gravitational waveform (left) and spectrum (right) for the model 1.4–1.35. The purple and green curves show the results
for the CO and PT scenarios, respectively. The spectrum is presented for a hypothetical distance of 100Mpc and compared
with the design sensitivity of Advanced LIGO (ALIGO) and Einstein Telescope (ET-D) [89]. Wiggles on the spectrum for the
CO scenario is caused by the minor amplitude peak at the moment of black-hole formation.

FIG. 7. Same as the left panel of Fig. 6 but for the models 1.25–1.25 (top left), 1.4–1.4 (top right), 1.55–1.55 (left bottom),
and 1.7–1.7 (right bottom).

Post-merger stage is very challenging to see:
3

have similarly. Figure 1 displays the evolution of the
maximum rest-mass density as function of time for 1.35-
1.35 M� simulations with the DD2F-SF-1 (green) and
the purely hadronic counterpart DD2F (black). The dot-
ted horizontal green lines indicate the onset density ⇢onset
of the phase transition at T = 0 and 20 MeV for beta-
equilibrium. During the inspiral phase the central density
of the stars is below the transition density and the two
systems evolve identically. The two stars merge at about
7 ms and form a single central object associated with a
steep increase of the maximum rest-mass density. For the
quark matter EOS the density rises above the threshold
for the hadron-quark phase transition, reaching the pure
quark matter phase. A quark core forms in the center
of the merger remnant. The mass enclosed inside the
quark matter core comprises about 20–30% of the to-
tal mass. The maximum density in the calculation with
the purely hadronic EOS always remains below that of
DD2F-SF-1. The stronger density increase in the model
with quark matter is a direct consequence of the density
jump across the phase transition and the sti↵ening only
at higher densities.
GW spectrum: The di↵erent evolution of the mergers

with and without phase transition to quark matter is re-
flected in the GW signal. Figure 2 shows the GW spectra
of the cross polarization at a distance of 20 Mpc along the
polar axis comparing the DD2F-SF-1 EOS (green) and
the DD2F EOS (black). During the pre-merger phase
the GW signals reach a maximum frequency of about
1.7 kHz, and the GW spectra are similar below this fre-
quency. The high-frequency content of the spectra is
shaped by the postmerger stage and significant di↵er-
ences between the two simulations are apparent. In par-
ticular, the frequency fpeak of the dominant oscillation
of the postmerger phase is clearly di↵erent. This peak
is a robust and generic feature that occurs in all sim-
ulations which do not directly form a black hole after
merging [32, 98–102].

The frequency of the main peak depends sensitively on
the EOS [98–100, 103]. It has been found [31, 32] that
fpeak scales tightly with radii R of nonrotating cold NSs
for di↵erent fixed binary masses (cf. Figs. 9–12 and 22–
24 in [32]). In turn, these relations fpeak(R) o↵er the
possibility to determine NS radii from a measurement of
the dominant postmerger GW frequency [44–48].

Moreover, during the inspiral phase of NS mergers
finite-size e↵ects are measurable and encoded in the tidal
deformability ⇤ = 2

3k2
�
R
M

�5
with the tidal Love number

k2 [21, 23]. Considering the strong dependence of ⇤ on
NS radii, it is clear that fpeak also correlates with the
tidal deformability of NSs (see Fig. 3 and [104, 105] for
plots with the tidal coupling constant including di↵erent
total binary masses). It is conceivable that ⇤ will be
measured with significantly better precision in future ob-
servations compared to GW170817, which resulted in a
measurement uncertainty on ⇤ of a 1.4 M� NS of about
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FIG. 2: GW spectrum of the cross polarization at a distance
of 20 Mpc along the polar axis comparing the DD2F-SF-1
EOS (green curve) and the DD2F EOS (black curve).

510 at the 90% level [6, 40, 41]. For instance, an event
similar to GW170817 would reduce this error by a factor
of about 3 once the detectors reach their design sensitiv-
ity [22, 24–30]. Similarly, it is expected that the dom-
inant postmerger frequency will be measured to within
a few 10 Hz in future nearby events with the projected
improvements for the current generation of detectors [44–
49].
Observational signature of phase transitions: In Fig. 3

we show the dominant postmerger frequency fpeak as
function of the tidal deformability ⇤1.35 = ⇤(1.35 M�)
for the 1.35-1.35 M� mergers for all EOSs of this study.
As anticipated, fpeak scales tightly with the tidal de-
formability for all EOS models (black symbols). There
is only one exception: the DD2F-SF EOSs lead to signif-
icantly higher peak frequencies of 3.3 kHz to 3.7 kHz
(green symbols). The purely hadronic counterpart of
these EOS models without phase transition yields a peak
frequency of only 3.098 kHz, while the tidal deformability
parameters are identical for both types of EOSs.

Excluding the hybrid models DD2F-SF, ALF2 and
ALF4 we obtain a least square fit

fpeak = (6.486 ⇥ 10�7 ⇤2 � 2.231 ⇥ 10�3 ⇤ + 4.1) kHz ,
(1)

for all purely hadronic EOSs (solid curve in Fig. 3). The
maximum deviation between data (black symbols) and
the fit Eq. (1) is 113 Hz (grey band in Fig. 3), with an
average scatter of 44 Hz [123]. In comparison, for the
DD2F-SF-1 model the peak frequency is 448 Hz above
the value which is expected from the fpeak(⇤) fit for the
given tidal deformability of this EOS.

A deviation of nearly 0.5 kHz is significant also if we
assume a measurement accuracy of the tidal deforma-
bility of 100–200 and of several tens of Hz for the peak

↓ Our crossover case… no difference?

Maybe the stiffness 
can be constrained 
by the peak position.
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Kilonova brightness: 
ejected mass > 0.05M⊙

 天文月報　2021年 1月18

いう観測ネットワークを組織し，2015年に初めて
重力波が観測されて以来，継続的に重力波天体の
電磁波対応天体の観測を行ってきた [17‒21]．日
本時間2017年8月17日の夜にGW170817の検出
の速報を受け，8月18日の未明にはLIGO（2台）
とVirgoの計3台の干渉計のデータから重力波の
到来方向が30平方度程度と精度良く定まった．
対応天体を発見するには格好のターゲットである
（30平方度というと可視光・赤外線天文学では広
大な領域だが，重力波天体の追観測をしていると
1,000平方度を超えるイベントを見慣れているため，
既に感覚が麻痺してきている）．幸運にもすばる
望遠鏡に超広視野カメラHyper Suprime-Cam
（HSC）が搭載されており，30平方度であれば大
半の領域をカバーできそうである．そうこう考え
ているうちに，J-GEMのメンバーで，すばる望
遠鏡HSCの開発者の一人である内海洋輔氏が驚
くほどのスピードで実際の観測領域を決定してく
れた．
日本時間8月18日の朝，ハワイで日が沈むのを

