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Generative AI using diffusion models
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https://encord.com/blog/diffusion-models/

https://encord.com/blog/diffusion-models/
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denoising

Generative Modeling by Estimating 
Gradients of the Data Distribution
Yang Song, Stefano Ermon
1907.05600 [cs.LG]

interpolation

Score-Based Generative Modeling through 
Stochastic Differential Equations
Yang Song, Jascha Sohl-Dickstein, Diederik P. 
Kingma, Abhishek Kumar, Stefano Ermon, Ben 
Poole, 2011.13456 [cs.LG]

https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456


Motivation: lattice field theory
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o   generating configurations is one of the bottlenecks in lattice field theory
o   images are two-dimensional configurations from some unknown probability distribution
o   machine learning algorithms are usually fast and flexible

o   we know the distribution  ~𝑒!" : can we incorporate ML algorithms in LFT?

Flow-based genera/ve models for Markov chain Monte Carlo in la:ce field theory
MS Albergo, G Kanwar, PE Shanahan, Phys. Rev. D 100 (2019) 3, 034515 [1904.12072 [hep-lat]]

Applica/ons of machine learning to la:ce quantum field theory
D Boyda, et al, Snowmass 2021, 2202.05838 [hep-lat]

Advances in machine-learning-based sampling mo/vated by la:ce quantum chromodynamics
K Cranmer, G Kanwar, S Racanière, DJ Rezende, PE Shanahan, Nature Rev. Phys. 5, 526 (2023)

Physics-driven learning for inverse problems in QCD
G Aarts, K Fukushima, T Hatsuda, A Ipp, S Shi, L Wang, K Zhou, Nature Rev. Phys. 7 (2025) 154 [2501.05580 [hep-lat]]

https://arxiv.org/abs/1904.12072
https://arxiv.org/abs/2202.05838
https://arxiv.org/abs/2501.05580


Outline
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o  diffusion models as stochastic processes

o  relation to stochastic quantisation

o  theoretical analysis of evolution of cumulants 

o  recent variations and improvements: 
§  Metropolis adjusted Langevin algorithm (MALA) / annealing / physics conditioning
§  applied to U(1) gauge theory in two dimensions



Diffusion models: prior and target distributions

o   in pictures: 𝑝# is target (non-trivial), 𝑝$ is the prior (easy)

6forward process backward process
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Diffusion models and stochastic quantisation

o   images/configurations are generated during backward process 

o   stochastic process with time-dependent drift and noise strength

o   write   such that

o   then 
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Diffusion models and stochastic quantisation

o   then

o   very familiar to (lattice) field theorists

o   stochastic quantisation (Parisi & Wu 1980)

o   path integral quantisation via a 
      stochastic process in fictitious time

o   stationary solution of associated Fokker-Planck equation
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Diffusion models and stochastic quantisation
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similarities and differences:

ü  SQ: fixed drift, determined from known action
     constant noise variance (but can be generalised using kernels)
     thermalisation followed by long-term evolution in equilibrium

ü  DM: drift and noise variance time-dependent, learn from data 
     evolution between            , many short runs



Diffusion models and stochastic quantisation

o   diffusion models as an alternative approach to stochastic quantisation

configurations

theory:

e.g. HMC

configuraVons
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations

L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]   see also Y Hirono, A Tanaka, K Fukushima, 2403.11262 

https://arxiv.org/abs/2309.17082
https://arxiv.org/abs/2403.11262


Diffusion model for 2d 𝜙! la@ce scalar theory

o   32% lattice, choice of action parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)

o   first application of diffusion models 
      in lattice field theory

generating configurations:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1
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L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]

https://arxiv.org/abs/2309.17082


Diffusion models: generation of correlations

o   forward process

o   backward process

two main schemes
o   variance-expanding (VE): no drift
o   variance-preserving (VP) or denoising diffusion probabilistic models (DDPMs):
           linear drift  
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score

noise profile



Solve forward process

o   forward process

o   iniVal data from target ensemble

o   soluVon

o   second moment/cumulant/variance
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assume first moment vanishes
 



Higher-order moments and cumulants

o   moments      and cumulants            : straightforward algebra

14

variance-expanding 
scheme: no dri[

higher cumulants 
conserved!



