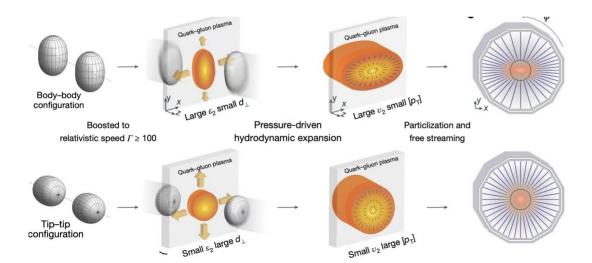
Essentials of nuclear imaging for high-energy colliders

Giuliano Giacalone

September 19, 2025



Nuclear physics across energy scales

Sep 18 - 21, 2025

Spatial imaging – Frontier with ultra-cold atom gases

VIEWPOINT

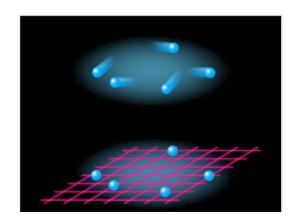
A Glimpse at the Quantum Behavior of a Uniform Gas

Meera Parish

School of Physics and Astronomy, Monash University, Melbourne, Australia

May 5, 2025 • Physics 18, 89

An innovative way to image atoms in cold gases could provide deeper insights into the atoms' quantum correlations.



VIEWPOINT

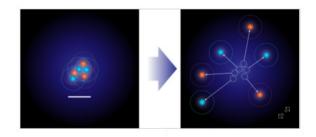
Magnifying Atomic Images

Tarik Yefsah

French National Centre for Scientific Research (CNRS) and École Normale Supérieure, Paris, France

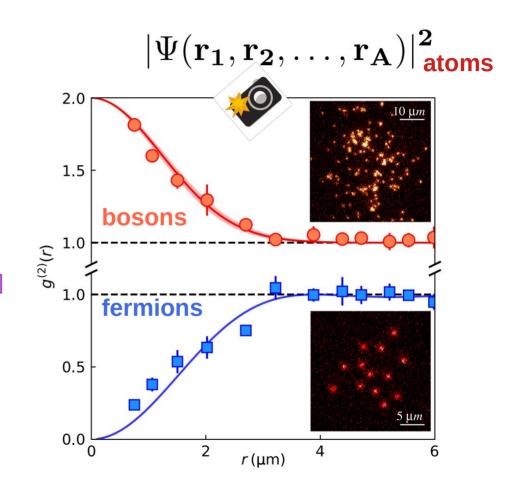
September 2, 2025 • Physics 18, 152

A new technique allows the imaging of an atomic system in which the interatomic spacing is smaller than the optical-resolution limit.

