Diffusion models for lattice field theory

Gert Aarts

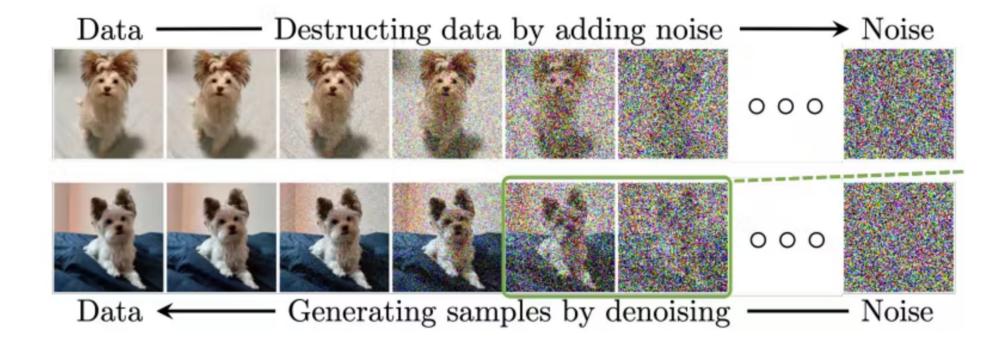
with Lingxiao Wang, Kai Zhou, Qianteng Zhu, Wei Wang and Diaa Habibi

L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]

GA, D Habibi, L Wang, K Zhou, Mach.Learn.Sci.Tech. 6 (2025) 2, 025004 [arXiv:2410.21212 [hep-lat]]

Q Zhu, W Wang, GA, K Zhou, L Wang, <u>2502.05504</u> [hep-lat]

Generative AI using diffusion models



denoising

Generative Modeling by Estimating
Gradients of the Data Distribution
Yang Song, Stefano Ermon
1907.05600 [cs.LG]

interpolation

Score-Based Generative Modeling through Stochastic Differential Equations

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole, <u>2011.13456</u> [cs.LG]

Motivation: lattice field theory

- generating configurations is one of the bottlenecks in lattice field theory
- images are two-dimensional configurations from some unknown probability distribution
- machine learning algorithms are usually fast and flexible
- o we know the distribution $\sim e^{-S}$: can we incorporate ML algorithms in LFT?

Flow-based generative models for Markov chain Monte Carlo in lattice field theory MS Albergo, G Kanwar, PE Shanahan, Phys. Rev. D 100 (2019) **3**, 034515 [1904.12072 [hep-lat]]

Applications of machine learning to lattice quantum field theory D Boyda, et al, Snowmass 2021, <u>2202.05838 [hep-lat]</u>

Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics K Cranmer, G Kanwar, S Racanière, DJ Rezende, PE Shanahan, Nature Rev. Phys. **5**, 526 (2023)

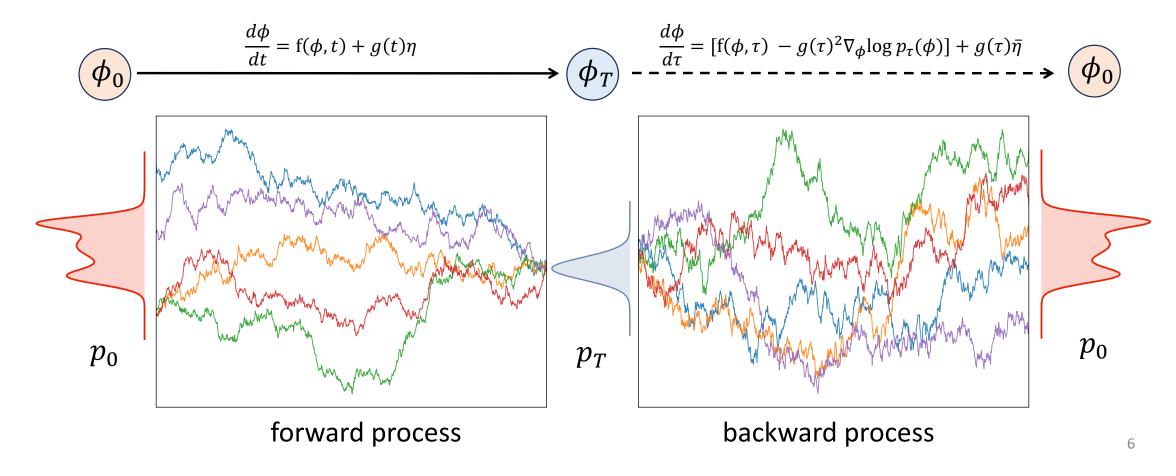
Physics-driven learning for inverse problems in QCD G Aarts, K Fukushima, T Hatsuda, A Ipp, S Shi, L Wang, K Zhou, Nature Rev. Phys. **7** (2025) 154 [2501.05580 [hep-lat]] 4