待ちながら観測の準備を始めた矢先，チリの望遠
鏡による可視光観測によって，40 Mpcの距離に
ある銀河NGC 4993に今まで存在しなかった天体
が発見されたという情報が飛び込んできた．この
時ハワイではまだ15時頃である．これほど地球
の自転の遅さを恨んだ日は人生で後にも先にもな
い．しかし，この時点ではその天体が対応天体か
は分からないため，すばる望遠鏡ではその広視野
サーベイ能力を生かして，なるべく広い領域を観
測することにした．日没後，まずはNGC 4993が
視野に入る領域を観測し，確かに新しい天体が現
れていることが確認できた（図2, [22]）．今思え
ば，これが重力波天体が画像におさめられたのを
初めて見た瞬間だったが，この天体が対応天体か
は定かではなかったこともあり，観測に立ち会っ
たメンバーも 「確かにいるね」 という反応で，大
きな感動はなかったと記憶している．そのまま
HSCでは内海氏のプランに従って重力波到来方

向のサーベイ観測に移った．
その後も J-GEMではNGC 4993に現れた天体

（AT 2017gfo） の追観測を続け，HSCによる観測で
は可視光の明るさが急激に暗くなっていったこと，
南アフリカに設置された名古屋大学 IRSF望遠鏡
での観測では赤外線で10日間にかけて長く輝いた
ことが確認された （図3, [23]）．次章で紹介する通

図2 GW170817の電磁波対応天体．左が Pan- 
STARRS1望遠鏡による合体前の画像で，右が
すばる望遠鏡HSCで8月18日に得られた画像
[22]．対応天体の場所を線で表している．右下
の明るい領域がNGC 4993．画像の大きさはお
よそ1分角．

図3 GW170817の対応天体の光度曲線．横軸は合
体からの日数を表し，縦軸は観測等級（左）と
距離を加味して変換した絶対等級（右）を表
す．大きい点は J-GEMによって得られたデー
タ [23] で， 小さい点は他のグループによって
得られたデータ[24]．線はキロノバの中性子過
剰度が中間の場合（図4）の数値計算結果 [6]．

◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆欧文研究報告論文賞

AT 2017 gfo

Illustration from Korobkin+ (2021)

Brightness and 
“color” depend on 
the EoS and the 
total mass.
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FIG. 9. Evolution of the maximum rest-mass density of the system for various models in the CO scenario. The left panel
shows the results for the equal-mass models with di↵erent values of m0. The right panel shows the results for the models with
m0 = 2.75M� with di↵erent values of q. The dotted line indicates the maximum mass of a spherical neutron star for the CO
scenario, that is ⇡ 1.5⇥ 1015 g cm�3.
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FIG. 10. Lifetime of the remnant, tlife, as a function of the total mass of the system, m0, for equal-mass (q = 1) models
(left) and tlife as a function of the mass ratio, q, for m0 = 2.75M� models (right). The large-purple and small-green symbols
represent the results for the CO and PT scenarios, respectively. Results for high (⇡ 190m) and low (⇡ 280m) resolutions are
shown by circles and squares, respectively, for the check of numerical uncertainties.

E. Remnant disk and ejected material

Electromagnetic counterparts to compact binary merg-
ers also provide us with valuable information about the
merger dynamics and the underlying EoS properties. Al-
though the detailed prediction of electromagnetic signals
is out of our current scope, the masses of the remnant
disk and the ejected material serve as a basis for fu-
ture considerations. In particular, because the kilonova
AT 2017gfo, that followed GW170817, is likely to require
massive ejecta of ⇡ 0.05M� [100, 101], the realistic EoS
must leave this amount of material in any form outside
the black hole at the very least. In reality, substantially
larger masses will be required, because the ejection e�-
ciency from the remnant disk is likely to be O(10%) (see,

e.g., Refs. [102–104]).

In this study, we estimate the amount of unbound ma-
terial based on the Bernoulli criterion. That is, the mate-
rial outside the apparent horizon is regarded as unbound
if�hut > 1, and vice versa, where ut is the covariant time
component of the four velocity. It should be cautioned
that this criterion could overestimate the amount of mass
ejection, because the internal energy is not necessarily
converted to the kinetic energy before the fallback. On
another front, the geodesic criterion based on �ut rather
than �hut inevitably underestimates the unbound mass
(see Refs. [105, 106] for further discussions). Precise eval-
uation requires longterm simulations incorporating the r -
process heating [107–109]. Fortunately, this uncertainty
does not a↵ect our discussion about AT 2017gfo, because

Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)

Bright 
Kilonova

No Kilonova

Dark (red) 
Kilonova

In the near future, 
more data should 
be accumulated, 
and then, we can 
say much more 
about PT !
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Fujimoto-Fukushima-Kamata-Murase (2018-2024)
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Fujimoto-Fukushima-Kamata-Murase (2018-2024)
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Love number, we compute the binary tidal deformability as

⇤̃ :=
16

13

(12M2 + M1) M4
1
⇤1 + (12M1 + M2) M4

2
⇤2

(M1 + M2)
5

.

(6)
For any choice of M1,2 and R1,2, we then reject those EOSs
with ⇤̃ > 720 for a chirp mass Mchirp := (M1M2)3/5(M1+
M2)�1/5 = 1.186M� and q := M2/M1 > 0.73 as required
for consistency with LIGO/Virgo data for GW170817 (Ab-
bott et al. 2018).

3. RESULTS

In order to build the various PDFs, we discretize the cor-
responding two-dimensional space of solutions (e.g., in the
(M, R) space) in 700 ⇥ 700 equally spaced cells (either lin-
early or logarithmically), count the number of curves that
cross a certain cell and normalize the result by the maximum
count on the whole grid. Because the normalization is made
in two dimensions, slices along a fixed direction do not yield
normalized distributions.

Figure 1 shows the PDF of c2s as a function of the energy
density, with the purple region marking the 95% range of
maximum central energy densities, that is, the central en-
ergy density reached by any EOS by the star with the max-
imum mass M

TOV
. Stated differently, the right edge of the

purple region (vertical purple line) marks our estimate for
the largest possible energy density encountered in a neu-
tron star; in our sample, we obtain the median ec,TOV =
1064+399

�244
MeV/fm3 at 95% confidence.

Note that the PDF shows a steep increase to c2s & 1/3 for
e . 500 MeV/fm3, thus signalling a significant stiffening of
the EOS at these densities and a subsequent decrease of the
sound speed for larger energy densities. As a result, the PDF
illustrates how a nonmonotonic behaviour is most natural for
the sound speed, hence how the physical and observational
constraints favour scenario iii). Models for quarkyonic mat-
ter (see, e.g., McLerran & Reddy 2019)) typically show a
peak at low densities similar to the one in our PDF (Hippert
et al. 2021).