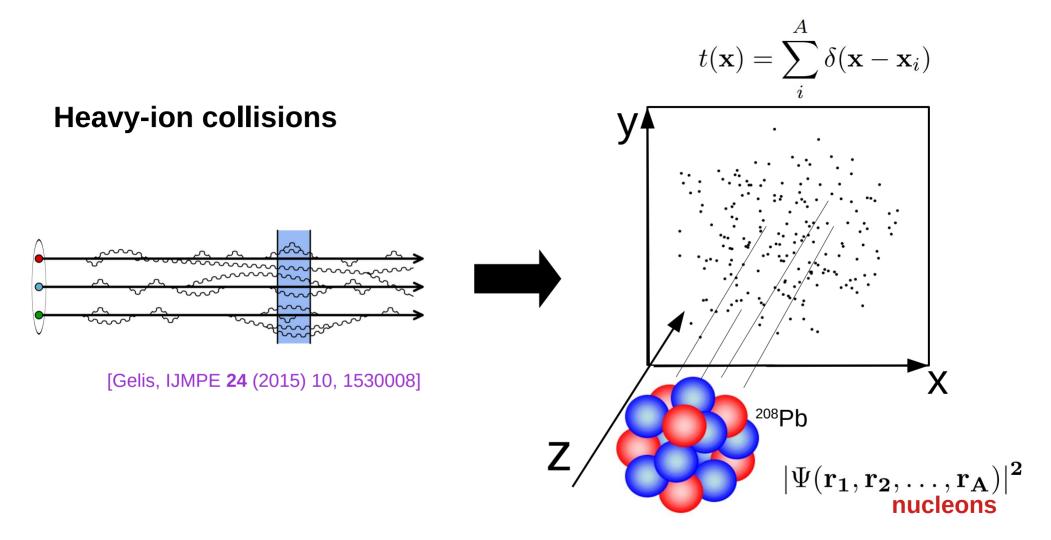


Many-body correlations of atoms – Snapshots of the ground-state wave function

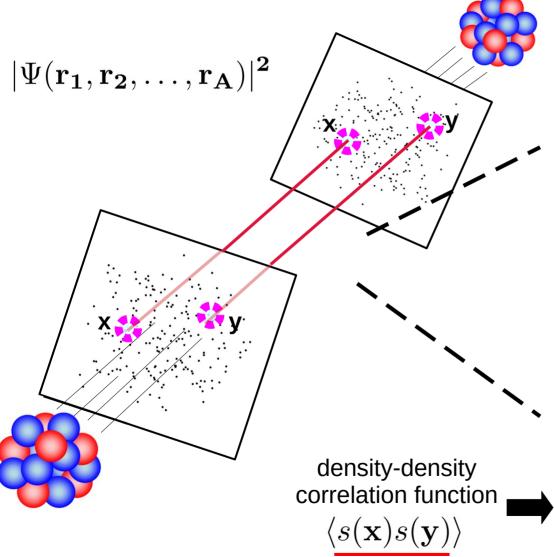
two-body correlation function $g_2(\mathbf{r}_1,\mathbf{r}_2) = \frac{\langle \psi^\dagger(\mathbf{r}_2)\psi^\dagger(\mathbf{r}_1)\psi(\mathbf{r}_1)\psi(\mathbf{r}_2)\rangle}{n^2}$ [Yao et al., PRL **134** (2025) 18, 183402]



Can we image nuclear scales in the same way?

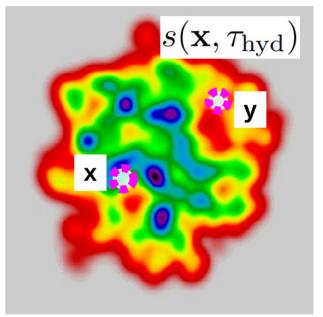


Instantaneous snapshot of the positions of the colliding nucleons



Interactions are highly local (Q~1 GeV)

Pre-equilibrium physics < 1 fm/c



 $|{f x}-{f y}|<1/\Lambda$ high-energy physics $|{f x}-{f y}|>1/\Lambda$ low-energy physics

Relevance of density-density correlations for experiments – Leading order picture

0.08

[Blaizot, Broniowski, Ollitrault, PLB 738 (2014) 166-171]

$$s(\mathbf{x}) = \langle s(\mathbf{x}) \rangle + \delta s(\mathbf{x})$$

$$\mathcal{E}_n \equiv -\frac{\int_{\mathbf{x}} |\mathbf{x}|^n e^{in\phi_x} s(\mathbf{x})}{\int_{\mathbf{x}} |\mathbf{x}|^n s(\mathbf{x})}$$

Linearize in δs

Pb+Pb,
$$\sqrt{s} = 5.02 \text{ TeV}$$

$$0.06$$

$$0.02$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.01$$

$$0.02$$

$$0.02$$

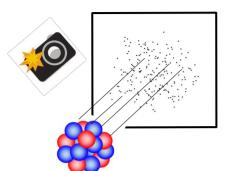
$$0.3$$

$$0.02$$

$$0.3$$

$$\langle v_n^2 \rangle \propto \langle \mathcal{E}_n \, \mathcal{E}_n^* \rangle = \frac{\int_{\mathbf{x}, \mathbf{y}} |\mathbf{x}|^n \, |\mathbf{y}|^n \, e^{in(\phi_x - \phi_y)} \langle s(\mathbf{x}) s(\mathbf{y}) \rangle}{\left(\int_{\mathbf{x}} |\mathbf{x}|^n \, \langle s(\mathbf{x}) \rangle \right)^2}$$

Essential model of ultra-central collisions – density correlations



$$t(\mathbf{x}) = \sum_{i}^{A} \delta(\mathbf{x} - \mathbf{x}_i)$$
 Thickness function