Outline

- diffusion models as stochastic processes
- relation to stochastic quantisation
- theoretical analysis of evolution of cumulants
- recent variations and improvements:
 - Metropolis adjusted Langevin algorithm (MALA) / annealing / physics conditioning
 - applied to U(1) gauge theory in two dimensions

Diffusion models: prior and target distributions

 \circ in pictures: p_0 is target (non-trivial), p_T is the prior (easy)



- images/configurations are generated during backward process
- stochastic process with time-dependent drift and noise strength

$$rac{\partial \phi(x, au)}{\partial au} = g^2(au)
abla_{\phi} \log P(\phi; au) + g(au) \eta(x, au)$$

$$\qquad \text{o write} \quad P(\phi;\tau) = \frac{e^{-S(\phi,\tau)}}{Z} \qquad \text{such that} \qquad \nabla_\phi \log P(\phi,\tau) = -\nabla_\phi S(\phi,\tau)$$

$$au$$
 then $rac{\partial \phi(x, au)}{\partial au}=-g^2(au)
abla_\phi S(\phi, au)+g(au)\eta(x, au)$

o then

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -g^2(\tau) \nabla_{\phi} S(\phi,\tau) + g(\tau) \eta(x,\tau)$$

- very familiar to (lattice) field theorists
- stochastic quantisation (Parisi & Wu 1980)
- path integral quantisation via a stochastic process in fictitious time

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\nabla_{\phi} S(\phi) + \sqrt{2} \eta(x,\tau)$$

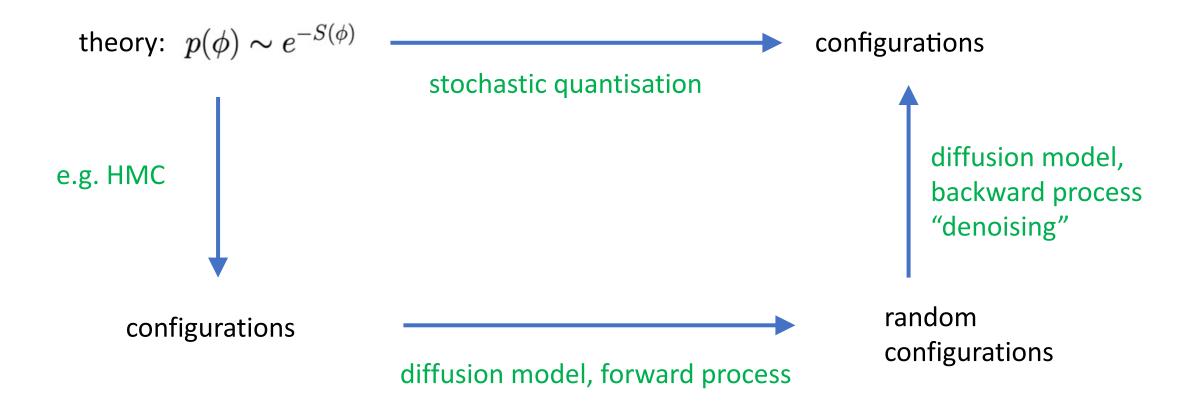
o stationary solution of associated Fokker-Planck equation $P(\phi) \sim e^{-S(\phi)}$

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = g^2(\tau) \nabla_{\phi} \log P(\phi;\tau) + g(\tau) \eta(x,\tau) \qquad \qquad \frac{\partial \phi(x,\tau)}{\partial \tau} = -\nabla_{\phi} S(\phi) + \sqrt{2} \eta(x,\tau)$$

similarities and differences:

- ✓ SQ: fixed drift, determined from known action constant noise variance (but can be generalised using kernels) thermalisation followed by long-term evolution in equilibrium
- ✓ DM: drift and noise variance time-dependent, learn from data evolution between $0 \le \tau \le T = 1$, many short runs

diffusion models as an alternative approach to stochastic quantisation

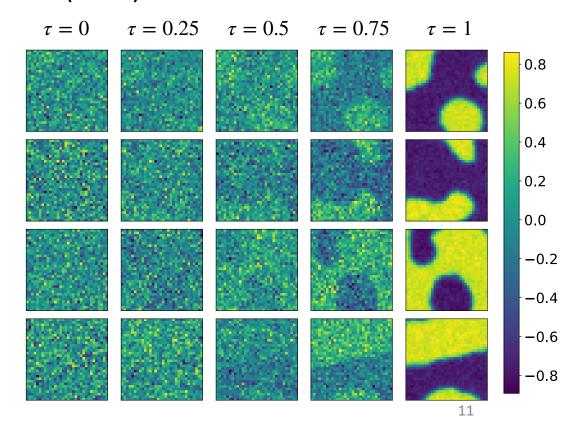


Diffusion model for 2d ϕ^4 lattice scalar theory

- o 32² lattice, choice of action parameters in symmetric and broken phase
- training data set generated using Hybrid Monte Carlo (HMC)
- first application of diffusion models in lattice field theory

generating configurations:

- broken phase
- "denoising" (backward process)
- large-scale clusters emerge, as expected



Diffusion models: generation of correlations

forward process

$$\dot{x}(t) = K(x(t), t) + g(t)\eta(t)$$

 $0 \le t \le T$

noise profile $g(t) = \sigma^{t/T}$

backward process

$$x'(au) = -K(x(au), T - au) + g^2(T - au) \partial_x \log P(x, T - au) + g(T - au) \eta(au)$$
 score
$$au = T - t$$

two main schemes

- o variance-expanding (VE): no drift K(x,t)=0
- variance-preserving (VP) or denoising diffusion probabilistic models (DDPMs):

linear drift
$$K(x(t),t)=-rac{1}{2}k(t)x(t)$$

$$x_0 \rightarrow x_0 - \mathbb{E}_{P_0}[x_0]$$

Solve forward process

forward process

$$\dot{x}(t) = K(x(t), t) + g(t)\eta(t)$$

$$K(x(t),t) = -\frac{1}{2}k(t)x(t)$$

- \circ $\,$ initial data from target ensemble $\,$ $x_0 \sim P_0(x_0)$
- solution $x(t) = x_0 f(t,0) + \int_0^t ds \, f(t,s) g(s) \eta(s)$

$$f(t,s) = e^{-\frac{1}{2} \int_{s}^{t} ds' \, k(s')}$$

second moment/cumulant/variance

$$\kappa_2(t) = \mu_2(t) = \mu_2(0)f^2(t,0) + \Xi(t)$$

$$\Xi(t) = \int_0^t ds \int_0^t ds' f(t, s) f(t, s') g(s) g(s') \mathbb{E}_{\eta}[\eta(s) \eta(s')] = \int_0^t ds f^2(t, s) g^2(s)$$

$$f(t,s) = e^{-\frac{1}{2} \int_{s}^{t} ds' \, k(s')}$$

Higher-order moments and cumulants

o moments $\mu_n(t) = \mathbb{E}[x^n(t)]$ and cumulants $\kappa_n(t)$: straightforward algebra

$$\kappa_3(t) = \mu_3(t) = \kappa_3(0) f^3(t, 0)$$

$$\mu_4(t) = \mu_4(0)f^4(t,0) + 6\mu_2(0)f^2(t,0)\Xi(t) + 3\Xi^2(t)$$

$$\kappa_4(t) = \mu_4(t) - 3\mu_2^2(t) = \left[\mu_4(0) - 3\mu_2^2(0)\right] f^4(t, 0) = \kappa_4(0) f^4(t, 0)$$

$$\kappa_5(t) = \left[\mu_5(0) - 10\mu_3(0)\mu_2(0)\right] f^5(t,0) = \kappa_5(0)f^5(t,0)$$

$$\kappa_{n>2}(t) = \kappa_n(0) f^n(t,0)$$

variance-expanding scheme: no drift

$$f(t,0) = 1$$

higher cumulants conserved!

$$\Xi(t)=\int_0^t ds\, f^2(t,s)g^2(s)$$

Proof to all orders

o generating functionals: average over both noise and target distributions

moments
$$Z[J] = \mathbb{E}[e^{J(t)x(t)}]$$
 cumulants $W[J] = \log Z[J]$

$$\text{o noise average} \qquad Z_{\eta}[J] = \mathbb{E}_{\eta}[e^{J(t)x(t)}] = \frac{\int D\eta \, e^{-\frac{1}{2}\int_0^t ds \, \eta^2(s) + J(t) \left[x_0 f(t,0) + \int_0^t ds \, f(t,s) g(s) \eta(s)\right]}}{\int D\eta \, e^{-\frac{1}{2}\int_0^t ds \, \eta^2(s)}}$$

- o full average $Z[J]=\mathbb{E}[e^{J(t)x(t)}]=e^{rac{1}{2}J^2(t)\Xi(t)}\int dx_0\,P_0(x_0)e^{J(t)x_0f(t,0)}$
- o cumulant generator $W[J] = \log Z[J] = \frac{1}{2}J^2(t)\Xi(t) + \log \int dx_0\, P_0(x_0)e^{J(t)x_0f(t,0)}$

$$f(t,s) = e^{-\frac{1}{2} \int_{s}^{t} ds' \, k(s')}$$

$$\Xi(t)=\int_0^T ds\, f^2(t,s)g^2(s)$$

Proof to all orders: cumulants

 \circ cumulant generator $W[J] = \log Z[J] =$

$$W[J] = \log Z[J] = \frac{1}{2}J^2(t)\Xi(t) + \log \int dx_0 P_0(x_0)e^{J(t)x_0f(t,0)}$$

o 2nd cumulant

$$\kappa_2(t) = \frac{d^2W[J]}{dJ(t)^2} \Big|_{J=0} = \Xi(t) + \mathbb{E}_{P_0}[x_0^2] f^2(t,0)$$

higher-order cumulants

$$\kappa_{n>2}(t) = \frac{d^n W[J]}{dJ(t)^n} \Big|_{J=0} = \frac{d^n}{dJ(t)^n} \log \mathbb{E}_{P_0} \left[e^{J(t)x_0 f(t,0)} \right] \Big|_{J=0} = \kappa_n(0) f^n(t,0)$$

