

Surprises and Challenges in the QCD Phase Diagram

Kenji Fukushima
The University of Tokyo

Nuclear Physics Across Energy Scales

Prototype Phase Diagram

Baym (1986)

PHASE DIAGRAM OF NUCLEAR MATTER

Missing -

1st-order

Phase Transition

TEMPERATURE

(QCD CP)

Color-super

Conductors

Quarkyonic

BARYON DENSITY

Typical Phase Diagram

Nuclear Saturation

Self-bound fermionic systems have a preferred density. Diluteness is realized as a "mixed phase" of nuclei.

This is how this world is like what we know.

Extremal point \rightarrow 1st-order PT

$$\frac{d}{d\rho} \left(\frac{\varepsilon}{\rho} \Big|_{\text{gas}} - \frac{\varepsilon}{\rho} \Big|_{\text{liquid}} \right) = \frac{p_{\text{gas}} - p_{\text{liquid}}}{\rho^2} = 0$$

Stationary cond. PT cond.

Self-bound? Quark Star?

General Tendency to 1st-order PT

The grand potential is the sum of the vacuum part (symmetry breaking) and the matter part

$$\Omega_{\text{mat}} = -\int_{m}^{\mu} d\mu' n(\mu)$$

The sum may have a double-well structure (1st-order PT) or may not (crossover only).

Fluctuation effects

It is known by now that phonon fluctuations wash out the 1-dimensional modulation but a remnant remains

= Quasi Long-Range Order

Hidaka-Kamikado-Kanazawa-Noumi (2015) Lee-Nakano-Tsue-Tatsumi-Friman (2015)

Finite B (magnetic) / ω (rotation) breaks 3d symmetry

→ Pseudo-1d Helical Structures

Chiral Magnetic Spirals / Kharzeev-Dunne (2010)
Chiral Soliton Lattice / Brauner-Yamamoto (2016)
Rotating CSL / Nishimura-Yamamoto (2020)

Magnetized Rotating Plasma

Primordial Inhomogeneity

Fukushima-Hidaka-Inoue-Shigaki-Yamaguchi (2023)

Primordial Inhomogeneity

Recent analysis by Yamauchi (Hiroshima U.)

Source distribution: generated by AMPT modulated by hand

HBT detects clusters?

Previous (2023)

Now in progress

September 19, 2025 @ C3NT Wuhan

First-order in Astro-nuclear Physics

First-order in Astro-nuclear Physics

Bauswein-Bastian-Blaschke-Chatziioannou-Clark-Fischer-Oertel (2018)

Evidence of First-Order?

First-order in Astro-nuclear Physics

pilipali, pilipali,

Can we see the phase transition with the GW signal?

Most-Papenfort-Dexheimer-Hanauske-Schramm-Stocker-Rezzolla (2018)

CMF_Q: EOS with a strong-1st PT to Quark Matter (3~4 times n_{sat})

CMF_H: EOS without quarks

Quark matter shortens the lifetime of post-merger supramassive/hypermassive (uniform / differential) neutron star.

What if the transition is only a smooth crossover?

Crossover in Astro-nuclear Physics

Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)

Energy density ε [GeV fm⁻³]

September 19, 2025 @ C3NT Wuhan

Crossover in Astro-nuclear Physics

Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)

Crossover in Astro-nuclear Physics

Post-merger stage is very challenging to see:

↓ Our crossover case... no difference?

Maybe the stiffness can be constrained by the peak position.

Multi-messanger Era

Kilonova brightness: ejected mass $> 0.05M_{\odot}$

AT 2017 gfo

Brightness and "color" depend on the EoS and the total mass.

Illustration from Korobkin+ (2021)

Multi-messanger Era

Fujimoto-Fukushima-Kyutoku-Hotokezaka (2022-2024)

In the near future, more data should be accumulated, and then, we can say much more about PT!

total mass m_0 [M_{sun}]

Most-likely EoS from NS

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

Most-likely EoS from NS

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

Most-likely EoS from NS

ŢĸŶŖŖĸĸŶĿĸŶŶŖŖĸĸŶĿĸŶŶŖŖĸĸŶĿĸŶŶŖŖĸĸŶĿĸŶŶŖŖĸŶĿĸŶŶŖŖĸĸŶĿĸŶŶŖŖĸĸŶĿĸŶŶŖŖĸŶĿĸŶŶŖŖĸŶĿĸŶŶŖŖ

Marczenko-McLerran-Redlich-Sasaki (2022)

Altiparmak-Ecker-Rezzolla (2022)

Brandes-Weise-Kaiser (2022)

$\begin{array}{c} 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.$

Supporting the peak!

[1st-order-like EoS]

Phase transition is manifested by a minimum in the speed of sound.

Energy-momentum tensor → **Trace anomaly**

$$\Theta^{\mu}{}_{\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & -p & 0 & 0 \\ 0 & 0 & -p & 0 \\ 0 & 0 & 0 & -p \end{pmatrix}$$

Any relation? Yes!!

HotQCD Collab. (2022)

Fujimoto-Fukushima-McLerran-Praszalowicz (2022)

Measure of conformality: $\Delta = \frac{1}{3} - \frac{p}{\epsilon}$

$$\left(\Delta = \frac{1}{3} - \frac{p}{\varepsilon}\right)$$

$$c_s^2 = \frac{dp}{d\varepsilon} = c_{s, \text{ deriv}}^2 + c_{s, \text{ non-deriv}}^2$$
 Gavai-Gupta-Mukherjee (2004)

$$c_{s, \text{ deriv}}^2 = -\varepsilon \frac{d\Delta}{d\varepsilon}$$
 $c_{s, \text{ non-deriv}}^2 = \frac{1}{3} - \Delta$

Derivative

Non-Derivative

Dominant at high density making a peak!

High-T — **Non-Derivative Dominant** $c_s^2 \simeq p/\varepsilon$

High Density — **Derivative Peak**

Physical interpretation of $\Delta < 0$???

Negative trace anomaly implies the presence of "condensates"!?

September 19, 2025 @ C3NT Wuhan

ŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖŗŦĠŖŗĸĿŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖŗĸĿŢĬŖ

Lattice results for QCD-like theories

* Diquark superfluid in QC₂D To be compared with Lattice: Itou+ (2023-2024)

* Pion-condensed high-isospin matter

To be compared with Lattice: Abbott+ (2023)

Recent Quarkyonic Scenario

PROPERTY OF THE PARTY OF THE PA

Idyllic

Fujimoto-Kojo-McLerran (2024) / Tajima-Iida-Kojo-Liang (2025)

Suppression of nucleon distribution should be caused by quark saturation at short range due to quark exchanges.

More Recent Spaghetti Scenario

Fujimoto-Fukushima-Hidaka-McLerran (2025)

Summary

Surprises

- □ Speed of sound at high density exceeds the conformal value making a peak.
- □ Conformal symmetry is rapidly restored already at intermediate densities.

Challenges

- □ Can we estimate the cluster size by HIC-HBT?
- □ Can we confirm (exclude) the color superconducting states in NS matter?
- □ Non Fermi liquid nature of dense QCD matter?