ULTRA-CENTRAL ENTROPY $s(\mathbf{x}) \propto t(\mathbf{x})$ **N-POINT FUNCTIONS** $\langle s(\mathbf{x}) \rangle \propto \langle t(\mathbf{x}) \rangle$ $\langle s(\mathbf{x}_1)s(\mathbf{x}_2)\rangle \propto \langle t(\mathbf{x}_1)t(\mathbf{x}_2)\rangle$

 $ho^{(n)}(\mathbf{r}_1,\ldots,\mathbf{r}_n)\equiv\int_{\mathbf{r}_1\ldots\mathbf{r}_d}|\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_A)|^2$

Nuclear n-body densities

Mean squared eccentricity of the density field

$$\langle v_n^2 \rangle \propto \langle \varepsilon_n^2 \rangle \propto \frac{1}{A} \int_{\mathbf{x}} \rho_\perp^{(1)}(\mathbf{x}) (x^2 + y^2)^n + \int_{\mathbf{x}_1, \mathbf{x}_2} \rho_\perp^{(2)}(\mathbf{x}_1, \mathbf{x}_2) \left(x_1 + i \, y_1\right)^n (x_2 - i \, y_2)^n$$
 finite number of nucleons

New operator in QM and new observable

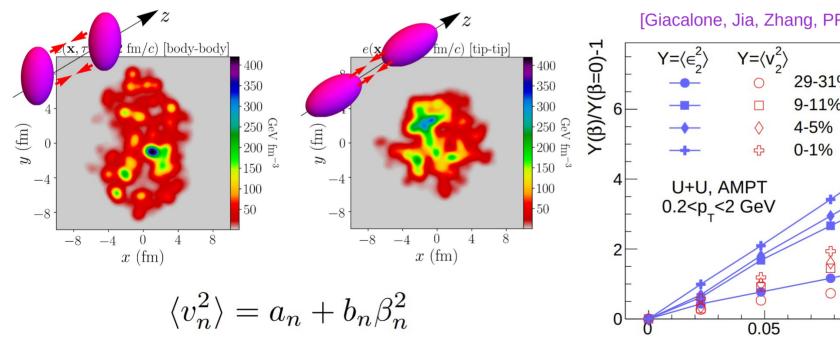
$$\hat{\mathcal{E}}_n(\mathbf{r}_1, \mathbf{r}_2) = (r_{1x} + ir_{1y})^n (r_{2x} - ir_{2y})^n$$

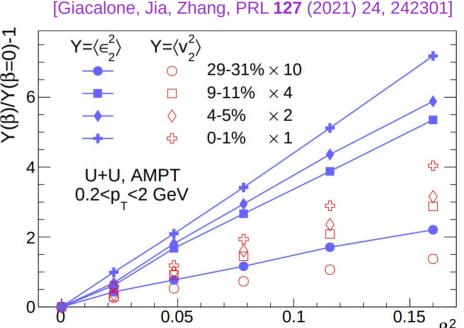
$$= r_1^n r_2^n e^{in(\phi_1 - \phi_2)}$$
 [Duguet,

 $= r_1^n r_2^n e^{in(\phi_1 - \phi_2)}$ [Duguet, Giacalone, Jeon, Tichai, 2504.02481]

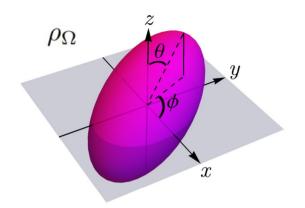
Link to the classical rotor picture

$$\rho(r,\theta,\phi) \propto \frac{1}{1+\exp\left(\left[r-R(\theta,\phi)\right]/a\right)} \text{ , } R(\theta,\phi) = R_0 \bigg[1+\underline{\beta_2}\bigg(\cos\gamma Y_{20}(\theta)+\sin\gamma Y_{22}(\theta,\phi)\bigg) + \underline{\beta_3}Y_{30}(\theta) + \underline{\beta_4}Y_{40}(\theta)\bigg]$$