Two-dimensional scalar fields

extension to scalar fields trivial: each lattice point is treated separately

o forward
$$\partial_t \phi(x,t) = K[\phi(x,t),t] + g(t) \eta(x,t)$$

- o backward $\partial_{\tau}\phi(x,\tau) = -K[\phi(x,\tau),T-\tau] + g^2(T-\tau)\nabla_{\phi}\log P(\phi,T-\tau) + g(T-\tau)\eta(x,\tau)$
- o two-point function $G(x,y;t)\equiv \mathbb{E}[\phi(x,t)\phi(y,t)]=\mathbb{E}_{P_0}[\phi_0(x)\phi_0(y)]f^2(t,0)+\Xi(t)\delta(x-y)$
- o moments $\mu_n(x,t) = \mathbb{E}[\phi^n(x,t)]$ independent of x

$$\Xi(t)=\int_0^t ds\, f^2(t,s)g^2(s)$$

Generating functionals

full path integral with sources

moment generating

$$Z[J] = \mathbb{E}[e^{J(x,t)\phi(x,t)}] = e^{\frac{1}{2}J^2(x,t)\Xi(t)} \int D\phi_0 P_0[\phi_0] e^{J(x,t)\phi_0(x)f(t,0)}$$

cumulant generating

$$W[J] = \log Z[J] = \frac{1}{2}J^2(x,t)\Xi(t) + \log \int D\phi_0 P_0[\phi_0]e^{J(x,t)\phi_0(x)f(t,0)}$$

higher-order cumulants

$$\kappa_{n>2}(t) = \frac{\delta^n W[J]}{\delta J(x,t)^n} \Big|_{J=0} = \frac{\delta^n}{\delta J(x,t)^n} \log \mathbb{E}_{P_0} [e^{J(x,t)\phi_0(x)f(t,0)}] \Big|_{J=0}$$

variance preserving

$$f(t,0) \to 0$$

variance expanding

$$f(t,0)) = 1$$

$$\Xi(t)=\int_0^t ds\, f^2(t,s)g^2(s)$$

Generating functionals: summary

euclidean path integral/target distribution is always there in the background

$$W[J] = \log Z[J] = \frac{1}{2}J^2(x,t)\Xi(t) + \log \int D\phi_0 P_0[\phi_0]e^{J(x,t)\phi_0(x)f(t,0)}$$

- correlations are being destroyed/overwhelmed and retrieved
- if score is determined exactly, full theoretical control

FPE: $\partial_t P_t(x) = \frac{1}{2}g^2(t)\partial_x^2 P_t(x)$

Example: forward evolution

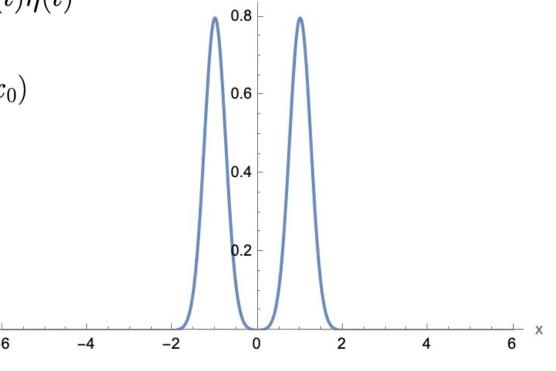
o initial distribution $P_0(x_0)$: Gaussian mixture (two Gaussian peaks)

 \circ add noise in variance-expanding scheme $\,\dot{x}(t)=g(t)\eta(t)$

o analytical description $P_t(x) = \int dx_0 \, P_t(x|x_0) P_0(x_0)$

$$P_t(x|x_0) = \mathcal{N}(x; x_0, \sigma^2(t)) = \frac{1}{\sqrt{2\pi\sigma^2(t)}} e^{-(x-x_0)^2/(2\sigma^2(t))}$$

peak structure erased



t = 0. p[x,t]