The orange line in Fig. 1 marks the region of the EOSs
that are sub-conformal, i.e., with c2s < 1/3, at all densi-
ties (the horizontal dashed line that marks c2s = 1/3). Note
that around 500 MeV/fm3, the orange contour spans a very
thin region, indicating that at these energy densities the sub-
conformal EOSs have an obvious upper bound c2s < 1/3,
but also a less-obvious lower bound c2s & 0.2. This is an
important feature that explains why these EOSs are so dif-
ficult to produce. Indeed, as revealed by the colormap, the
number of EOSs that fall in this region is very small and
amounts to only ' 5⇥10�5 of the total. The fraction of sub-
conformal EOSs increases slightly if we restrict the range of
densities to those that are admissible for neutron-star interi-
ors, becoming ' 3 ⇥ 10�4 of the total. The reason for this
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Figure 1. PDF of the sound speed squared as function of the energy
density. The purple region marks the 95%-interval of maximum
central energy densities, so that the vertical purple line represents an
estimate for the largest possible energy density in a neutron star. The
orange contour marks the region containing EOSs with c2s < 1/3.

increase is that many of the EOSs that are sub-conformal for
e . 300 MeV/fm�3, tend to stiffen at larger energy densi-
ties, thus becoming super-conformal.

The colormap of the PDF in Fig. 1 also reveals the presence
of a second peak at large energy densities, close to where the
perturbative QCD boundary conditions are imposed and re-
flects artefacts of the parametrization method, which allows
for large variations in the sound speed at very high energy
densities, where c2s is expected to be close to the asymptotic
value 1/3. Fortunately, the energy densities where this sec-
ond peak appears are far from those expected in the interior
of neutrons stars. It is also possible to reduce the extent of
this second peak by imposing a criterion that filters out EOSs
whose sound speeds vary strongly on small scales as done
by Annala et al. (2020). However, given the very poor knowl-
edge of the behaviour of the sound speed at these regimes,
we prefer to report the unfiltered results. What matters here
is that, when imposed, the filtering has no significant impact
on the PDF at the energy densities that are relevant for stellar
interiors (see the Appendix for a discussion).

Figure 2 shows the corresponding PDF of the pressure as
a function of the energy density with the same conventions
as in Fig. 1. In addition, we indicate with a gray line the
outer envelope of all constraint satisfying solutions, which is
very similar to the one found by Annala et al. (2020). How-
ever, an important difference with respect to Annala et al.
(2020), where no information on the distribution is offered,
is that the PDF reveals that the large majority of EOSs ac-
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obtain nB,peak = 0.54+0.09
�0.07 fm�3 which corresponds to

µB,peak = 1.283+0.090
�0.070 GeV.

The behavior of the speed of sound shown in Fig. 1 is
very di↵erent from that obtained in QCD matter at finite
temperature [46, 47]. Based on the first principle lattice
QCD (LQCD) calculations, it is known that c2s never ex-
ceeds the conformal limit and exhibits a minimum at the
critical energy density ✏c = 0.42± 0.06 GeV/fm3, where
chiral symmetry is partially restored and quarks are de-
confined [48, 49]. Decrease of c2s with energy density
towards its minimum from the hadronic side is linked to
attractive interactions with resonance formation [49, 50].
Very di↵erent behavior in a cold nuclear matter of c2s is
due to the dominance of repulsive interactions which im-
plies increasing c2s with energy density towards its max-
imum [51]. Considering that quark deconfinement could
be linked to a non-monotonic behavior of c2s, one can
identify the maximum of c2s as being due to a phase
change from nuclear to quark or quarkyonic matter.

Phenomenologically, deconfinement can be linked to
the percolation of hadrons of a given size [35, 52–55].
Relating the peak in the speed of sound to the perco-
lation threshold in QCD, one can estimate the critical
density at which nucleons start to overlap. In percolation
theory of objects with constant volume V0 = (4/3)⇡R3

0
,

this critical density is given by nper
c = 1.22/V0 [35]. Re-

cently, the proton mass radius was extracted from the
experimental data of � photoproduction measured by
CLAS [56] and LEPS [57] collaborations. The average
from these experiments yields R0 = 0.80 ± 0.05 fm forp
s 2 [2.02, 2.29] GeV. [58] 1. Consequently, this yields

nper
c = 0.57+0.12

�0.09 fm�3, which is remarkably consistent

1 We note that the proton radius is still not well established and
can be as small as 0.55 fm (see, e.g., Fig. 9 in Ref. [58])

with nB,peak = 0.54+0.09
�0.07 fm�3 where c2s reaches its max-

imum.

The extracted parameters of the energy density and
particle density corresponding to the percolation thresh-
old in the NS EoS can be compared with the values ob-
tained in hot QCD matter at the chiral crossover tem-
perature Tpc = 156.5 ± 1.5 MeV, where quarks are de-
confined. From the discussion above, it is clear that the
energy density at the peak position of the speed of sound
is of the same order as the LQCD critical energy den-
sity ✏c = 0.42± 0.06 GeV/fm3 at deconfinement [48]. It
is interesting to note that ✏c corresponds to the energy
density inside the nucleon, ✏0 ' mN/V0. Indeed, con-
sidering the nucleon mass radius r0 ' 0.8 fm, one gets
✏0 ' 0.44 GeV/fm3.

Particle density nc in QCD matter at Tpc can be es-
timated based on the thermal model analyses of parti-
cle production in heavy ion collisions and experimental
data [59, 60]. There it was shown that in Pb-Pb col-
lisions at

p
s = 2.76 TeV hadrons are produced at the

QCD phase boundary at Tpc from the fireball of volume
V = 4175 ± 380 fm3 [35, 59, 60]. Taking the ratio of
number of hadrons per unit of rapidity Nt = 2486± 146,
measured by ALICE collaboration, and the above fire-
ball volume, one gets nc = 0.596 ± 0.065 fm�3. This
value is consistent with the critical percolation density
and the extracted density nB,peak at the peak position of
the speed of sound.