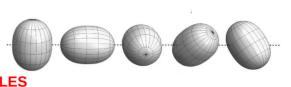




Classical rotor picture – Correlations from symmetry restoration

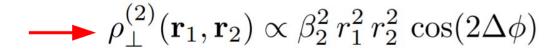


$$ho^{(1)}(\mathbf{r}_1) = \int_{\Omega}
ho_{\Omega}(\mathbf{r}_1)$$
 Euler angles



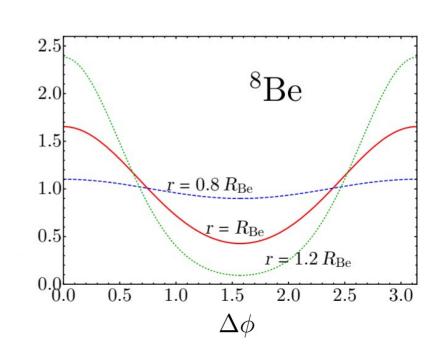
$$\rho^{(2)}(\mathbf{r}_1,\mathbf{r}_2) = \int_{\Omega} \rho_{\Omega}(\mathbf{r}_1)\rho_{\Omega}(\mathbf{r}_2) \neq \rho^{(1)}(\mathbf{r}_1)\rho^{(1)}(\mathbf{r}_2)$$
 deformation

Generic considerations – Deformation



$$\mathbf{r}_1 = (r_1, \phi_1) \quad \mathbf{r}_2 = (r_2, \phi_2) \quad \Delta \phi = \phi_1 - \phi_2$$

[Blaizot, Giacalone, 2504.15421]



Understanding effects of deformations in the rotor model

$$\langle v_n^2 \rangle = a_n + b_n \beta_n^2 \qquad \text{With } \rho_{\perp}^{(2)}(\mathbf{r}_1, \mathbf{r}_2) \propto \beta_n^2 r_1^n r_2^n \cos(n\Delta\phi)$$

$$\propto \langle \varepsilon_n^2 \rangle = \frac{1}{2A^2} \frac{1}{\left(\int_{\mathbf{r}_1} \rho^{(1)}(\mathbf{r}_1) r_{1\perp}^n\right)^2} \left[A \int_{\mathbf{r}_1} \rho^{(1)}(\mathbf{r}_1) r_{1\perp}^{2n} \langle \hat{\mathcal{E}}_n \rangle + (A^2 - A) \int_{\mathbf{r}_1, \mathbf{r}_2} \rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2) (r_{1x} + ir_{1y})^n (r_{2x} - ir_{2y})^n \right]$$

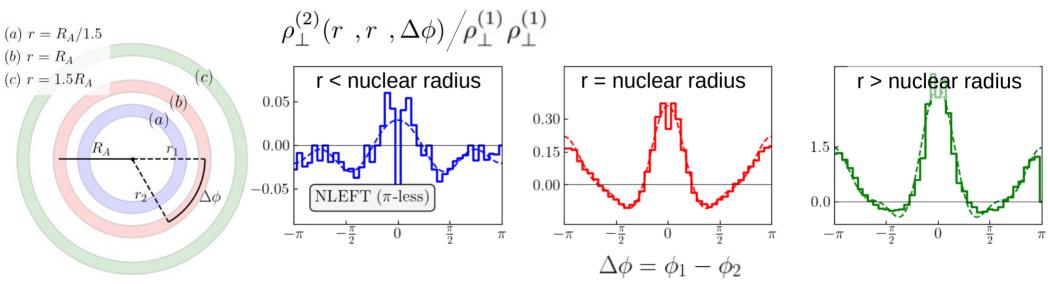
The new observable measures the (squared) deformation of the classical rotor

$$\langle \hat{\mathcal{E}}_2 \rangle \propto \beta_2^2 \qquad \langle \hat{\mathcal{E}}_3 \rangle \propto \beta_3^2$$

Going ab initio – The azimuthal structure of the projected two-body density

Quadrupole modulation in ab initio computation for J=0 state ²⁰Ne !!!