noise profile $g(t) = \sigma^{t/T}$

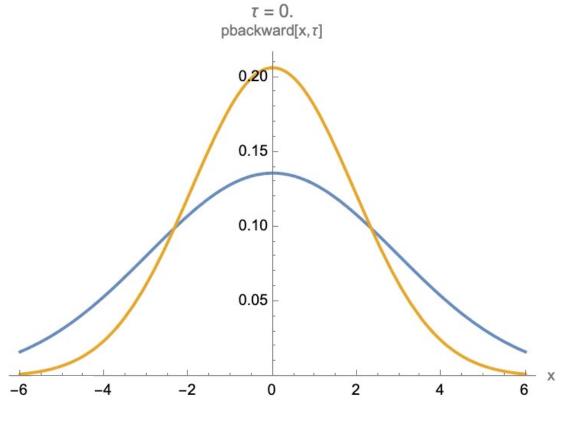
Example: backward evolution

- target distribution: two Gaussian peaks
- \circ forward process $\dot{x}(t)=g(t)\eta(t)$
- corresponding backward process

$$x'(\tau) = g^{2}(T - \tau)\partial_{x}\log(P(x, T - \tau) + g(T - \tau)\eta(\tau)$$

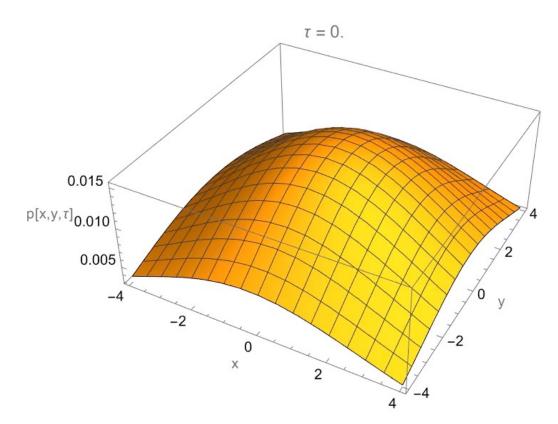
with
$$\tau = T - t$$

solve FPE for backward process using two initial distributions



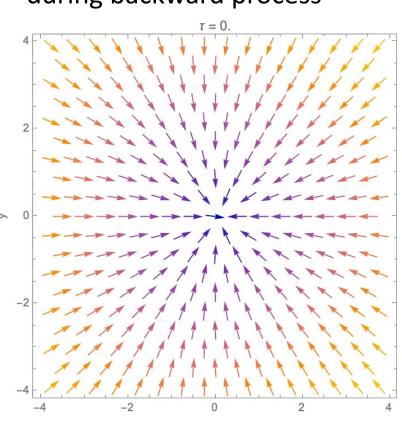
2D example: three Gaussian peaks

backward process, starting from wide normal distribution



score $\nabla \log P_t(x,y)$ during backward process

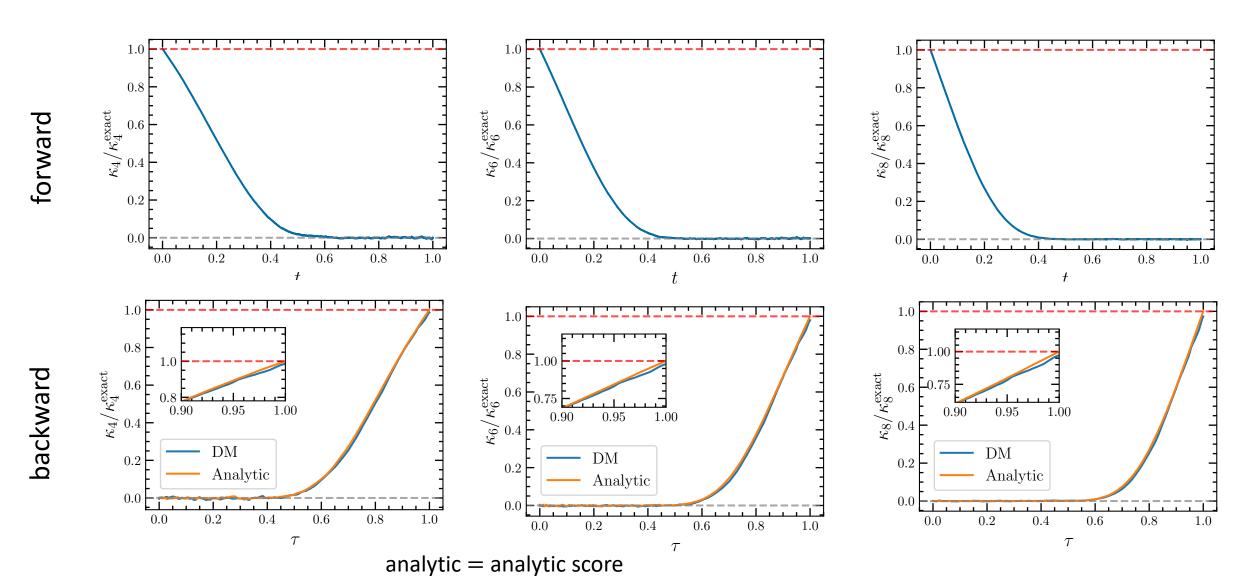
 $p[x,y,\tau]$



$$\kappa_{n>2}(t) = \kappa_n(0) f^n(t,0)$$

 $f(t,0) \to 0$

4th, 6th, 8th cumulant with drift (DDPM)