Following the above discussion, one can conclude that
the appearance of the maximum in speed of sound in
the interior of NSs can be attributed to the change of
medium composition, from hadronic to quark or quarky-
onic matter. Thus, purely hadronic NS EoS has limited
applicability up to the extracted critical percolation con-
ditions. These are of the same order as found in QCD
at finite temperature and vanishing or small baryon den-

Marczenko-McLerran-Redlich-Sasaki (2022)
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FIG. 2. Marginal Posterior probability distributions at the 95% and 68% level for the Gaussian (left) and Segments parametri-
sation (right) for the squared speed of sound c

2
s and pressure P as a function of energy density ". At each ", there exist 95% and

68% Posterior credible intervals for c
2
s(") and P ("). These intervals are connected to obtain the Prior credible bands. Similarly,

the medians of the marginal Posterior probability distributions at each " are connected (solid lines). Grey areas mark the 68%
credible intervals of the central energy densities of neutron stars with masses M = 1.4 M� (left columns) and 2.1 M� (right
columns) in each figure. The dashed black line indicates the value of the conformal limit for the speed of sound and the APR
EoS [106] for the pressure.

in the present work, highest density intervals were used,
these intervals would reach to smaller radii. There is
good agreement with the masses and tidal deformabili-
ties derived in Ref. [112] for the two neutron stars in the
merger event GW170817. Finally, if we use the NICER
data analyses by Riley et al. for the inference procedure
instead of the one by Miller et al., we find very similar
results. So we can restrict ourselves to the latter.

Tab. II shows medians and credible intervals for se-
lected properties of neutron stars with characteristic
massesM = 1.4M� or 2.1M�, including the central den-
sity, the energy density and pressure as well as the radius
and tidal deformability. Again these numbers demon-
strate agreement within uncertainties between the two
parametrisations.

At the 95% level (version S) the inferred radius of
a 1.4M� neutron star, R = 12.7+0.6

�0.9 km, agrees with
the values found in Ref. [39] for a piecewise polytrope
parametrisation and a speed of sound model similar to
our Gaussian parametrisation, while the authors addi-
tionally included constraints from modelling of the kilo-

nova AT2017gfo. The 68% credible intervals of the radius
and tidal deformability of a 1.4M� neutron star listed
in Tab. II agree within uncertainties with the results
in Ref. [49] which include a theory prediction and the
PREX II measurement of the 208Pb neutron skin thick-
ness. Our result for the 1.4M� radius also agrees with
the value found in Ref. [54], where the authors addition-
ally incorporated constraints on the EoS deduced from
relativistic heavy-ion collisions.
For a 2.1M� neutron star representative of the heav-

iest currently observed star, the inferred radius is R =
11.6 ± 1.0 km, the tidal deformability is ⇤ = 15+18

�10 and
the central density is nc = 4.8 ± 1.6n0. In the Bayesian
analysis of Ref. [12], no ChEFT constraint was included
at low densities. Their prediction for the radius of a
neutron star with mass M = 1.4M�, based on multiple
di↵erent parametrisations, agrees nonetheless with our
result at the 68% level. Their result for the radius of the
2.08M� neutron star is larger compared to our result
for the radius of a generic 2.1M� neutron star. How-
ever, within the 68% credible intervals the two results

Brandes-Weise-Kaiser 
(2022)

Supporting the peak!
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FIG. 7. Pressure divided by net baryon-number density versus nB/T
3 (left) and nB/n0 (right), respectively. Shown are results

for strangeness-neutral, isospin-symmetric matter at several values of T . In the left hand figure we compare results obtained
from the full Taylor series for the pressure with those obtained in O

�
µ̂4
B

�
only (dashed lines). In the right hand side the grey

bands show a comparison with O
�
g2
�
high-T perturbation theory. The bands shown in both figure are shown up to values of

nB/T
3 or nB/n0 corresponding to µ̂B = 2.5 for T < 200 MeV and µ̂B = 3 otherwise.
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FIG. 8. The µ̂B-dependent contribution to the trace anomaly
in (2 + 1)-flavor QCD for several values of µ̂B . The yellow
band shows the line �((✏� 3p)/T 4)(Tpc(µ̂B)).

with µ̂B(T, n̂B) taken from Eq. 34. Results for
�✏(T, n̂B)/nB and �s(T, n̂B)/nB as functions of n̂B are
shown in Fig 10.

3. Comparison of Taylor series and their resummation

using Padé approximants

As seen already in the analysis of the Taylor expansion
for the pressure and net baryon-number density, Padé ap-
proximants agree well with the Taylor series themselves
at low µ̂B up to the region where we estimated the latter
to provide reliable results [14]. We will extend this ap-
proach here to the analysis of Taylor series for the energy
and entropy densities.

We use Padé approximants for thermodynamic observ-
ables derived from the Taylor series of the pressure in two
ways. On the one hand we construct Padé approximants
based on the Taylor series for a given observable, e.g.

the energy and entropy density series given in Eqs. 13
and 14 can be resummed using Padé approximants simi-
lar to that of the pressure series given in Eq. 23 by just
replacing the expansion coe�cients P2k by ✏2k or �2k, re-
spectively. On the other hand we use the P-Padé , i.e.
appropriate derivatives of the Padé approximants for the
pressure, for the energy and entropy densities as given in
Eqs. 24 and 25.

In Fig. 11 (left) we compare 6th and 8th-order Tay-
lor series for �p̂ with corresponding [4,2], [2,4] and [4,4]
Padé approximants introduced in Eqs. 20-23. Corre-
sponding results for �✏̂ are shown in Fig. 11 (right). In
the figure for the pressure (top, left) we compare the
6th-order Taylor expansion results with the two possible
[n,m] Padé approximants that use up to 6th-order ex-
pansion coe�cients. As can be seen the [4,2] Padé agrees
with the Taylor series result while the [2,4] Padé di↵ers
from these two in the temperature interval 150 MeV .
T . 180 MeV. In the (bottom, left) figure shows a com-
parison of the 8th-order Taylor expansion results with
the [4,4] Padé approximant. They are in good agreement
with each other. Moreover, as can be seen from the inset,
for large values of µ̂B the [2,4] and [4,4] Padé approxi-
mants stay in much better agreement with each other
than the [4,2] and [4,4] Padé approximants or, equiva-
lently, the 6th and 8th-order Taylor series. Similar con-
clusions can be drawn for the energy density shown in
the right hand part of the figure.