[Blaizot, Giacalone, Lovato, in progress]

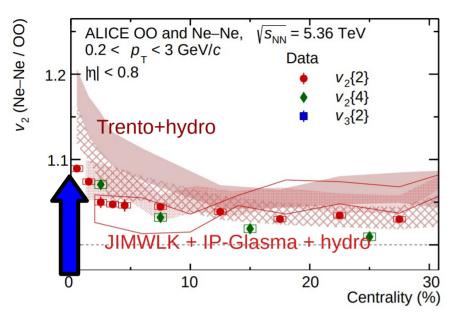


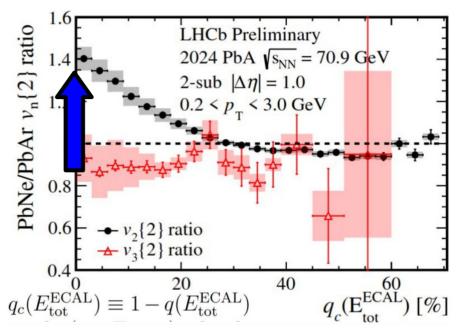
Ground-state expectation $\langle \Psi_0 | \hat{\mathcal{E}}_2 | \Psi_0
angle$ measures the amplitude of modulation

Modern pictures of emergent collective behavior in nuclear ground states

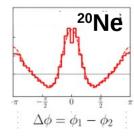
[ALICE Collaboration, 2509.06428]

[LHCb collaboration, Initial Stages 25]





Upward correction from the ground-state expectation $\langle \Psi_0 | \hat{\mathcal{E}}_2 | \Psi_0 \rangle$ Neon has stronger angular correlations than oxygen / argon



IP-Glasma+hydro shows different trend from Trento+Hydro ... interplay with small-x effects?

Prospects – A new window onto the many-body structure of nuclei

Observables

Many-body operators

$$\langle V_n V_n^* \rangle$$

this talk

 $\int_{\mathbf{x}_1 \cdot \mathbf{x}_2} |\mathbf{x}_1|^n |\mathbf{x}_2|^n e^{in(\phi_{\mathbf{x}_1} - \phi_{\mathbf{x}_2})} \rho_{\perp}^{(2)}(\mathbf{x}_1, \mathbf{x}_2)$

$$\langle V_n V_n^* \left[p_T \right] \rangle$$

$$\int_{\mathbf{x}_1,\mathbf{x}_2} |\mathbf{x}_1|^m \, |\mathbf{x}_2|^n \, \rho_{\perp}^{(2)}(\mathbf{x}_1,\mathbf{x}_2)$$

much more to come... $\int_{\mathbf{x}_1,\mathbf{x}_2} |\mathbf{x}_1|^{2n} |\mathbf{x}_2|^n \, e^{in(\phi_1-\phi_2)} \, \rho_{\perp}^{(2)}(\mathbf{x}_1,\mathbf{x}_2)$

$$\int$$

 $\int_{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3} |\mathbf{x}_1|^n |\mathbf{x}_2|^n |\mathbf{x}_3|^n e^{in(\phi_2 - \phi_3)} \rho_{\perp}^{(3)}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$

$$\langle V_n V_n^* V_m V_m^* \rangle$$

$$\int_{\mathcal{X}}$$

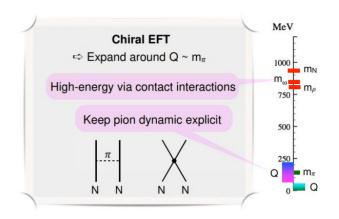
$$\int_{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4} |\mathbf{x}_1|^n |\mathbf{x}_2|^n |\mathbf{x}_3|^n |\mathbf{x}_4|^n e^{in(\phi_1+\phi_2-\phi_3-\phi_4)} \rho_{\perp}^{(4)}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4)$$

[Gale, Giacalone, Jeon, Kakekaspan, in progress] [Mehrabpour, Giacalone, Luzum, in progress]