Incorporate (new/old) ideas in diffusion models

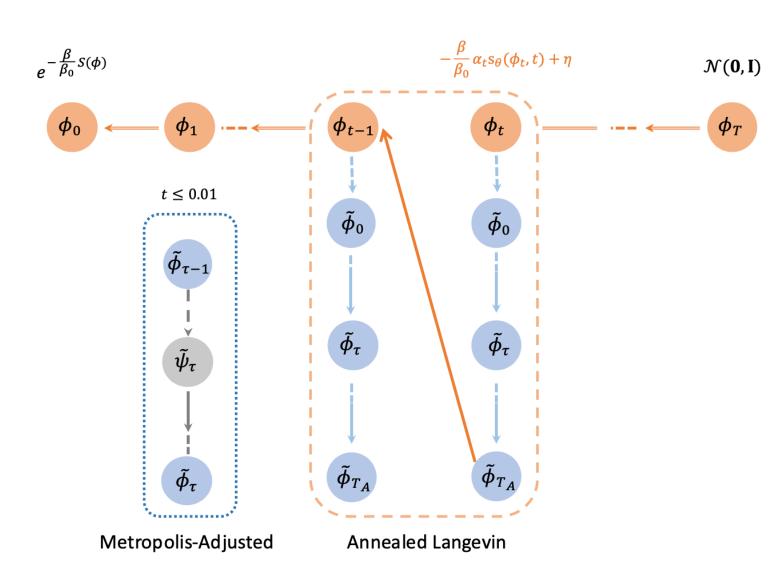
- exactness

 include an accept/reject step
- \circ thermalisation: score is time dependent, system never thermalises o annealing
- \circ train at one set of parameters, apply trained model at different set \rightarrow conditioning
- apply to 2D U(1) gauge theory

Incorporate (new/old) ideas in DM dynamics

backward process (after model has been trained)

- Metropolis-adjusted Langevin algorithm (MALA)
- annealing stage: thermalisation
- \circ reweighting from eta_0 to eta

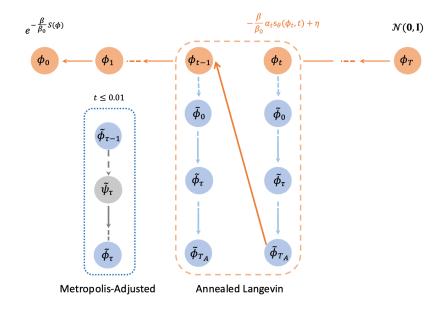


Metropolis-adjusted Langevin algorithm (MALA)

include an accept/reject step: well-known in Langevin dynamics *

$$\phi_{\tau+1} = \begin{cases} \psi_{\tau+1} & \text{with probability min } \left\{1, \frac{p(\psi_{\tau+1})q(\phi_{\tau}|\psi_{\tau+1})}{p(\phi_{\tau})q(\psi_{\tau+1}|\phi_{\tau})}\right\} \\ \phi_{\tau} & \text{with the remaining probability,} \end{cases}$$

- \circ include ratio of target distributions $p(\phi) \sim e^{-S(\phi)}$
- and ratios of transition amplitudes



$$q(\phi_{\tau}|\psi_{\tau+1}) = \frac{1}{(4\pi\alpha_i)^{n/2}} \exp\left(-\frac{1}{4\alpha_i} \|\phi_{\tau} - (\psi_{\tau+1} + \alpha_i f(\psi_{\tau+1}, \tau+1))\|_2^2\right)$$

^{*} G.O. Roberts and J.S. Rosenthal, Optimal scaling of discrete approximations to Langevin diffusions, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60 (1998) 255

Metropolis-adjusted Langevin algorithm (MALA)

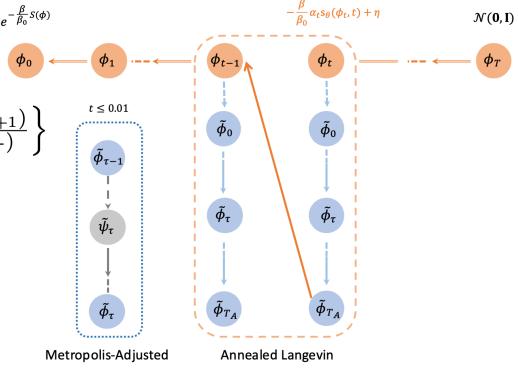
include an accept/reject step

$$\phi_{\tau+1} = \begin{cases} \psi_{\tau+1} & \text{with probability } \min\left\{1, \frac{p(\psi_{\tau+1})q(\phi_{\tau}|\psi_{\tau+1})}{p(\phi_{\tau})q(\psi_{\tau+1}|\phi_{\tau})}\right\} \\ \phi_{\tau} & \text{with the remaining probability,} \end{cases}$$