In Fig. 12 we compare at fixed values of the temper-
ature 8th-order Taylor expansion results with the [4,4]
Padé approximant as well as the P-Padé results for pres-
sure, energy and entropy densities that we have discussed
above and in Sec. II C. We generally find that the P-
Padé results for bulk thermodynamic observables are in
better agreement with the Taylor series results than the
[4,4] or [3,4] Padé approximants. This may not be too
surprising, as both approaches are based on a thermody-

Energy-momentum tensor → Trace anomaly
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FIG. 16. Speed of sound (left) and adiabatic compressibility (right) in strangeness-neutral, isospin-symmetric matter versus
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non-interacting quark-gluon gas results. In the inset HRG model calculations at lower temperatures are shown. The yellow
band indicates Tpc.
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Appendix A: Constrained partial derivatives

We summarize here relations for partial derivatives of
thermodynamic observables with respect to temperature,
keeping specific external conditions (x, y, z) fixed,

For any thermodynamic function f(T, µB , µQ, µS) we

have
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Similarly one has for two thermodynamic functions
f(T, µB , µQ, µS) and g(T, µB , µQ, µS) the relation

✓
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(x,y,z)

=
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(A2)

In Eqs. A1 and A2 the derivatives of the chemical po-
tentials are taken on lines of constant x(T, µB , µQ, µS),
y(T, µB , µQ, µS) and z(T, µB , µQ, µS) in the space of ex-
ternal parameters (T, µB , µQ, µS). In the lattice QCD
context we usually work in the parameter space (T, µ̂ ⌘

µ/T ). Moreover, we conveniently work with reduced, i.e.
dimensionless, thermodynamic observables, i.e. we want
to replace e.g. ✏̂ = ✏/T 4, etc.
Changing the partial derivatives @µB to @µB/T and

introducing reduced observables is straightforward, as
these derivatives are taken at fixed T . We have for an
observable that has dimension of Tn the relation,

@f

@µB

����
T

= Tn�1
@f̂

@µ̂B

�����
T

. (A3)

Rewriting the temperature derivatives one has to be a

Any relation?  Yes!!

Θμ
ν =

ε 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

HotQCD Collab. (2022)



September 19, 2025 @ C3NT Wuhan

Interpretation of Sound Speed

25

Fujimoto-Fukushima-McLerran-Praszalowicz (2022)

Measure of conformality:

Non-DerivativeDerivative

Δ =
1
3

−
p
ε

c2
s =

dp
dε

= c2
s, deriv + c2

s, non−deriv

c2
s, deriv = − ε

dΔ
dε

c2
s, non−deriv =

1
3

− Δ

Dominant at high density making a peak!

Gavai-Gupta-Mukherjee (2004)
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High-T — Non-Derivative Dominant   c2
s ≃ p/ε 2

FIG. 1. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite temperature and zero density.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

FIG. 2. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite density and zero temperature.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

For the moment let us discard the perturbative tail and work with � = 0.

The plots can be made in the same way as the finite temperature case, which look very di↵erent from Fig. 1. As

a function of dimensionless ⌘, the trace anomaly exhibits transitional change as in the left panel of Fig. 2 and the

sound velocity is dominated by the nonderivative contribution as shown in the right panel of Fig. 2.

−
Δ

η = ln(ε/ε0)
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FIG. 7. Pressure divided by net baryon-number density versus nB/T
3 (left) and nB/n0 (right), respectively. Shown are results

for strangeness-neutral, isospin-symmetric matter at several values of T . In the left hand figure we compare results obtained
from the full Taylor series for the pressure with those obtained in O

�
µ̂4
B

�
only (dashed lines). In the right hand side the grey

bands show a comparison with O
�
g2
�
high-T perturbation theory. The bands shown in both figure are shown up to values of

nB/T
3 or nB/n0 corresponding to µ̂B = 2.5 for T < 200 MeV and µ̂B = 3 otherwise.
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FIG. 8. The µ̂B-dependent contribution to the trace anomaly
in (2 + 1)-flavor QCD for several values of µ̂B . The yellow
band shows the line �((✏� 3p)/T 4)(Tpc(µ̂B)).

with µ̂B(T, n̂B) taken from Eq. 34. Results for
�✏(T, n̂B)/nB and �s(T, n̂B)/nB as functions of n̂B are
shown in Fig 10.

3. Comparison of Taylor series and their resummation

using Padé approximants

As seen already in the analysis of the Taylor expansion
for the pressure and net baryon-number density, Padé ap-
proximants agree well with the Taylor series themselves
at low µ̂B up to the region where we estimated the latter
to provide reliable results [14]. We will extend this ap-
proach here to the analysis of Taylor series for the energy
and entropy densities.

We use Padé approximants for thermodynamic observ-
ables derived from the Taylor series of the pressure in two
ways. On the one hand we construct Padé approximants
based on the Taylor series for a given observable, e.g.

the energy and entropy density series given in Eqs. 13
and 14 can be resummed using Padé approximants simi-
lar to that of the pressure series given in Eq. 23 by just
replacing the expansion coe�cients P2k by ✏2k or �2k, re-
spectively. On the other hand we use the P-Padé , i.e.
appropriate derivatives of the Padé approximants for the
pressure, for the energy and entropy densities as given in
Eqs. 24 and 25.

In Fig. 11 (left) we compare 6th and 8th-order Tay-
lor series for �p̂ with corresponding [4,2], [2,4] and [4,4]
Padé approximants introduced in Eqs. 20-23. Corre-
sponding results for �✏̂ are shown in Fig. 11 (right). In
the figure for the pressure (top, left) we compare the
6th-order Taylor expansion results with the two possible
[n,m] Padé approximants that use up to 6th-order ex-
pansion coe�cients. As can be seen the [4,2] Padé agrees
with the Taylor series result while the [2,4] Padé di↵ers
from these two in the temperature interval 150 MeV .
T . 180 MeV. In the (bottom, left) figure shows a com-
parison of the 8th-order Taylor expansion results with
the [4,4] Padé approximant. They are in good agreement
with each other. Moreover, as can be seen from the inset,
for large values of µ̂B the [2,4] and [4,4] Padé approxi-
mants stay in much better agreement with each other
than the [4,2] and [4,4] Padé approximants or, equiva-
lently, the 6th and 8th-order Taylor series. Similar con-
clusions can be drawn for the energy density shown in
the right hand part of the figure.

In Fig. 12 we compare at fixed values of the temper-
ature 8th-order Taylor expansion results with the [4,4]
Padé approximant as well as the P-Padé results for pres-
sure, energy and entropy densities that we have discussed
above and in Sec. II C. We generally find that the P-
Padé results for bulk thermodynamic observables are in
better agreement with the Taylor series results than the
[4,4] or [3,4] Padé approximants. This may not be too
surprising, as both approaches are based on a thermody-
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non-interacting quark-gluon gas results. In the inset HRG model calculations at lower temperatures are shown. The yellow
band indicates Tpc.
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Appendix A: Constrained partial derivatives

We summarize here relations for partial derivatives of
thermodynamic observables with respect to temperature,
keeping specific external conditions (x, y, z) fixed,

For any thermodynamic function f(T, µB , µQ, µS) we
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Similarly one has for two thermodynamic functions
f(T, µB , µQ, µS) and g(T, µB , µQ, µS) the relation
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In Eqs. A1 and A2 the derivatives of the chemical po-
tentials are taken on lines of constant x(T, µB , µQ, µS),
y(T, µB , µQ, µS) and z(T, µB , µQ, µS) in the space of ex-
ternal parameters (T, µB , µQ, µS). In the lattice QCD
context we usually work in the parameter space (T, µ̂ ⌘

µ/T ). Moreover, we conveniently work with reduced, i.e.
dimensionless, thermodynamic observables, i.e. we want
to replace e.g. ✏̂ = ✏/T 4, etc.
Changing the partial derivatives @µB to @µB/T and

introducing reduced observables is straightforward, as
these derivatives are taken at fixed T . We have for an
observable that has dimension of Tn the relation,

@f

@µB

����
T

= Tn�1
@f̂

@µ̂B

�����
T

. (A3)

Rewriting the temperature derivatives one has to be a
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High Density — Derivative Peak

2

FIG. 1. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite temperature and zero density.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

FIG. 2. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite density and zero temperature.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

For the moment let us discard the perturbative tail and work with � = 0.