Proof to all orders

o  generaVng funcVonals: average over both noise and target distribuVons

 moments    cumulants

o   noise average

o   full average

o   cumulant generator
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Proof to all orders: cumulants 

o   cumulant generator

o   2nd cumulant

o   higher-order 
      cumulants

16

ü  

ü  



Two-dimensional scalar fields

extension to scalar fields trivial: each la^ce point is treated separately

o   forward

o   backward

o   two-point funcVon

o   moments    independent of 



Generating functionals

o   moment generating

o   cumulant generating

o   higher-order cumulants

full path integral 
with sources

variance
preserving

variance 
expanding



Generating functionals: summary

o   euclidean path integral/target distribuVon is always there in the background
  

o   correlaVons are being destroyed/overwhelmed and retrieved

o   if score is determined exactly, full theoreVcal control

GA, D Habibi, L Wang, K Zhou, Mach.Learn.Sci.Tech. 6 (2025) 2, 025004 [arXiv:2410.21212 [hep-lat]]

https://arxiv.org/abs/2410.21212


o   iniVal distribuVon         : Gaussian mixture  (two Gaussian peaks)

o   add noise in variance-expanding scheme

o   analyVcal descripVon

o   peak structure erased

Example: forward evolution
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FPE:



Example: backward evolution

o   target distribution:  two Gaussian peaks

o   forward process

o   corresponding backward process

        with 
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score

noise profile

solve FPE for backward process
using two initial distributions



2D example: three Gaussian peaks
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backward process, starting 
from wide normal distribution

score     
during backward process



4th, 6th, 8th cumulant with driN (DDPM)
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Incorporate (new/old) ideas in diffusion models

o   exactness à include an accept/reject step

o   thermalisation: score is time dependent, system never thermalises à annealing

o   train at one set of parameters, apply trained model at different set à conditioning

o   apply to 2D U(1) gauge theory

24
Q Zhu, W Wang, GA, K Zhou, L Wang, 2502.05504 [hep-lat]

https://arxiv.org/abs/2502.05504


Incorporate (new/old) ideas in DM dynamics
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o Metropolis-adjusted Langevin 
     algorithm (MALA)

o annealing stage: thermalisation

o reweighting from 𝛽# to 𝛽

backward process 
(after model has been trained)



Metropolis-adjusted Langevin algorithm (MALA)

o   include an accept/reject step: well-known in Langevin dynamics *

o   include ratio of target distributions
o   and ratios of transition amplitudes
   

26
* G.O. Roberts and J.S. Rosenthal, Op[mal scaling of discrete approxima[ons to Langevin diffusions, 
Journal of the Royal Sta[s[cal Society: Series B (Sta[s[cal Methodology) 60 (1998) 255



Metropolis-adjusted Langevin algorithm (MALA)

o   include an accept/reject step

o   only done towards end of backward process

o   learned score should be fairly close to “exact” score

o   Markov chain starVng from each configuraVon towards end of backward process
27



Annealing

o   score (drift or force in Langevin equation) 
      is time dependent

o   system never thermalises

o   allow for additional steps at fixed score

à annealing

o   strictly speaking not needed, but seems useful

28



Physics conditioning (gauge theory)

o   train using data generated at 𝛽#

o   employ at different 𝛽 values

o   applied to U(1) gauge theory: acVon scales with 𝛽

moVvated by stochasVc quanVsaVon:

o   dri[ is proporVonal to 𝛽

29



Two-dimensional U(1) gauge theory

o   training: 30k configurations at 𝛽 = 1 on 16% obtained using HMC
o   generating: 1024 configs at 𝛽 = 1, 3, 5, 7, 9, 11 on 8%, 16%, 32%
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2D U(1) gauge theory: vary the volume

o   training: 30k configurations at 𝛽 = 1 on 16% obtained using HMC
o   generating: 1024 configs at 𝛽 = 1, 3, 5, 7, 9, 11 on 8%, 16%, 32%

31𝛽 = 1, 𝐿 = 16, HMC vs DM

increase the volume, after training on 𝐿 = 16 



2D U(1) gauge theory: vary the coupling

o   training: 30k configurations at 𝛽 = 1 on 16% obtained using HMC
o   generating: 1024 configs at 𝛽 = 1, 3, 5, 7, 9, 11 on 8%, 16%, 32%

32𝛽 = 7, 𝐿 = 16, HMC vs DM

increase the coupling, after training at 𝛽 = 1



Summary: diffusion models

o   offer a new approach for ensemble generaVon to explore in LFT

o   learn from data: requires high-quality ensembles

o   closely related to stochasVc quanVsaVon

o   need beder understanding of precision and exactness

o   indicated three promising direcVons to be explored further
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BACKUP SLIDES
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Score matching: learn the drift for backward process

o   one degree of freedom, variance-expanding scheme:          

o   time-dependent distribution   describes forward and backward process

o   so-called score            is not known, needs to be “learnt” during forward process
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Score matching: learn the drift for backward process

o   one degree of freedom, variance-expanding scheme:          

o   time-dependent distribution   describes forward and backward process

o   so-called score            is not known, needs to be “learnt”

o   loss function

o             approximates score, vector field learnt by some neural network

o   introduce conditional distribution              initial data



Score matching: learn the driN

o  loss function

o  diffusion process                               easily solved     

o  conditional distribution

o   and hence

o   loss function 

tractable, computable