- only done towards end of backward process
- learned score should be fairly close to "exact" score

$$\nabla \log p(\phi)$$
 $p(\phi) \sim e^{-S(\phi)}$

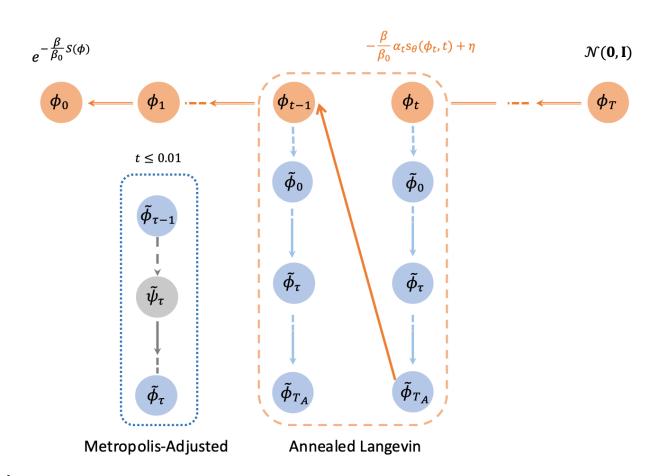
Markov chain starting from each configuration towards end of backward process



27

Annealing

- score (drift or force in Langevin equation) is time dependent
- system never thermalises
- allow for additional steps at fixed score
- → annealing
- strictly speaking not needed, but seems useful

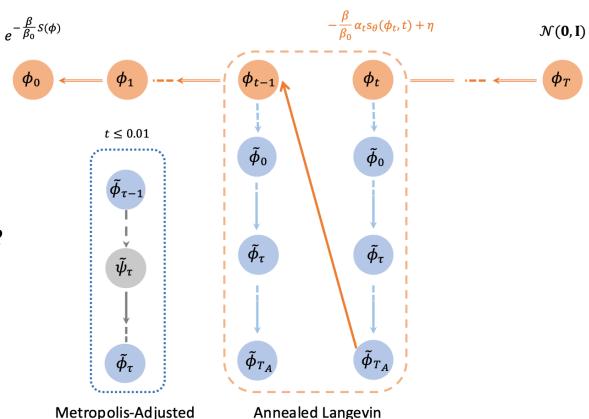


Physics conditioning (gauge theory)

- $_{ extstyle }$ train using data generated at eta_{0}
- \circ employ at different eta values
- \circ applied to U(1) gauge theory: action scales with eta

motivated by stochastic quantisation:

o drift is proportional to β

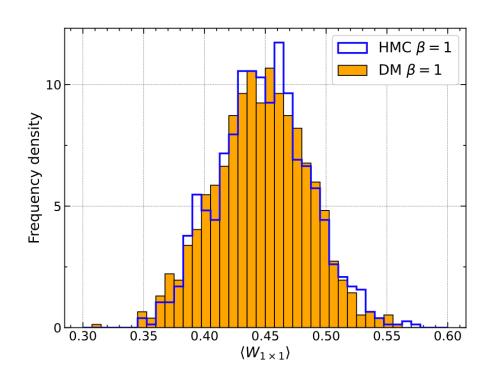


Two-dimensional U(1) gauge theory

- training: 30k configurations at $\beta = 1$ on 16^2 obtained using HMC
- o generating: 1024 configs at $\beta = 1, 3, 5, 7, 9, 11$ on $8^2, 16^2, 32^2$

2D U(1) gauge theory: vary the volume

- o training: 30k configurations at $\beta = 1$ on 16^2 obtained using HMC
- o generating: 1024 configs at $\beta = 1, 3, 5, 7, 9, 11$ on $8^2, 16^2, 32^2$



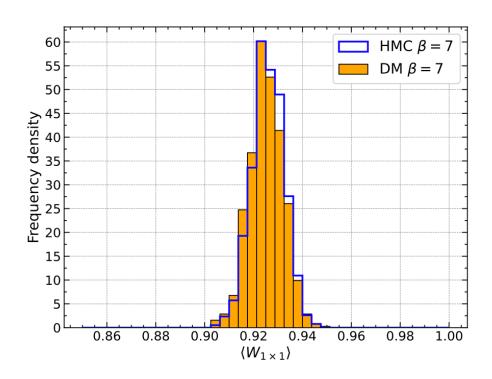
Lattice Size (L)	1×1 Wilson Loop				
	HMC	DM	Langevin	Exact	
8	0.447(72)	0.445(74)	0.443(80)	0.446	
16	0.447(37)	0.446(37)	0.444(36)	0.446	
32	0.446(18)	0.445(19)	0.445(18)	0.446	
64	0.446(9)	0.446(11)	0.445(9)	0.446	