The plots can be made in the same way as the finite temperature case, which look very di↵erent from Fig. 1. As

a function of dimensionless ⌘, the trace anomaly exhibits transitional change as in the left panel of Fig. 2 and the

sound velocity is dominated by the nonderivative contribution as shown in the right panel of Fig. 2.
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FIG. 15: Normalized trace anomaly as a function of the energy density. The blue and the red lines represent the
results from the previous (i.e., nNS = 14) and the present (i.e., nNS = 20) works, respectively. The red lines and
bands are the median values and the percentiles, respectively, and the blue ones are the mean values and the

standard deviations.

In reality, the above formula should be generalized to take account of randomness in the observation uncertainty:

PEoS(Y )dY →

∫
dP(ω)Pobs(!TOV(Y ,ω))

∣∣∣∣
d!TOV(Y ,ω)

dY

∣∣∣∣dY , (21)

where ω symbolically denotes the random variables involved in sampling M with observational errors. In this frame-
work, the inversion is incorporated in the pullback, so an explicit construction of the inverse mapping is unnecessary.
Historically speaking, this pullback method, in which one must explicitly compute the Jacobian, was the first approach
taken in the realm of Bayesian inference [52, 53].

Indeed, if the inversion were exact (i.e., !inv ↑ !TOV = idEoS and !TOV ↑ !inv = idMR), the above definition by
the pullback exactly reproduces eq. (4). In practice, however, the evaluation of the Jacobian is a nontrivial numerical
task, and our method presented in this work is computationally more straightforward.

G. Implication to the trace anomaly

Finally, we shall discuss a physics implication of our new analyses upgraded from nNS = 14 to nNS = 20. We
already showed the EoS comparison in figure 8. One interesting combination constructed with the energy density ε
and the pressure p is the trace anomaly, ε↓ 3p, or the dimensionless normalized trace anomaly defined by

” =
1

3
↓

p

ε
. (22)

This quantity measures how close to conformality the system is; ε = 3p and thus ” = 0 is realized in the conformal
limit [110]. In figure 15, we display the behavior of the normalized trace anomaly ” as a function of ε in the logarithmic
scale.
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FIG. 15: Normalized trace anomaly as a function of the energy density. The blue and the red lines represent the
results from the previous (i.e., nNS = 14) and the present (i.e., nNS = 20) works, respectively. The red lines and
bands are the median values and the percentiles, respectively, and the blue ones are the mean values and the

standard deviations.

In reality, the above formula should be generalized to take account of randomness in the observation uncertainty:

PEoS(Y )dY →

∫
dP(ω)Pobs(!TOV(Y ,ω))

∣∣∣∣
d!TOV(Y ,ω)

dY

∣∣∣∣dY , (21)

where ω symbolically denotes the random variables involved in sampling M with observational errors. In this frame-
work, the inversion is incorporated in the pullback, so an explicit construction of the inverse mapping is unnecessary.
Historically speaking, this pullback method, in which one must explicitly compute the Jacobian, was the first approach
taken in the realm of Bayesian inference [52, 53].

Indeed, if the inversion were exact (i.e., !inv ↑ !TOV = idEoS and !TOV ↑ !inv = idMR), the above definition by
the pullback exactly reproduces eq. (4). In practice, however, the evaluation of the Jacobian is a nontrivial numerical
task, and our method presented in this work is computationally more straightforward.

G. Implication to the trace anomaly

Finally, we shall discuss a physics implication of our new analyses upgraded from nNS = 14 to nNS = 20. We
already showed the EoS comparison in figure 8. One interesting combination constructed with the energy density ε
and the pressure p is the trace anomaly, ε↓ 3p, or the dimensionless normalized trace anomaly defined by

” =
1

3
↓

p

ε
. (22)

This quantity measures how close to conformality the system is; ε = 3p and thus ” = 0 is realized in the conformal
limit [110]. In figure 15, we display the behavior of the normalized trace anomaly ” as a function of ε in the logarithmic
scale.
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Lattice results for QCD-like theories
* Diquark superfluid in QC2D 

To be compared with 
Lattice: Itou+ (2023-2024)

* Pion-condensed high-isospin matter 
To be compared with 
Lattice: Abbott+ (2023)
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Figure 11. The squared sound velocity at T = 40 MeV and T = 80 MeV. The cyan curve is the
prediction of ChPT given by Eq. (4.11). The horizontal line (orange) depicts the conformal bound,
c2s/c

2 = 1/3.

which has no free parameter once we fix the value of µc/mPS as 0.47. The ChPT analysis

is valid around the phase transition point, and indeed we can see that our lattice data are

consistent with the prediction as expected. In the high-density regime, on the other hand,

the curve given by the ChPT goes to unity, that is, the sound velocity approaches the

speed of light. Therefore, it is widely believed that the ChPT would fail at some point in

the high-density regime. Furthermore, in the high-density limit, it is believed that the EoS

matches with the relativistic free theory, so that c2s/c
2 should go to 1/3, corresponding to

e = 3p, as shown as an orange horizontal line. This line is called the conformal bound (or

holography bound) [74].

Our numerical results are consistent with the ChPT prediction until the sound velocity

exceeds the conformal bound. Such an excess over the conformal bound is a salient feature

unknown in any lattice calculations for QCD-like theories before our previous result at

T = 80 MeV [2] 5. Our new results at T = 40 MeV obtained in this work confirm the excess

over the conformal bound with a smaller statistical error. Now, the excess shows a more

than 7-ω deviation from the conformal bound. Furthermore, we found that the thermal

e!ects are negligibly small, which suggests that the di!erence between the definitions of

εp/εe|s=const. and εp/εe|T=const. as discussed below Eq. (4.9) is also negligibly small. Then,

we can safely conclude that the excess over the conformal bound in dense QC2D occurs at

su”ciently low temperature.

Note that the pressure itself does not exceed the free-theory limit as shown in Figure 9.