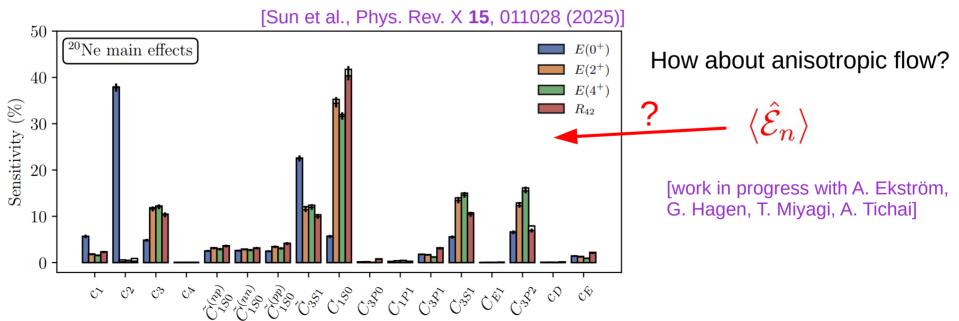
Prospects – A new window onto the nuclear force?

$$\mathcal{H} = \sum_{i} \mathcal{T}_{i} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \cdots$$

[Hammer, König, van Kolck, RMP **92** (2020) 2, 025004] [Piarulli, Tews, Front.in Phys. **7** (2020) 245]



17 low-energy constants at N2LO – What determines the "shape" of ²⁰Ne?



Some results for ¹⁶O!!

[work in progress with A. Ekström, G. Hagen, T. Miyagi, A. Tichail

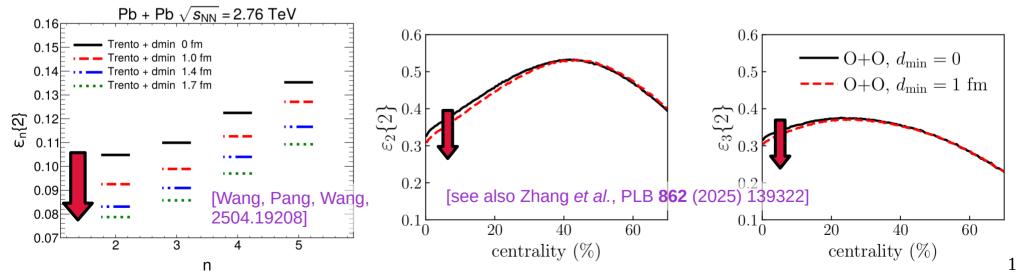
mean field results (Pauli exclusion only)

$$\langle \hat{\mathcal{E}}_2 \rangle$$
 [Lovato] = -0.766 fm⁴
 $\langle \hat{\mathcal{E}}_2 \rangle$ [Regnier] = -0.679 fm⁴
 $\langle \hat{\mathcal{E}}_2 \rangle$ [Miyagi + Tichai] = -0.700 fm⁴

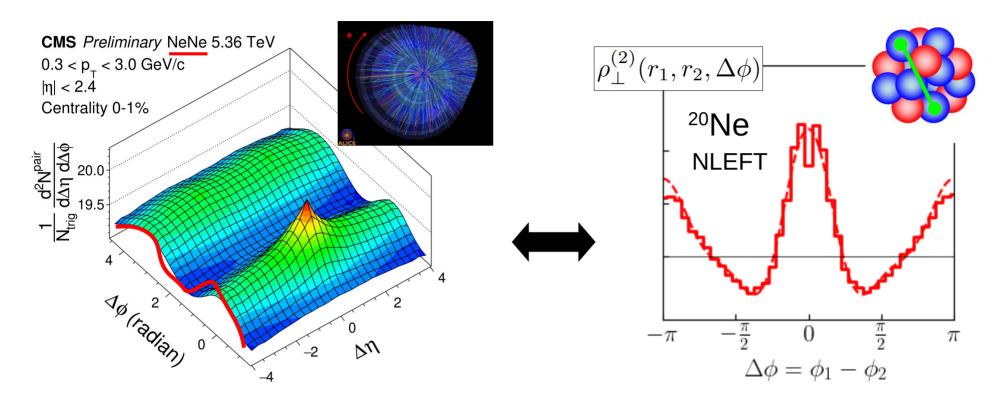
With interactions (IMSRG)

$$\langle \hat{\mathcal{E}}_2 \rangle$$
 [Miyagi + Tichai] = -0.269 fm^4

Negative sign consistent with observation that "repulsion" lowers anisotropies



25 years later ... Seeing the many-body structure of nuclear ground states



Implications for nuclear forces in chiral EFT? Connection to QCD?

Implications for $0\nu\beta\beta$ matrix elements, Schiff moments, ... other ideas?

谢谢