increase the volume, after training on L=16

$$\beta = 1, L = 16$$
, HMC vs DM

2D U(1) gauge theory: vary the coupling

- o training: 30k configurations at $\beta = 1$ on 16^2 obtained using HMC
- \circ generating: 1024 configs at $\beta = 1, 3, 5, 7, 9, 11$ on $8^2, 16^2, 32^2$



coupling (β)	1×1 Wilson Loop				
	HMC	DM	Langevin	Exact	
3	0.811(17)	0.811(17)	0.809(17)	0.810	
5	0.894(9)	0.894(9)	0.891(10)	0.894	
7	0.926(7)	0.926(7)	0.924(6)	0.926	
9	0.944(3)	0.942(4)	0.940(6)	0.942	
11	0.954(3)	0.953(4)	0.950(5)	0.953	

increase the coupling, after training at $\beta=1$

$$\beta = 7$$
, $L = 16$, HMC vs DM

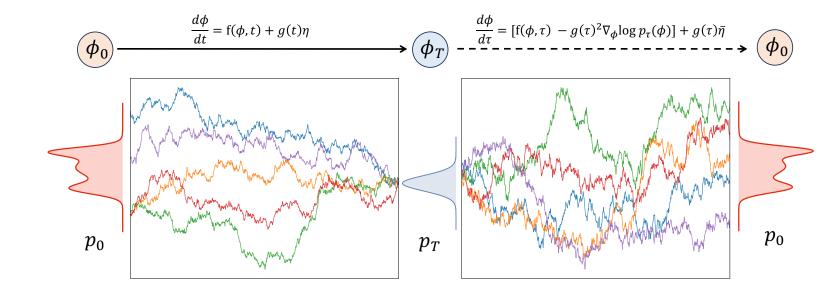
Summary: diffusion models

- offer a new approach for ensemble generation to explore in LFT
- learn from data: requires high-quality ensembles
- closely related to stochastic quantisation
- need better understanding of precision and exactness
- indicated three promising directions to be explored further

BACKUP SLIDES

Score matching: learn the drift for backward process

- one degree of freedom, variance-expanding scheme: $\dot{x}(t) = g(t)\eta(t)$ $\eta \sim \mathcal{N}(0,1)$
- o time-dependent distribution $P(x,t)=P_t(x)$ describes forward and backward process
- o so-called score $\nabla \log P_t(x)$ is not known, needs to be "learnt" during forward process



Score matching: learn the drift for backward process

- o one degree of freedom, variance-expanding scheme: $\dot{x}(t) = g(t)\eta(t)$ $\eta \sim \mathcal{N}(0,1)$
- o time-dependent distribution $P(x,t)=P_t(x)$ describes forward and backward process
- o so-called score $\nabla \log P_t(x)$ is not known, needs to be "learnt"
- $\quad \text{olss function } \mathcal{L}(\theta) = \frac{1}{2} \int_0^T dt \, \mathbb{E}_{P_t(x)} \left[\sigma^2(t) \, \|s_\theta(x,t) \nabla \log P_t(x)\|^2 \right] \qquad \qquad \sigma^2(t) = \int_0^t ds \, g^2(s)$
- \circ $s_{\theta}(x,t)$ approximates score, vector field learnt by some neural network
- o introduce conditional distribution $P_t(x) = \int dx_0 \, P_t(x|x_0) P_0(x_0)$ initial data $P_0(x_0)$

$$P_t(x) = \int dx_0 \, P_t(x|x_0) P_0(x_0)$$

Score matching: learn the drift

o loss function
$$\mathcal{L}(\theta) = \frac{1}{2} \int_0^T dt \, \mathbb{E}_{P_t(x)} \left[\sigma^2(t) \, \|s_{\theta}(x,t) - \nabla \log P_t(x)\|^2 \right]$$

- o diffusion process $\dot{x}(t)=g(t)\eta(t)$ easily solved $x(t)=x_0+\sigma(t)\eta(t)$ $\sigma^2(t)=\int_0^t ds\,g^2(s)$
- o conditional distribution $P_t(x|x_0) = \mathcal{N}(x;x_0,\sigma^2(t)) = \frac{1}{\sqrt{2\pi\sigma^2(t)}}e^{-(x-x_0)^2/(2\sigma^2(t))}$
- o and hence $\nabla \log P_t(x_t|x_0) = -(x_t x_0)/\sigma^2(t)$

o loss function
$$\mathcal{L}(\theta) = \frac{1}{2} \int_0^T dt \, \mathbb{E}_{P_t(x_t)} \left[\left\| \sigma(t) s_{\theta}(x_t, t) + \frac{x_t - x_0}{\sigma(t)} \right\|^2 \right]$$

$$= \frac{1}{2} \int_0^T dt \, \mathbb{E}_{P_t(x_t)} \left[\left\| \sigma(t) s_{\theta}(x_t, t) + \eta(t) \right\|^2 \right]$$

tractable, computable