On the other hand, the pressure growth against the energy growth, corresponding to the

sound velocity, is higher than the one for the free-theory, which supports a sti! picture for

QCD(-like) matter in the superfluid regime.

5
For example, in finite temperature QCD at µ = 0, the sound velocity squared monotonically increases

and approaches 1/3 as the temperature increases in T > Tc [75, 76].

– 21 –
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FIG. 11. The ratio of the energy density of the many-pion
systems to the Stefan-Boltzmann prediction, Eq. (31), for the
A and B lattice ensembles. The blue (A) and red (B) shaded
regions represent interpolations of the LQCD results and their
uncertainties as discussed in Appendix C. Also shown are ex-
pectations from chiral perturbation theory (blue dashed line)
and perturbative QCD at next-to-leading order (NLO) [43]
(orange hatched region). The uncertainties on the perturba-
tive QCD result are obtained by varying the renormalization
scale ⇤ between µI/4 and µI .

The speed of sound is shown as a function of the isospin
chemical potential in units of the pion mass in Fig. 12
where it is seen to exceed the ideal gas limit. As for
the energy density, close agreement is seen between the
results from the two lattice ensembles. A similar result
has been found in Ref. [10]; however a larger range of
µI/m⇡ is accessible in the current work. In particular,
c
2
s exceeds 1/3 for 1.5 . µI/m⇡ . 14, rising to a maxi-
mum of c2s,max ⇠ 0.6 at µI ⇠ 2m⇡ before decreasing back
to the ideal-gas limit for large µI . A maximum speed
of sound above the ideal-gas limit at intermediate values
of chemical potential is also seen in two-color QCD [50]
and quarkyonic models [51], but is in contradiction to
the predictions of leading-order chiral perturbation the-
ory in which cs rises monotonically to 1. This behavior
is indicative of additional degrees of freedom other than
in-vacuum pions becoming excited in the medium. From
the numerical results herein, it remains an open ques-
tion as to whether the speed of sound approaches the
free gas limit from below (as expected from perturbation
theory [43]) or from above (as expected from resummed
perturbation theory [52] or from the inclusion of power
corrections [53]).

Two additional quantities that provide information
about the nature of high-isospin-density matter are the
polytropic index [54] and the trace anomaly [55] defined
by

� =
✏

p
c
2
s, (33)

� =
1

3
�

p

✏
, (34)
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FIG. 12. The squared speed of sound computed as in Eq. (32)
as a function of the isospin chemical potential on ensemble A
(blue) and ensemble B (red). The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

respectively. The behavior of these two quantities is
shown in Figs. 13 and 14 and compared to the expec-
tations of a free gas, �PT and pQCD in each case. As
for cs, the behaviour of � and � is similar to that seen in
Ref. [10], but the current work extends the range of chem-
ical potential significantly which reveals additional inter-
esting features. In Ref. [54], it is suggested that the point
at which the polytropic index decreases below 1.75 is a
sign of quark degrees of freedom at large baryon chemical
potential, i.e., the BCS state. In the case of isospin chem-
ical potential, � decreases to this value at µI ⇠ 1.5m⇡,
corresponding approximately to the position of the peak
seen in the normalized energy density (Fig. 11). The
trace anomaly is clearly seen to be negative at interme-
diate µI in Fig. 14, as is suggested to be consistent with
neutron star observations in Ref. [55]. As for the quanti-
ties above, the results from the two lattice ensembles are
in agreement for both the trace anomaly and the poly-
tropic index. A robust conclusion from the study of these
transport quantities is that large isospin chemical poten-
tial is needed before the expected asymptotic behavior
sets in. At least for the case of isospin chemical poten-
tial, the use of pQCD to describe the behavior seen in
the LQCD calculations requires µI & 10m⇡ ⇠ 2 GeV at
a minimum.

VI. SUMMARY AND OUTLOOK

In this work, a new, more e�cient method of com-
puting maximal-isospin, multi-pion correlation functions
is presented. Using this method, we have calculated
all n-⇡+ correlation functions for n  6144, extending
such calculations of many-pion systems into regions of
larger isospin chemical potential than have been previ-

12

FIG. 13. The polytropic index, �, as a function of the isospin
chemical potential on the A(B) ensemble is shown as the
blue(red) region. The expectations in perturbative QCD (or-
ange hatched region), chiral perturbation theory (blue dashed
curve) and the Stefan-Boltzmann limit (orange dotted line)
are shown for comparison. In addition, the bound at � = 1.75
below which the medium is expected to correspond to quark
degrees of freedom [54] is indicated as the green horizontal
line.
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FIG. 14. The normalized trace anomaly, �, as a function
of the isospin chemical potential on the A(B) ensemble is
shown as the blue(red) region. This quantity is bounded as
�2/3 < � < 1/3 by causality. The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

ously achieved. Exploring such high-density and high-
energy correlation functions presents its own suite of chal-
lenges owing to the range of numerical scales spanned
by the correlation functions. Even on the same times-
lice, correlation functions can vary by many orders of
magnitude across configurations, leading to an e↵ective
breakdown of the applicability of the Central Limit The-
orem. The analysis presented here overcomes this by
making the empirically-driven assumption that the dis-

tributions of correlation functions across gauge configu-
rations are log-normal, which allows the incorporation of
more information about the LQCD data than just the
sample mean and variance of the correlation functions.
With this assumption, it becomes possible to extract en-
ergies and chemical potentials from the LQCD correla-
tion functions, which smoothly interpolate between the-
oretical predictions from chiral perturbation theory and
perturbative QCD for low- and high-isospin density sys-
tems, respectively. The speed of sound computed in this
medium exceeds the ideal gas limit over a large range
of µI , reaching a maximum of c2s ⇠ 0.6 at µI/m⇡ ⇠ 2.
This result is in agreement with the results of Ref. [10]
but extends over a larger range of chemical potential,
lower temperatures, and to a finer discretization scale.
The isospin chemical potential is implemented through
the grand canonical partition function in Ref. [10] and
therefore the systematic uncertainties in that calculation
are very di↵erent from those in this work, making the
broad agreement seen more significant. The speed of
sound and other properties of the medium indicate that
the asymptotic agreement with perturbative QCD ex-
pectations requires large values of the isospin chemical
potential, µI & 2 GeV.
In this exploratory study, calculations have been per-

formed at only a single set of quark masses and lattice
spacing. The results show qualitative agreement with
expectations, but understanding this system at a more
precise level will require the use of additional ensembles
with multiple lattice spacings, quark masses, and with
other spatial and temporal extents in order to properly
quantify the e↵ects of these parameters on the calcula-
tion. Lattice cuto↵ e↵ects are of particular concern since
the maximum chemical potential reached in the calcula-
tions presented here comes close to the lattice cuto↵ scale
used in this work.
Beyond systems of many pions, the methods devel-

oped here could also be used in applications to other
systems of mesons, including systems of kaons and/or
pions, and systems with non-zero momentum. The con-
cepts of symmetry and representation theory explored
here to construct the algorithm for many-pion contrac-
tions can potentially be applied more broadly to bary-
onic systems. In addition, the success of log-normality
in enabling analysis of many-pion systems points to the
general observation that there is more information in the
distributions of correlation functions than just their cen-
tral values [21–31, 56, 57], and using this information can
allow the extraction of physical results even when the dis-
tributions of correlation functions are far from the regime
of applicability of the Central Limit Theorem.
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Idyllic Fujimoto-Kojo-McLerran (2024) / Tajima-Iida-Kojo-Liang (2025) 2

FIG. 1. Evolution of fB and fQ from the nuclear (dotted) to
Quarkyonic regime (solid). The saturation of quark states
drives baryons into the relativistic regime. Arrows in the
rightmost panels indicate increasing µB.

quarks with a given color and fB for baryons as (notation:∫
k →

∫
ddk
(2ω)d ) [48, 49].

[
fQ(q)

]
fε

=
∑

i=n,p,···

∑

ε→=→,↑

∫

k

[
ω
(
q ↑

k
Nc

)]iε
→

fε

[
fB(k)

]
iε→ , (1)

where ω is a single quark momentum distribution with
the flavor f and spin ε in a single baryon state of a species
i and spin ε↓. Collecting quark contributions from each
baryon leads to quark distributions in dense matter. In
this work, we limit ourselves to symmetric nuclear mat-
ter and include a spin-isospin degeneracy factor 4 in the
expressions of thermodynamic quantities, but elsewhere
we drop the spin-flavor indices f,ε. The extension for
multi-flavors and multi-baryon species will be discussed
in the forthcoming papers.

The normalization is
∫
q ω(q) = 1. The dual expression

of the baryon number readily follows from Eq. (1) as

nB = 4

∫

k
fB(k) = 4

∫

q
fQ(q) . (2)

The energy densities in terms of baryons and quarks are

ϑB[fB] = 4

∫

k
EB(k)fB(k) ,

ϑQ[fQ] = 4

∫

q
EQ(q)[NcfQ(q)] .

(3)

Remember fQ is defined for a fixed color, fQ → fR
Q

=

fG
Q

= fB
Q

with which nB = nR
Q

= nG
Q

= nB
Q
. A

single baryon is assumed to have the energy contri-
butions summed from Nc-confined quarks, EB(k) =
Nc

∫
q EQ(q)ω

(
q ↑ k/Nc

)
. Then a duality relation fol-

lows, ϑ = ϑB[fB] = ϑQ[fQ]. As quarks are confined in a
spatial domain of the baryon size ↓ !↔1

QCD
, quarks can

be energetic and ω(q) is spread to momenta of ↓ !QCD.
The mechanical pressure inside of a baryon is large.

In this work, going from low to high densities we keep
using the same ω determined in vacuum. Our main target

here is the transient regime from baryonic to quark mat-
ter, where using ω for localized quarks may not be so bad
approximation. The structural changes in baryons, such
as swelling, would possibly increase the low momentum
components of ω, but such modifications merely shift the
onset of quark matter formation to lower density.

Minimization of energy functional.—With duality (1)
as a constraint, we calculate the energy density ϑ for a
given nB. We consider energy functionals

ϑ = ϑB[fB]
∣∣
nB

= ϑQ[fQ]
∣∣
nB

, (4)

and minimize them by optimizing fB or fQ while holding
nB fixed. A novelty in our optimization program is that
the solutions are determined not only by the stationary
condition ϖϑ/ϖf = 0 but also by the boundary condi-
tions fB,Q = 0 or 1. The thermodynamic energy density
is obtained by substituting the optimized distributions,
ϑEOS(nB) = ϑB[f↗

B
]
∣∣
nB

= ϑQ[f↗
Q
]
∣∣
nB

.
In practice, one can find the f↗

B
and f↗

Q
by minimizing

ϑ̃ = ϑB[fB]↑ ϱBnB = ϑQ[fQ]↑ ϱQnQ , (5)

where ϱB = NcϱQ. It is tempting to identify the ϱ’s as
chemical potentials and ϑ̃ as the thermodynamic func-
tional. Unfortunately they do not satisfy the thermody-
namic relations if solutions are partly determined by the
boundary conditions. Hence we use ϑ̃ only to find f↗

B
and

f↗
Q
, and use them in computations of ϑEOS(nB).

Global constraints.—The constraints in our theory ap-
pear global, as fQ at a given momentum depends on fB
for the entire momentum range. The variation leads to

ϖϑ̃

ϖfB(k)
= EB(k)↑ ϱB ,

ϖϑ̃

ϖfQ(q)
= EQ(q)↑ ϱQ . (6)

At momenta with ϖϑ̃/ϖfB,Q < 0, greater fB,Q reduces
ϑ̃ and grows toward the boundary fB,Q = 1, while
ϖϑ̃/ϖfB,Q > 0 drives fB,Q to the other boundary, fB,Q =
0. We would get the optimized distributions

fvar

B
(k) = ”(kF ↑ k) , fvar

Q
(q) = ”(qF ↑ q) , (7)

where kF and qF are determined through ϱB = EB(kF)
and ϱQ = EQ(qF).
The above solutions are not usable everywhere. For

instance, fvar

Q
at large momenta is incompatible with the

sum rule (1); at large momenta (q ↔ k/Nc), the scaling
should be fQ(q) ↓ nBω(q). Another problem is that, if
we keep using fvar

B
in the regime !QCD ↗ kF ↗ Nc!QCD,

then fQ(0) ↓ nBω(0) ↓ k3
F
/!3

QCD
, violating fQ ↘ 1 at

q = 0. Our problem is to patch the candidates of solu-
tions, found from variational calculations and the bound-
ary conditions, into the form consistent with the duality
constraints, and then to minimize the energy.

Solvable model.—What makes the dual theory nontriv-
ial is its global nature. The di#culty lies in the recon-
struction of fB from a given fQ. At high density we have

nq ∼ μ3
q

nB ∼ μ3
B ∼ N3

c μ3
q≃

Dual

Suppression of nucleon distribution should 
be caused by quark saturation at short 
range due to quark exchanges.

N N

¼
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Summary

Surprises 
□ Speed of sound at high density exceeds the conformal 

value making a peak. 
□ Conformal symmetry is rapidly restored already at 

intermediate densities. 

Challenges 
□ Can we estimate the cluster size by HIC-HBT? 
□ Can we confirm (exclude) the color superconducting 

states in NS matter? 
□ Non Fermi liquid nature of dense QCD matter?
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